SGLT-2抑制剂对缺血性脑卒中的影响及其作用机制研究进展
Progress in the Study of the Effect of SGLT-2 Inhibitors on Ischemic Stroke and Its Mechanism of Action
DOI: 10.12677/acm.2024.14102766, PDF, HTML, XML,    国家自然科学基金支持
作者: 李 蕾, 覃诗源, 高 爽, 杨雅芝, 陈 钰, 王 颖*:昆明医科大学第二附属医院神经内科,云南 昆明
关键词: 缺血性脑卒中钠–葡萄糖协同转运蛋白2抑制剂糖尿病Ischemic Stroke Sodium-Dependent Glucose Transporters 2 Inhibitor Diabetes Mellitus
摘要: 糖尿病是缺血性脑卒中的重要危险因素之一,钠葡萄糖协同转运蛋白抑制剂作为一种新型的降糖药可通过抑制肾脏血管对葡萄糖吸收而起到控制血糖作用,同时有抑制动脉粥样硬化、降脂及减轻体重等功能。本文通过从钠–葡萄糖协同转运蛋白2抑制剂作用机制出发,结合既往基础及临床研究报告。对钠–葡萄糖协同转运蛋白2抑制剂对缺血性脑血管病的影响及作用机制作一简要综述。
Abstract: Diabetes mellitus is one of the most important risk factors for ischemic stroke. Sodium-glucose cotransporter protein inhibitors, as a new type of hypoglycemic drugs, can control blood glucose by inhibiting glucose uptake by renal blood vessels, and at the same time inhibit atherosclerosis, lower lipids and reduce body weight. In this paper, the mechanism of sodium-glucose cotransporter protein 2 inhibitor is analyzed from the perspective of its mechanism of action, combined with the reports of previous basic and clinical studies. The effects of sodium-glucose cotransporter 2 inhibitors on ischemic cerebrovascular disease and its mechanism of action are briefly summarized.
文章引用:李蕾, 覃诗源, 高爽, 杨雅芝, 陈钰, 王颖. SGLT-2抑制剂对缺血性脑卒中的影响及其作用机制研究进展[J]. 临床医学进展, 2024, 14(10): 1054-1060. https://doi.org/10.12677/acm.2024.14102766

1. 引言

缺血性脑卒中(ischemic stroke, IS)为供应脑血流血管的血管壁出现损伤或血流动力学异常出现脑血流供应障碍,导致相应供血区域脑组织缺血缺氧而出现神经功能缺损的疾病,是全球第二大死亡原因,也是全球残疾的第三大原因[1]。2019年全球疾病负担系统分析结果显示:从1990年到2019年,中风事件的发病率增加了70%且逐渐年轻化,患病率增加了85%,中风的死亡人数增加了43%,因卒中致残人数增加了32% [2]。我国GBD数据显示,缺血性脑卒中具有高发病率(145/10万)、高患病率(1256/10万)、高复发率(41%)、高死亡率及高经济负担五大特点[3]。我国每年在脑卒中的治疗中投入近400亿元[4],给家庭和社会带来严重的经济和精神负担,已经成为重要的公共卫生问题。卒中调查研究和教育网络(SIREN)研究表明,约98.3%的脑卒中人群与可归因风险(population attriable risk, PAR)相关[5]。一直以来可干预危险因素如动脉粥样硬化(atherosclerosis, AS)、高血压、糖尿病、血脂异常和肥胖等是缺血性脑血管病预防主要针对的目标,规范控制这些危险因素能有效降低缺血性脑卒中的发病率。钠–葡萄糖协同转运蛋白2 (sodium-dependent glucose transporters 2, SGLT2)抑制剂是一种新型口服降糖药,其降糖作用已经被广泛认可。它可以通过抑制钠–葡萄糖协同转运体从而降低肾糖阈值并促进尿糖排泄降低血糖,能使肾糖阈值降低约20 mg/dl,同时不会增加低血糖风险[6]。SGLT抑制剂包含14种亚型,广泛分布于肾、心、脑、肺、肌肉、小肠等机体各个器官[7]。通过主动转运方式逆葡萄糖浓度梯度将肾小管液中的葡萄糖转运至周围毛细血管中,是肾脏重吸收葡萄糖的重要物质。其中SGLT-2抑制剂存在于肠上皮细胞和肾脏近端小管S1和S2段的顶膜中,是一种低亲和力,高容量的转运蛋白[8];是负责葡萄糖重吸收的主要蛋白,能重吸收近90%的葡萄糖,剩余10%的葡萄糖由SGLT-1抑制剂所吸收[9]。SGLT抑制剂不仅可以有效地降低糖尿病患者的血糖浓度,在单药降糖治疗时还可以明显降低糖化血红蛋白和全因死亡率[10]。其上市药物卡格列净及恩格列净在对脑卒中、非致死性心肌梗塞等心血管死亡事件中较安慰剂分别降低了15%和14% [11]。近年来越来越多研究发现SGLT-2抑制剂在预防动脉粥样硬化、降低血脂、减轻体重、保护心肾功能等方面均有积极作用[12]-[14]。但SGLT-2抑制剂在IS的预防和治疗中的作用尚不明确,本文将从缺血性脑血管病发病机制、SGLT-2抑制剂的作用机制及其对心脑血管疾病保护和预防作用等几个方面出发,结合既往基础及临床研究案例,对SGLT-2抑制剂对IS的影响作一综述。

