[1]
|
Giordano, A., Smorlesi, A., Frontini, A., Barbatelli, G. and Cinti, S. (2014) Mechanisms in Endocrinology: White, Brown and Pink Adipocytes: The Extraordinary Plasticity of the Adipose Organ. European Journal of Endocrinology, 170, R159-R171. https://doi.org/10.1530/eje-13-0945
|
[2]
|
Thoonen, R., Hindle, A.G. and Scherrer-Crosbie, M. (2016) Brown Adipose Tissue: The Heat Is on the Heart. American Journal of Physiology-Heart and Circulatory Physiology, 310, H1592-H1605. https://doi.org/10.1152/ajpheart.00698.2015
|
[3]
|
Becher, T., Palanisamy, S., Kramer, D.J., Eljalby, M., Marx, S.J., Wibmer, A.G., et al. (2021) Brown Adipose Tissue Is Associated with Cardiometabolic Health. Nature Medicine, 27, 58-65. https://doi.org/10.1038/s41591-020-1126-7
|
[4]
|
Parra-Peralbo, E., Talamillo, A. and Barrio, R. (2021) Origin and Development of the Adipose Tissue, a Key Organ in Physiology and Disease. Frontiers in Cell and Developmental Biology, 9, Article ID: 786129. https://doi.org/10.3389/fcell.2021.786129
|
[5]
|
Merklin, R.J. (1974) Growth and Distribution of Human Fetal Brown Fat. The Anatomical Record, 178, 637-645. https://doi.org/10.1002/ar.1091780311
|
[6]
|
Cypess, A.M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A.B., et al. (2009) Identification and Importance of Brown Adipose Tissue in Adult Humans. New England Journal of Medicine, 360, 1509-1517. https://doi.org/10.1056/nejmoa0810780
|
[7]
|
Chapman, J. and Vega, F. (2017) Incidental Brown Adipose Tissue in Bone Marrow Biopsy. Blood, 130, 952-952. https://doi.org/10.1182/blood-2017-04-778563
|
[8]
|
Scheele, C. and Wolfrum, C. (2019) Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism. Endocrine Reviews, 41, 53-65. https://doi.org/10.1210/endrev/bnz007
|
[9]
|
Cannon, B. and Nedergaard, J. (2004) Brown Adipose Tissue: Function and Physiological Significance. Physiological Reviews, 84, 277-359. https://doi.org/10.1152/physrev.00015.2003
|
[10]
|
Blondin, D.P., Nielsen, S., Kuipers, E.N., Severinsen, M.C., Jensen, V.H., Miard, S., et al. (2020) Human Brown Adipocyte Thermogenesis Is Driven by β2-AR Stimulation. Cell Metabolism, 32, 287-300.e7. https://doi.org/10.1016/j.cmet.2020.07.005
|
[11]
|
U-Din, M., de Mello, V.D., Tuomainen, M., Raiko, J., Niemi, T., Fromme, T., et al. (2023) Cold-Stimulated Brown Adipose Tissue Activation Is Related to Changes in Serum Metabolites Relevant to NAD+ Metabolism in Humans. Cell Reports, 42, Article ID: 113131. https://doi.org/10.1016/j.celrep.2023.113131
|
[12]
|
Almeida, D.L., Moreira, V.M., Cardoso, L.E., Junior, M.D.F., Pavanelo, A., Ribeiro, T.A., et al. (2021) Lean in One Way, in Obesity Another: Effects of Moderate Exercise in Brown Adipose Tissue of Early Overfed Male Wistar Rats. International Journal of Obesity, 46, 137-143. https://doi.org/10.1038/s41366-021-00969-1
|
[13]
|
Bonfante, I.L.P., Monfort-Pires, M., Duft, R.G., da Silva Mateus, K.C., de Lima Júnior, J.C., dos Santos Trombeta, J.C., et al. (2022) Combined Training Increases Thermogenic Fat Activity in Patients with Overweight and Type 2 Diabetes. International Journal of Obesity, 46, 1145-1154. https://doi.org/10.1038/s41366-022-01086-3
|
[14]
|
