[1]
|
Donkor, E.S. (2018) Stroke in the 21(st) Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Research and Treatment, 2018, Article ID: 3238165.
|
[2]
|
(2021) Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 20, 795-820.
|
[3]
|
《中国脑卒中防治报告2021》概要[J]. 中国脑血管病杂志, 2023, 20(11): 783-793.
|
[4]
|
王亚静. 2021年-2022年脑梗死阿替普酶溶栓患者住院人次及住院费用因素分析[J]. 中国病案, 2024, 25(7): 77-79.
|
[5]
|
Owolabi, M.O., Sarfo, F., Akinyemi, R., et al. (2018) Dominant Modifiable Risk Factors for Stroke in Ghana and Nigeria (SIREN): A Case-Control Study. The Lancet Global Health, 6, e436-e446.
|
[6]
|
Osaki, A., Okada, S., Saito, T., Yamada, E., Ono, K., Niijima, Y., et al. (2016) Renal Threshold for Glucose Reabsorption Predicts Diabetes Improvement by Sodium-Glucose Cotransporter 2 Inhibitor Therapy. Journal of Diabetes Investigation, 7, 751-754. https://doi.org/10.1111/jdi.12473
|
[7]
|
Thorens, B. (2014) GLUT2, Glucose Sensing and Glucose Homeostasis. Diabetologia, 58, 221-232. https://doi.org/10.1007/s00125-014-3451-1
|
[8]
|
Ghezzi, C., Loo, D.D.F. and Wright, E.M. (2018) Physiology of Renal Glucose Handling via SGLT1, SGLT2 and GLUT2. Diabetologia, 61, 2087-2097. https://doi.org/10.1007/s00125-018-4656-5
|
[9]
|
Girard, J. (2017) Rôle des reins dans l’homéostasie du glucose. Implication du cotransporteur sodium-glucose SGLT2 dans le traitement du diabète. Néphrologie & Thérapeutique, 13, S35-S41. https://doi.org/10.1016/j.nephro.2017.01.006
|
[10]
|
Tsapas, A., Avgerinos, I., Karagiannis, T., Malandris, K., Manolopoulos, A., Andreadis, P., et al. (2020) Comparative Effectiveness of Glucose-Lowering Drugs for Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Annals of Internal Medicine, 173, 278-286. https://doi.org/10.7326/m20-0864
|
[11]
|
徐小英, 侯幸赟, 李玉珍, 等. 国内上市的钠-葡萄糖耦联转运体2抑制剂的比较[J]. 世界临床药物, 2022, 43(6): 663-670.
|
[12]
|
Huang, K., Luo, X., Liao, B., Li, G. and Feng, J. (2023) Insights into SGLT2 Inhibitor Treatment of Diabetic Cardiomyopathy: Focus on the Mechanisms. Cardiovascular Diabetology, 22, Article No. 86. https://doi.org/10.1186/s12933-023-01816-5
|
[13]
|
Al-Sharea, A., Murphy, A.J., Huggins, L.A., Hu, Y., Goldberg, I.J. and Nagareddy, P.R. (2018) SGLT2 Inhibition Reduces Atherosclerosis by Enhancing Lipoprotein Clearance in LDLR Type 1 Diabetic Mice. Atherosclerosis, 271, 166-176. https://doi.org/10.1016/j.atherosclerosis.2018.02.028
|
[14]
|
Bays, H.E., Weinstein, R., Law, G. and Canovatchel, W. (2013) Canagliflozin: Effects in Overweight and Obese Subjects without Diabetes Mellitus. Obesity, 22, 1042-1049. https://doi.org/10.1002/oby.20663
|
[15]
|
Kannel, W.B. (1979) Diabetes and Cardiovascular Disease. the Framingham Study. JAMA: The Journal of the American Medical Association, 241, 2035-2038. https://doi.org/10.1001/jama.241.19.2035
|
[16]
|
Akhtar, N., Kamran, S., Singh, R., Malik, R.A., Deleu, D., Bourke, P.J., et al. (2019) The Impact of Diabetes on Outcomes after Acute Ischemic Stroke: A Prospective Observational Study. Journal of Stroke and Cerebrovascular Diseases, 28, 619-626. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.11.003