2. SGLT-2抑制剂在预防缺血性脑卒中的作用

2.1. 控制血糖

2型糖尿病(Type 2 diabetes, T2DM)是最常见的慢性病之一,也是IS中的危险因素之一,研究表明在糖尿病患者中,男性IS的发病率增加了2.5倍,女性IS发病率增加了3.5倍[15]。患有糖尿病的IS患者具有更多的院内并发症、更差的预后以及更高的死亡率[16]。糖尿病是IS患者卒中复发的独立危险因素[17],也是IS后痴呆的唯一危险因素,在半年至一年的随访研究中,糖尿病使卒中后认知障碍增加了5.8倍[18]。糖化血红蛋白(glycosylated hemoglobin, HbA1c)是衡量患者长期血糖控制的理想指标,也是预测急性缺血性脑卒中(acute ischemic stroke, AIS)预后的有效标记物,HbA1c每增加一个单位,AIS患者三个月功能不良风险和1年内死亡风险明显增加[19],HbA1c还是卒中后认知功能障碍的标志物,水平越高表示卒中后认知障碍风险越高[20]。SGLT-2抑制剂在降低HbA1c、空腹及餐后血糖方面较传统的二肽基肽酶4 (Dipeptidyl peptidase 4, DPP-4)抑制剂和磺酰脲类口服降糖药具有明显优势,能更持久地改善T2DM的血糖并有效控制血糖波动[21] [22]

2.2. 抑制动脉粥样硬化

AS会造成血管管腔狭窄,形成血流障碍,是心脑血管疾病发病的主要病理基础,也是短暂性脑缺血发作和IS发生的重要病因。内皮细胞功能障碍是AS最主要的病变之一,通常伴有氧化应激损伤,引起内皮收缩–舒张功能紊乱,加速泡沫细胞形成。德国学者Byambasuren Ganbaatar用脂蛋白E基因敲除(ApoE−/−)小鼠为基础的研究显示,使用SGLT-2抑制剂如恩格列净治疗链脲佐菌素诱导的糖尿病模型小鼠8周后,在降低血糖的同时能有效的逆转内皮依耐性血管舒张功能损害,减少血管细胞粘附分子(VCAM)-1和细胞内粘附分子(ICAM)-1从而抑制白细胞在内皮细胞的粘附和单核细胞的迁移[23]。同时SGLT-2抑制剂还能抑制单核细胞、中性粒细胞的活化,从而减少巨噬细胞集聚,减轻血管的炎症反应。抑制单核细胞–巨噬细胞–泡沫细胞进化,从而抑制动脉粥样斑块形成[13]。然而在这些实验中使用的都是糖尿病模型小鼠,SGLT-2抑制剂可能在一定程度上通过降低血糖从而减少动脉粥样斑块的形成。对于非糖尿病患者使用SGLT-2抑制剂对粥样斑块形成还有待进一步研究。