U Din, M., Saari, T., Raiko, J., Kudomi, N., Maurer, S.F., Lahesmaa, M., et al. (2018) Postprandial Oxidative Metabolism of Human Brown Fat Indicates Thermogenesis. Cell Metabolism, 28, 207-216.e3. https://doi.org/10.1016/j.cmet.2018.05.020
|
[15]
|
Xie, L., Wang, H., Wu, D., Zhang, F., Chen, W., Ye, Y., et al. (2023) CXCL13 Promotes Thermogenesis in Mice via Recruitment of M2 Macrophage and Inhibition of Inflammation in Brown Adipose Tissue. Frontiers in Immunology, 14, Article ID: 1253766. https://doi.org/10.3389/fimmu.2023.1253766
|
[16]
|
Laiglesia, L.M., Escoté, X., Sáinz, N., Felix-Soriano, E., Santamaría, E., Collantes, M., et al. (2023) Maresin 1 Activates Brown Adipose Tissue and Promotes Browning of White Adipose Tissue in Mice. Molecular Metabolism, 74, Article ID: 101749. https://doi.org/10.1016/j.molmet.2023.101749
|
[17]
|
Raiko, J., Orava, J., Savisto, N. and Virtanen, K.A. (2020) High Brown Fat Activity Correlates with Cardiovascular Risk Factor Levels Cross-Sectionally and Subclinical Atherosclerosis at 5-Year Follow-Up. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 1289-1295. https://doi.org/10.1161/atvbaha.119.313806
|
[18]
|
Berbée, J.F.P., Boon, M.R., Khedoe, P.P.S.J., Bartelt, A., Schlein, C., Worthmann, A., et al. (2015) Brown Fat Activation Reduces Hypercholesterolaemia and Protects from Atherosclerosis Development. Nature Communications, 6, Article No. 6356. https://doi.org/10.1038/ncomms7356
|
[19]
|
Bartelt, A., John, C., Schaltenberg, N., Berbée, J.F.P., Worthmann, A., Cherradi, M.L., et al. (2017) Thermogenic Adipocytes Promote HDL Turnover and Reverse Cholesterol Transport. Nature Communications, 8, Article No. 15010. https://doi.org/10.1038/ncomms15010
|
[20]
|
Zhou, E., Hoeke, G., Li, Z., Eibergen, A.C., Schonk, A.W., Koehorst, M., et al. (2019) Colesevelam Enhances the Beneficial Effects of Brown Fat Activation on Hyperlipidaemia and Atherosclerosis Development. Cardiovascular Research, 116, 1710-1720. https://doi.org/10.1093/cvr/cvz253
|
[21]
|
Yamada, Y., Wang, X., Yokoyama, S., Fukuda, N. and Takakura, N. (2006) Cardiac Progenitor Cells in Brown Adipose Tissue Repaired Damaged Myocardium. Biochemical and Biophysical Research Communications, 342, 662-670. https://doi.org/10.1016/j.bbrc.2006.01.181
|
[22]
|
Martí-Pàmies, Í., Thoonen, R., Morley, M., Graves, L., Tamez, J., Caplan, A., et al. (2023) Brown Adipose Tissue and Bmp3b Decrease Injury in Cardiac Ischemia-Reperfusion. Circulation Research, 133, 353-365. https://doi.org/10.1161/circresaha.122.322337
|
[23]
|
Moon, H., Choi, J., Song, B., Kim, I., Lim, S., Lee, S., et al. (2022) Brite Adipocyte FGF21 Attenuates Cardiac Ischemia/reperfusion Injury in Rat Hearts by Modulating NRF2. Cells, 11, Article No. 567. https://doi.org/10.3390/cells11030567
|
[24]
|
Panagia, M., Chen, Y.I., Chen, H.H., Ernande, L., Chen, C., Chao, W., et al. (2016) Functional and Anatomical Characterization of Brown Adipose Tissue in Heart Failure with Blood Oxygen Level Dependent Magnetic Resonance. NMR in Biomedicine, 29, 978-984. https://doi.org/10.1002/nbm.3557
|
[25]
|
Valero-Muñoz, M., Li, S., Wilson, R.M., Hulsmans, M., Aprahamian, T., Fuster, J.J., et al. (2016) Heart Failure with Preserved Ejection Fraction Induces Beiging in Adipose Tissue. Circulation: Heart Failure, 9, e002724. https://doi.org/10.1161/circheartfailure.115.002724
|
[26]
|