|
[17]
|
Zhang, L., Li, X., Wolfe, C.D.A., O’Connell, M.D.L. and Wang, Y. (2021) Diabetes as an Independent Risk Factor for Stroke Recurrence in Ischemic Stroke Patients: An Updated Meta-Analysis. Neuroepidemiology, 55, 427-435. https://doi.org/10.1159/000519327
|
[18]
|
Ding, M., Xu, Y., Wang, Y., Li, P., Mao, Y., Yu, J., et al. (2019) Predictors of Cognitive Impairment after Stroke: A Prospective Stroke Cohort Study. Journal of Alzheimer’s Disease, 71, 1139-1151. https://doi.org/10.3233/jad-190382
|
[19]
|
Bao, Y. and Gu, D. (2021) Glycated Hemoglobin as a Marker for Predicting Outcomes of Patients with Stroke (Ischemic and Hemorrhagic): A Systematic Review and Meta-Analysis. Frontiers in Neurology, 12, Article ID: 642899. https://doi.org/10.3389/fneur.2021.642899
|
[20]
|
Ma, Z., Wu, Y., Cui, H., Yao, G. and Bian, H. (2022) Factors Influencing Post-Stroke Cognitive Impairment in Patients with Type 2 Diabetes Mellitus. Clinical Interventions in Aging, 17, 653-664. https://doi.org/10.2147/cia.s355242
|
[21]
|
Laffel, L.M., Danne, T., Klingensmith, G.J., Tamborlane, W.V., Willi, S., Zeitler, P., et al. (2023) Efficacy and Safety of the SGLT2 Inhibitor Empagliflozin versus Placebo and the DPP-4 Inhibitor Linagliptin versus Placebo in Young People with Type 2 Diabetes (DINAMO): A Multicentre, Randomised, Double-Blind, Parallel Group, Phase 3 Trial. The Lancet Diabetes & Endocrinology, 11, 169-181. https://doi.org/10.1016/s2213-8587(22)00387-4
|
[22]
|
胡越, 黄冠军, 柴振华, 等. SGLT-2抑制剂在2型糖尿病患者中的疗效观察[J]. 天津药学, 2022, 34(6): 39-42.
|
[23]
|
Ganbaatar, B., Fukuda, D., Shinohara, M., Yagi, S., Kusunose, K., Yamada, H., et al. (2020) Empagliflozin Ameliorates Endothelial Dysfunction and Suppresses Atherogenesis in Diabetic Apolipoprotein E-Deficient Mice. European Journal of Pharmacology, 875, Article ID: 173040. https://doi.org/10.1016/j.ejphar.2020.173040
|
[24]
|
Han, J.H., Oh, T.J., Lee, G., Maeng, H.J., Lee, D.H., Kim, K.M., et al. (2016) The Beneficial Effects of Empagliflozin, an SGLT2 Inhibitor, on Atherosclerosis in Apoe−/− Mice Fed a Western Diet. Diabetologia, 60, 364-376. https://doi.org/10.1007/s00125-016-4158-2
|
[25]
|
Szekeres, Z., Toth, K. and Szabados, E. (2021) The Effects of SGLT2 Inhibitors on Lipid Metabolism. Metabolites, 11, Article No. 87. https://doi.org/10.3390/metabo11020087
|
[26]
|
Calapkulu, M., Cander, S., Gul, O.O. and Ersoy, C. (2019) Lipid Profile in Type 2 Diabetic Patients with New Dapagliflozin Treatment; Actual Clinical Experience Data of Six Months Retrospective Lipid Profile from Single Center. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 1031-1034. https://doi.org/10.1016/j.dsx.2019.01.016
|
[27]
|
Liu, Y., Xu, J., Wu, M., Xu, B. and Kang, L. (2021) Empagliflozin Protects against Atherosclerosis Progression by Modulating Lipid Profiles and Sympathetic Activity. Lipids in Health and Disease, 20, Article No. 5. https://doi.org/10.1186/s12944-021-01430-y
|
[28]
|