2.3. 对脂质代谢的调节

高脂血症是多种疾病的隐形杀手,患者没有明显不适,但与多种致残致死性疾病如脑卒中、冠心病、心肌梗死、猝死等心脑血管疾病密切相关。肝脏是脂质合成及代谢的重要场所,通过调节胆固醇合成及逆向转运等机制维持血脂稳态。SGLT-2抑制剂可通过保留硫酸肝素蛋白多糖功能提高脂蛋白的清除率,从而增加脂蛋白捕获,同时促进胆固醇降解,增强胆汁酸形成,并通过抑制肠肝循环有效去除胆汁酸,在降低糖尿病患者血糖的同时能有效地降低胆固醇,从而改善血浆脂蛋白谱[13]。有学者的小鼠实验表明同格列美脲相比,恩格列净治疗后的小鼠脂肪量和脂肪百分比降低,同时降低了谷丙转氨酶和谷草转氨酶的表达,且肝脏聚集的脂滴面积液小于格列美脲组[24]。二脂酰甘油酰基转移酶2 (diacylgycerol acyltransferase 2, DGAT2)是一种催化二酰甘油与脂肪酸酰基结合生成三酰甘油的关键酶。卡格列净可通过下调DGAT2而抑制甘油三酯的合成和肝脂滴的积累[25]。土耳其学者Murat Calapkulu对31名糖尿病患者使用达格列净第六个月末,发现总胆固醇、甘油三酯和低密度脂蛋白胆固醇水平下降,并对血糖控制和体重减轻有明显积极影响[26]。这一结论同样在使用恩格列净治疗小鼠模型的基础研究中得以证实[27]。日本学者对22名糖尿病患者使用卡格列净20周后发现超大高密度脂蛋白和大高密度脂蛋白值显著增加,分别为10.9%和11.5% [28]。在血糖正常的小鼠模型中,依格列净可降低低密度脂蛋白,但未观察到高密度脂蛋白水平的变化[27]。多个实验研究表明SGLT-2抑制剂可以从多个不同的路径影响着脂质代谢,调节血清脂蛋白水平。从而预防心脑血管疾病的发生。

2.4. 体重减轻

肥胖是由遗传、环境、个人行为习惯等因素引起的复杂慢性疾病,临床上通常通过体质指数(Body Mass Index, BMI)和腰围来衡量个人肥胖程度。同时肥胖也可能导致很多疾病,如糖尿病、心血管疾病等。肥胖与人类健康问题的关系受到越来越多的关注。超重和肥胖与IS风险相关,且部分独立于年龄、生活方式和其他心血管危险因素[29]。在使用已上市的SGLT-2抑制剂治疗已有糖尿病的肥胖症患者中,与安慰剂组相比体重减轻约1.5~2 kg [30]。SGLT-2抑制剂的减重作用同样在Bays的试验中被证实并有明确的剂量依赖性,Bays等人对376名无糖尿病者进行12周的双盲试验,发现与安慰剂相比卡格列净明显降低体重(50 mg、100 mg和300 mg剂量分别减轻了2.2%、2.9%和2.7%) [14];SGLT-2抑制剂与胰高血糖素样肽-1受体激动剂(glucagon-like peptide-1 receptor agonists, glp-1ra)的共同给药在治疗24周时可减轻4.5 kg的体重,并且这种体重减轻在没有糖尿病的肥胖个体中可维持长达1年(−5.7 kg) [31] [32]。SGLT-2抑制剂能减轻体重的可能原因有:(1) 水分丢失:可导致尿糖排泄增加,肾小管产生渗透性利尿,引起水分丢失可产生减重效果[33];使用SGLT-2抑制剂24周可使细胞外水减少20%,体脂减少占总体重减轻的70%以上。且前4周以细胞外液减少为主[34],说明服用SGLT-2抑制剂早期以渗透性利尿导致细胞水分丢失为主;(2) 热量损失:可通过肾脏中的葡萄糖排泄,即热量损失而直接导致体重减轻;(3) 增强脂肪利用:能降低血浆葡萄糖水平,使得脂肪动员增加,导致能量底物利用发生变化,动员脂质产生能量而减轻体重[35];(4) 增加棕色脂肪以及减轻肥胖相关的慢性炎症抑制体重增加[36]