Yoshida, Y., Shimizu, I., Shimada, A., Nakahara, K., Yanagisawa, S., Kubo, M., et al. (2022) Brown Adipose Tissue Dysfunction Promotes Heart Failure via a Trimethylamine N-Oxide-Dependent Mechanism. Scientific Reports, 12, Article No. 14883. https://doi.org/10.1038/s41598-022-19245-x
|
[27]
|
Lin, J., Ding, L., Xu, L., Huang, J., Zhang, Z., Chen, X., et al. (2022) Brown Adipocyte ADRB3 Mediates Cardioprotection via Suppressing Exosomal Inos. Circulation Research, 131, 133-147. https://doi.org/10.1161/circresaha.121.320470
|
[28]
|
Li, X., Liu, J., Wang, G., Yu, J., Sheng, Y., Wang, C., et al. (2015) Determination of UCP1 Expression in Subcutaneous and Perirenal Adipose Tissues of Patients with Hypertension. Endocrine, 50, 413-423. https://doi.org/10.1007/s12020-015-0572-3
|
[29]
|
Esler, M. (2015) The Sympathetic Nervous System in Hypertension: Back to the Future? Current Hypertension Reports, 17, Article No. 11. https://doi.org/10.1007/s11906-014-0519-8
|
[30]
|
Kong, L., Zhou, Y., Chen, D., Ruan, C. and Gao, P. (2018) Decrease of Perivascular Adipose Tissue Browning Is Associated with Vascular Dysfunction in Spontaneous Hypertensive Rats during Aging. Frontiers in Physiology, 9, Article No. 400. https://doi.org/10.3389/fphys.2018.00400
|
[31]
|
Das, E., Moon, J.H., Lee, J.H., Thakkar, N., Pausova, Z. and Sung, H. (2018) Adipose Tissue and Modulation of Hypertension. Current Hypertension Reports, 20, Article No. 96. https://doi.org/10.1007/s11906-018-0894-7
|
[32]
|
Maitland, M.L., Kasza, K.E., Karrison, T., Moshier, K., Sit, L., Black, H.R., et al. (2009) Ambulatory Monitoring Detects Sorafenib-Induced Blood Pressure Elevations on the First Day of Treatment. Clinical Cancer Research, 15, 6250-6257. https://doi.org/10.1158/1078-0432.ccr-09-0058
|
[33]
|
McQuillan, B.M., Picard, M.H., Leavitt, M. and Weyman, A.E. (2001) Clinical Correlates and Reference Intervals for Pulmonary Artery Systolic Pressure among Echocardiographically Normal Subjects. Circulation, 104, 2797-2802. https://doi.org/10.1161/hc4801.100076
|
[34]
|
Sheu, E.G., Channick, R. and Gee, D.W. (2015) Improvement in Severe Pulmonary Hypertension in Obese Patients after Laparoscopic Gastric Bypass or Sleeve Gastrectomy. Surgical Endoscopy, 30, 633-637. https://doi.org/10.1007/s00464-015-4251-5
|
[35]
|
Liu, X., Zhang, Z., Song, Y., Xie, H. and Dong, M. (2023) An Update on Brown Adipose Tissue and Obesity Intervention: Function, Regulation and Therapeutic Implications. Frontiers in Endocrinology, 13, Article ID: 1065263. https://doi.org/10.3389/fendo.2022.1065263
|
[36]
|
Fang, H. and Judd, R.L. (2018) Adiponectin Regulation and Function. Comprehensive Physiology, 8, 1031-1063.
|
[37]
|
Summer, R., Fiack, C.A., Ikeda, Y., Sato, K., Dwyer, D., Ouchi, N., et al. (2009) Adiponectin Deficiency: A Model of Pulmonary Hypertension Associated with Pulmonary Vascular Disease. American Journal of Physiology-Lung Cellular and Molecular Physiology, 297, L432-L438. https://doi.org/10.1152/ajplung.90599.2008
|
[38]
|
Weng, M., Raher, M.J., Leyton, P., Combs, T.P., Scherer, P.E., Bloch, K.D., et al. (2011) Adiponectin Decreases Pulmonary Arterial Remodeling in Murine Models of Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 45, 340-347. https://doi.org/10.1165/rcmb.2010-0316oc
|