Kamijo, Y., Ishii, H., Yamamoto, T., Kobayashi, K., Asano, H., Miake, S., et al. (2019) Potential Impact on Lipoprotein Subfractions in Type 2 Diabetes. Clinical Medicine Insights: Endocrinology and Diabetes, 12, 1-8. https://doi.org/10.1177/1179551419866811
|
[29]
|
Jaakonmäki, N., Zedde, M., Sarkanen, T., Martinez-Majander, N., Tuohinen, S., Sinisalo, J., et al. (2022) Obesity and the Risk of Cryptogenic Ischemic Stroke in Young Adults. Journal of Stroke and Cerebrovascular Diseases, 31, Article ID: 106380. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106380
|
[30]
|
Pereira, M.J. and Eriksson, J.W. (2019) Emerging Role of SGLT-2 Inhibitors for the Treatment of Obesity. Drugs, 79, 219-230. https://doi.org/10.1007/s40265-019-1057-0
|
[31]
|
Lundkvist, P., Sjöström, C.D., Amini, S., Pereira, M.J., Johnsson, E. and Eriksson, J.W. (2016) Dapagliflozin Once-Daily and Exenatide Once-Weekly Dual Therapy: A 24-Week Randomized, Placebo-Controlled, Phase II Study Examining Effects on Body Weight and Prediabetes in Obese Adults without Diabetes. Diabetes, Obesity and Metabolism, 19, 49-60. https://doi.org/10.1111/dom.12779
|
[32]
|
Lundkvist, P., Pereira, M.J., Katsogiannos, P., Sjöström, C.D., Johnsson, E. and Eriksson, J.W. (2017) Dapagliflozin Once Daily Plus Exenatide Once Weekly in Obese Adults without Diabetes: Sustained Reductions in Body Weight, Glycaemia and Blood Pressure over 1 Year. Diabetes, Obesity and Metabolism, 19, 1276-1288. https://doi.org/10.1111/dom.12954
|
[33]
|
吉星, 廖飞, 吴佩丽, 等. SGLT2抑制剂的减重作用及机制的研究进展[J]. 实用医学杂志, 2019, 35(7): 1165-1169.
|
[34]
|
Kawata, T., Iizuka, T., Iemitsu, K., Takihata, M., Takai, M., Nakajima, S., et al. (2017) Ipragliflozin Improves Glycemic Control and Decreases Body Fat in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Medicine Research, 9, 586-595. https://doi.org/10.14740/jocmr3038w
|
[35]
|
Busch, R.S. and Kane, M.P. (2017) Combination SGLT2 Inhibitor and GLP-1 Receptor Agonist Therapy: A Complementary Approach to the Treatment of Type 2 Diabetes. Postgraduate Medicine, 129, 686-697. https://doi.org/10.1080/00325481.2017.1342509
|
[36]
|
Xu, L., Nagata, N., Nagashimada, M., Zhuge, F., Ni, Y., Chen, G., et al. (2017) SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-Induced Obese Mice. EBioMedicine, 20, 137-149. https://doi.org/10.1016/j.ebiom.2017.05.028
|
[37]
|
Scholtes, R.A., Mosterd, C.M., Hesp, A.C., Smits, M.M., Heerspink, H.J.L. and van Raalte, D.H. (2022) Mechanisms Underlying the Blood Pressure-Lowering Effects of Empagliflozin, Losartan and Their Combination in People with Type 2 Diabetes: A Secondary Analysis of a Randomized Crossover Trial. Diabetes, Obesity and Metabolism, 25, 198-207. https://doi.org/10.1111/dom.14864
|
[38]
|
Masuda, T., Muto, S., Fukuda, K., Watanabe, M., Ohara, K., Koepsell, H., et al. (2020) Osmotic Diuresis by SGLT2 Inhibition Stimulates Vasopressin-Induced Water Reabsorption to Maintain Body Fluid Volume. Physiological Reports, 8, e14360. https://doi.org/10.14814/phy2.14360
|
[39]
|
邢开, 龚金玉, 罗建权. 噻嗪类利尿剂相关不良反应的药物基因组学研究进展[J]. 中国临床药理学与治疗学, 2021, 26(2): 204-212.