2.5. 降低血压

高血压是脑出血和脑梗死最重要的危险因素,血压越高,脑卒中发病风险越高,控制血压是预防脑卒中发生和发展的核心环节。在Rosalie等[37]的随机双盲实验研究中发现,与安慰剂相比,恩格列净能利尿、减轻动脉僵硬程度和血管阻力,并同时降低收缩压与舒张压,但其机制尚不清楚,可能与SGLT-2抑制剂增加尿糖排泄,由于葡萄糖的渗透作用,可使更多的钠和水进入肾小管内被排除体外,产生利尿作用,使心脏前后负荷减少[38]等机制相关。在治疗T2DM合并高血压患者中,SGLT2抑制剂也展现出良好的效果,传统的抗高血压药物如噻嗪类利尿剂能降低葡萄糖转运蛋白表达来抑制胰岛素功能导致糖耐量下降[39],而SGLT-2抑制剂能使24小时动态血压平均降低3.62/1.70 mmHg且这种降压作用在白天更有效,这一降压程度与低剂量的氢氯噻嗪效果相当,但SGLT-2抑制剂对血糖与心血管安全方面效果更显著[40]

2.6. 降低尿酸

尿酸(uric acid, UA)是人体内源性和外源性嘌呤的代谢终产物。正常生理情况下,人体每天尿酸生成和排泄保持动态平衡。当机体嘌呤产生过多或肾脏排泄尿酸过少时,体内UA堆积导致高尿酸血症(hyperuricemia, HUA)。HUA也是脑血管病的高危因素之一[41]。SGLT-2抑制剂可通过增加尿糖排泄来诱导UA排泄[42]。Hussian [43]等对70名2型糖尿病受试者进行4周的对比治疗后发现SGLT-2抑制剂组的平均血清尿酸水平从7.5 ± 2.5显著降低到6.3 ± 0.8 mg/dl,比其他口服药如格列美脲、二甲双胍、格列齐特等单药或者联合治疗降UA水平更显著。这一结论同样在Grotta的相关试验得到支持[44]

3. SGLT-2抑制剂的不良反应

虽然SGLT-2抑制剂在降低血糖和降低急性心血管事件等方面均有明显效果,但自从它上市后的数据表明还是存在各种不良反应。主要包括:(1) 生殖道感染,主要是女性念珠菌性阴道炎和男性龟头炎;且使用SGLT-2抑制剂的时间越长,生殖器感染的风险就越高[45];(2) 增加糖尿病酮症酸中毒风险[46];(3) 卡格列净组还被观察到下肢截肢和骨折风险增加[47];(4) 增加膀胱癌风险,尤其是恩格列净可能会增加膀胱癌风险[48]。同时与使用SGLT2抑制剂相关的Fournier坏疽和感染的病例也有报道[49]。此外有少量临床病例报道提示恩格列净可能会引起药物相关性急性胰腺炎[50],但机制目前不清楚,需进行更大规模研究探索其可能机制。

4. 总结和展望

SGLT-2抑制剂作为新型降糖药物,不仅能通过促进尿糖排泄有效降低血糖,而且众多基础和临床研究表明其在降血压、降血脂、减轻AS和降UA等方面发挥不同的作用,同时还能保护肾脏。我们推断SGLT-2抑制剂可能通过影响IS的高危因素,从而降低脑卒中事件的发生,期待更多关于SGLT-2抑制剂与脑卒中事件相关性的研究。

基金项目

国家自然科学基金(编号:82060233);云南省科技厅科技计划项目(编号:202203AC100007-2);云南省中青年学术和技术带头人后备计划(编号:202305AC160055);昆明医科大学第二附属医院学术带头人(编号:RCTDXS-202301);昆明医科大学第二附属医院院内临床研究项目(编号:ynIIT2023012);昆明医科大学研究生教育创新基金项目(编号:2024S272)。

NOTES

*通讯作者。

参考文献

[1] Donkor, E.S. (2018) Stroke in the 21(st) Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Research and Treatment, 2018, Article ID: 3238165.
[2] (2021) Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 20, 795-820.
[3] 《中国脑卒中防治报告2021》概要[J]. 中国脑血管病杂志, 2023, 20(11): 783-793.
[4] 王亚静. 2021年-2022年脑梗死阿替普酶溶栓患者住院人次及住院费用因素分析[J]. 中国病案, 2024, 25(7): 77-79.
[5] Owolabi, M.O., Sarfo, F., Akinyemi, R., et al. (2018) Dominant Modifiable Risk Factors for Stroke in Ghana and Nigeria (SIREN): A Case-Control Study. The Lancet Global Health, 6, e436-e446.
[6] Osaki, A., Okada, S., Saito, T., Yamada, E., Ono, K., Niijima, Y., et al. (2016) Renal Threshold for Glucose Reabsorption Predicts Diabetes Improvement by Sodium-Glucose Cotransporter 2 Inhibitor Therapy. Journal of Diabetes Investigation, 7, 751-754.
https://doi.org/10.1111/jdi.12473
[7] Thorens, B. (2014) GLUT2, Glucose Sensing and Glucose Homeostasis. Diabetologia, 58, 221-232.
https://doi.org/10.1007/s00125-014-3451-1
[8] Ghezzi, C., Loo, D.D.F. and Wright, E.M. (2018) Physiology of Renal Glucose Handling via SGLT1, SGLT2 and GLUT2. Diabetologia, 61, 2087-2097.
https://doi.org/10.1007/s00125-018-4656-5
[9] Girard, J. (2017) Rôle des reins dans l’homéostasie du glucose. Implication du cotransporteur sodium-glucose SGLT2 dans le traitement du diabète. Néphrologie & Thérapeutique, 13, S35-S41.
https://doi.org/10.1016/j.nephro.2017.01.006
[10] Tsapas, A., Avgerinos, I., Karagiannis, T., Malandris, K., Manolopoulos, A., Andreadis, P., et al. (2020) Comparative Effectiveness of Glucose-Lowering Drugs for Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Annals of Internal Medicine, 173, 278-286.
https://doi.org/10.7326/m20-0864
[11] 徐小英, 侯幸赟, 李玉珍, 等. 国内上市的钠-葡萄糖耦联转运体2抑制剂的比较[J]. 世界临床药物, 2022, 43(6): 663-670.
[12] Huang, K., Luo, X., Liao, B., Li, G. and Feng, J. (2023) Insights into SGLT2 Inhibitor Treatment of Diabetic Cardiomyopathy: Focus on the Mechanisms. Cardiovascular Diabetology, 22, Article No. 86.
https://doi.org/10.1186/s12933-023-01816-5
[13] Al-Sharea, A., Murphy, A.J., Huggins, L.A., Hu, Y., Goldberg, I.J. and Nagareddy, P.R. (2018) SGLT2 Inhibition Reduces Atherosclerosis by Enhancing Lipoprotein Clearance in LDLR Type 1 Diabetic Mice. Atherosclerosis, 271, 166-176.
https://doi.org/10.1016/j.atherosclerosis.2018.02.028
[14] Bays, H.E., Weinstein, R., Law, G. and Canovatchel, W. (2013) Canagliflozin: Effects in Overweight and Obese Subjects without Diabetes Mellitus. Obesity, 22, 1042-1049.
https://doi.org/10.1002/oby.20663
[15] Kannel, W.B. (1979) Diabetes and Cardiovascular Disease. the Framingham Study. JAMA: The Journal of the American Medical Association, 241, 2035-2038.
https://doi.org/10.1001/jama.241.19.2035
[16] Akhtar, N., Kamran, S., Singh, R., Malik, R.A., Deleu, D., Bourke, P.J., et al. (2019) The Impact of Diabetes on Outcomes after Acute Ischemic Stroke: A Prospective Observational Study. Journal of Stroke and Cerebrovascular Diseases, 28, 619-626.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.11.003
[17] Zhang, L., Li, X., Wolfe, C.D.A., O’Connell, M.D.L. and Wang, Y. (2021) Diabetes as an Independent Risk Factor for Stroke Recurrence in Ischemic Stroke Patients: An Updated Meta-Analysis. Neuroepidemiology, 55, 427-435.
https://doi.org/10.1159/000519327
[18] Ding, M., Xu, Y., Wang, Y., Li, P., Mao, Y., Yu, J., et al. (2019) Predictors of Cognitive Impairment after Stroke: A Prospective Stroke Cohort Study. Journal of Alzheimers Disease, 71, 1139-1151.
https://doi.org/10.3233/jad-190382
[19] Bao, Y. and Gu, D. (2021) Glycated Hemoglobin as a Marker for Predicting Outcomes of Patients with Stroke (Ischemic and Hemorrhagic): A Systematic Review and Meta-Analysis. Frontiers in Neurology, 12, Article ID: 642899.
https://doi.org/10.3389/fneur.2021.642899
[20] Ma, Z., Wu, Y., Cui, H., Yao, G. and Bian, H. (2022) Factors Influencing Post-Stroke Cognitive Impairment in Patients with Type 2 Diabetes Mellitus. Clinical Interventions in Aging, 17, 653-664.
https://doi.org/10.2147/cia.s355242
[21] Laffel, L.M., Danne, T., Klingensmith, G.J., Tamborlane, W.V., Willi, S., Zeitler, P., et al. (2023) Efficacy and Safety of the SGLT2 Inhibitor Empagliflozin versus Placebo and the DPP-4 Inhibitor Linagliptin versus Placebo in Young People with Type 2 Diabetes (DINAMO): A Multicentre, Randomised, Double-Blind, Parallel Group, Phase 3 Trial. The Lancet Diabetes & Endocrinology, 11, 169-181.
https://doi.org/10.1016/s2213-8587(22)00387-4
[22] 胡越, 黄冠军, 柴振华, 等. SGLT-2抑制剂在2型糖尿病患者中的疗效观察[J]. 天津药学, 2022, 34(6): 39-42.
[23] Ganbaatar, B., Fukuda, D., Shinohara, M., Yagi, S., Kusunose, K., Yamada, H., et al. (2020) Empagliflozin Ameliorates Endothelial Dysfunction and Suppresses Atherogenesis in Diabetic Apolipoprotein E-Deficient Mice. European Journal of Pharmacology, 875, Article ID: 173040.
https://doi.org/10.1016/j.ejphar.2020.173040
[24] Han, J.H., Oh, T.J., Lee, G., Maeng, H.J., Lee, D.H., Kim, K.M., et al. (2016) The Beneficial Effects of Empagliflozin, an SGLT2 Inhibitor, on Atherosclerosis in Apoe−/− Mice Fed a Western Diet. Diabetologia, 60, 364-376.
https://doi.org/10.1007/s00125-016-4158-2
[25] Szekeres, Z., Toth, K. and Szabados, E. (2021) The Effects of SGLT2 Inhibitors on Lipid Metabolism. Metabolites, 11, Article No. 87.
https://doi.org/10.3390/metabo11020087
[26] Calapkulu, M., Cander, S., Gul, O.O. and Ersoy, C. (2019) Lipid Profile in Type 2 Diabetic Patients with New Dapagliflozin Treatment; Actual Clinical Experience Data of Six Months Retrospective Lipid Profile from Single Center. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 1031-1034.
https://doi.org/10.1016/j.dsx.2019.01.016
[27] Liu, Y., Xu, J., Wu, M., Xu, B. and Kang, L. (2021) Empagliflozin Protects against Atherosclerosis Progression by Modulating Lipid Profiles and Sympathetic Activity. Lipids in Health and Disease, 20, Article No. 5.
https://doi.org/10.1186/s12944-021-01430-y
[28] Kamijo, Y., Ishii, H., Yamamoto, T., Kobayashi, K., Asano, H., Miake, S., et al. (2019) Potential Impact on Lipoprotein Subfractions in Type 2 Diabetes. Clinical Medicine Insights: Endocrinology and Diabetes, 12, 1-8.
https://doi.org/10.1177/1179551419866811
[29] Jaakonmäki, N., Zedde, M., Sarkanen, T., Martinez-Majander, N., Tuohinen, S., Sinisalo, J., et al. (2022) Obesity and the Risk of Cryptogenic Ischemic Stroke in Young Adults. Journal of Stroke and Cerebrovascular Diseases, 31, Article ID: 106380.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106380
[30] Pereira, M.J. and Eriksson, J.W. (2019) Emerging Role of SGLT-2 Inhibitors for the Treatment of Obesity. Drugs, 79, 219-230.
https://doi.org/10.1007/s40265-019-1057-0
[31] Lundkvist, P., Sjöström, C.D., Amini, S., Pereira, M.J., Johnsson, E. and Eriksson, J.W. (2016) Dapagliflozin Once-Daily and Exenatide Once-Weekly Dual Therapy: A 24-Week Randomized, Placebo-Controlled, Phase II Study Examining Effects on Body Weight and Prediabetes in Obese Adults without Diabetes. Diabetes, Obesity and Metabolism, 19, 49-60.
https://doi.org/10.1111/dom.12779
[32] Lundkvist, P., Pereira, M.J., Katsogiannos, P., Sjöström, C.D., Johnsson, E. and Eriksson, J.W. (2017) Dapagliflozin Once Daily Plus Exenatide Once Weekly in Obese Adults without Diabetes: Sustained Reductions in Body Weight, Glycaemia and Blood Pressure over 1 Year. Diabetes, Obesity and Metabolism, 19, 1276-1288.
https://doi.org/10.1111/dom.12954
[33] 吉星, 廖飞, 吴佩丽, 等. SGLT2抑制剂的减重作用及机制的研究进展[J]. 实用医学杂志, 2019, 35(7): 1165-1169.
[34] Kawata, T., Iizuka, T., Iemitsu, K., Takihata, M., Takai, M., Nakajima, S., et al. (2017) Ipragliflozin Improves Glycemic Control and Decreases Body Fat in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Medicine Research, 9, 586-595.
https://doi.org/10.14740/jocmr3038w
[35] Busch, R.S. and Kane, M.P. (2017) Combination SGLT2 Inhibitor and GLP-1 Receptor Agonist Therapy: A Complementary Approach to the Treatment of Type 2 Diabetes. Postgraduate Medicine, 129, 686-697.
https://doi.org/10.1080/00325481.2017.1342509
[36] Xu, L., Nagata, N., Nagashimada, M., Zhuge, F., Ni, Y., Chen, G., et al. (2017) SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-Induced Obese Mice. EBioMedicine, 20, 137-149.
https://doi.org/10.1016/j.ebiom.2017.05.028
[37] Scholtes, R.A., Mosterd, C.M., Hesp, A.C., Smits, M.M., Heerspink, H.J.L. and van Raalte, D.H. (2022) Mechanisms Underlying the Blood Pressure-Lowering Effects of Empagliflozin, Losartan and Their Combination in People with Type 2 Diabetes: A Secondary Analysis of a Randomized Crossover Trial. Diabetes, Obesity and Metabolism, 25, 198-207.
https://doi.org/10.1111/dom.14864
[38] Masuda, T., Muto, S., Fukuda, K., Watanabe, M., Ohara, K., Koepsell, H., et al. (2020) Osmotic Diuresis by SGLT2 Inhibition Stimulates Vasopressin-Induced Water Reabsorption to Maintain Body Fluid Volume. Physiological Reports, 8, e14360.
https://doi.org/10.14814/phy2.14360
[39] 邢开, 龚金玉, 罗建权. 噻嗪类利尿剂相关不良反应的药物基因组学研究进展[J]. 中国临床药理学与治疗学, 2021, 26(2): 204-212.
[40] Georgianos, P.I. and Agarwal, R. (2019) Ambulatory Blood Pressure Reduction with SGLT-2 Inhibitors: Dose-Response Meta-Analysis and Comparative Evaluation with Low-Dose Hydrochlorothiazide. Diabetes Care, 42, 693-700.
https://doi.org/10.2337/dc18-2207
[41] 孙东霞, 丁岩. 尿酸与脑血管病及其高危因素相关性的研究进展[J]. 北京医学, 2018, 40(5): 457-459.
[42] Suijk, D.L.S., van Baar, M.J.B., van Bommel, E.J.M., Iqbal, Z., Krebber, M.M., Vallon, V., et al. (2022) SGLT2 Inhibition and Uric Acid Excretion in Patients with Type 2 Diabetes and Normal Kidney Function. Clinical Journal of the American Society of Nephrology, 17, 663-671.
https://doi.org/10.2215/cjn.11480821
[43] Hussain, M., Elahi, A., Hussain, A., Iqbal, J., Akhtar, L. and Majid, A. (2021) Sodium-Glucose Cotransporter-2 (SGLT-2) Attenuates Serum Uric Acid (SUA) Level in Patients with Type 2 Diabetes. Journal of Diabetes Research, 2021, Article ID: 9973862.
https://doi.org/10.1155/2021/9973862
[44] La Grotta, R., de Candia, P., Olivieri, F., Matacchione, G., Giuliani, A., Rippo, M.R., et al. (2022) Anti-Inflammatory Effect of SGLT-2 Inhibitors via Uric Acid and Insulin. Cellular and Molecular Life Sciences, 79, Article No. 273.
https://doi.org/10.1007/s00018-022-04289-z
[45] Liu, J., Li, L., Li, S., Jia, P., Deng, K., Chen, W., et al. (2017) Effects of SGLT2 Inhibitors on Utis and Genital Infections in Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. Scientific Reports, 7, Article No. 2824.
https://doi.org/10.1038/s41598-017-02733-w
[46] Danne, T., Garg, S., Peters, A.L., Buse, J.B., Mathieu, C., Pettus, J.H., et al. (2019) International Consensus on Risk Management of Diabetic Ketoacidosis in Patients with Type 1 Diabetes Treated with Sodium-Glucose Cotransporter (SGLT) Inhibitors. Diabetes Care, 42, 1147-1154.
https://doi.org/10.2337/dc18-2316
[47] Neal, B., Perkovic, V., Mahaffey, K.W., de Zeeuw, D., Fulcher, G., Erondu, N., et al. (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. New England Journal of Medicine, 377, 644-657.
https://doi.org/10.1056/nejmoa1611925
[48] Tang, H., Dai, Q., Shi, W., Zhai, S., Song, Y. and Han, J. (2017) SGLT2 Inhibitors and Risk of Cancer in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Diabetologia, 60, 1862-1872.
https://doi.org/10.1007/s00125-017-4370-8
[49] Bersoff-Matcha, S.J., Chamberlain, C., Cao, C., Kortepeter, C. and Chong, W.H. (2019) Fournier Gangrene Associated with Sodium-Glucose Cotransporter-2 Inhibitors: A Review of Spontaneous Postmarketing Cases. Annals of Internal Medicine, 170, Article No. 764.
https://doi.org/10.7326/m19-0085
[50] Dziadkowiec, K.N., Stawinski, P.M. and Proenza, J. (2021) Empagliflozin-Associated Pancreatitis: A Consideration for SGLT2 Inhibitors. ACG Case Reports Journal, 8, e00530.
https://doi.org/10.14309/crj.0000000000000530