|
[40]
|
Georgianos, P.I. and Agarwal, R. (2019) Ambulatory Blood Pressure Reduction with SGLT-2 Inhibitors: Dose-Response Meta-Analysis and Comparative Evaluation with Low-Dose Hydrochlorothiazide. Diabetes Care, 42, 693-700. https://doi.org/10.2337/dc18-2207
|
[41]
|
孙东霞, 丁岩. 尿酸与脑血管病及其高危因素相关性的研究进展[J]. 北京医学, 2018, 40(5): 457-459.
|
[42]
|
Suijk, D.L.S., van Baar, M.J.B., van Bommel, E.J.M., Iqbal, Z., Krebber, M.M., Vallon, V., et al. (2022) SGLT2 Inhibition and Uric Acid Excretion in Patients with Type 2 Diabetes and Normal Kidney Function. Clinical Journal of the American Society of Nephrology, 17, 663-671. https://doi.org/10.2215/cjn.11480821
|
[43]
|
Hussain, M., Elahi, A., Hussain, A., Iqbal, J., Akhtar, L. and Majid, A. (2021) Sodium-Glucose Cotransporter-2 (SGLT-2) Attenuates Serum Uric Acid (SUA) Level in Patients with Type 2 Diabetes. Journal of Diabetes Research, 2021, Article ID: 9973862. https://doi.org/10.1155/2021/9973862
|
[44]
|
La Grotta, R., de Candia, P., Olivieri, F., Matacchione, G., Giuliani, A., Rippo, M.R., et al. (2022) Anti-Inflammatory Effect of SGLT-2 Inhibitors via Uric Acid and Insulin. Cellular and Molecular Life Sciences, 79, Article No. 273. https://doi.org/10.1007/s00018-022-04289-z
|
[45]
|
Liu, J., Li, L., Li, S., Jia, P., Deng, K., Chen, W., et al. (2017) Effects of SGLT2 Inhibitors on Utis and Genital Infections in Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. Scientific Reports, 7, Article No. 2824. https://doi.org/10.1038/s41598-017-02733-w
|
[46]
|
Danne, T., Garg, S., Peters, A.L., Buse, J.B., Mathieu, C., Pettus, J.H., et al. (2019) International Consensus on Risk Management of Diabetic Ketoacidosis in Patients with Type 1 Diabetes Treated with Sodium-Glucose Cotransporter (SGLT) Inhibitors. Diabetes Care, 42, 1147-1154. https://doi.org/10.2337/dc18-2316
|
[47]
|
Neal, B., Perkovic, V., Mahaffey, K.W., de Zeeuw, D., Fulcher, G., Erondu, N., et al. (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. New England Journal of Medicine, 377, 644-657. https://doi.org/10.1056/nejmoa1611925
|
[48]
|
Tang, H., Dai, Q., Shi, W., Zhai, S., Song, Y. and Han, J. (2017) SGLT2 Inhibitors and Risk of Cancer in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Diabetologia, 60, 1862-1872. https://doi.org/10.1007/s00125-017-4370-8
|
[49]
|
Bersoff-Matcha, S.J., Chamberlain, C., Cao, C., Kortepeter, C. and Chong, W.H. (2019) Fournier Gangrene Associated with Sodium-Glucose Cotransporter-2 Inhibitors: A Review of Spontaneous Postmarketing Cases. Annals of Internal Medicine, 170, Article No. 764. https://doi.org/10.7326/m19-0085
|
[50]
|
Dziadkowiec, K.N., Stawinski, P.M. and Proenza, J. (2021) Empagliflozin-Associated Pancreatitis: A Consideration for SGLT2 Inhibitors. ACG Case Reports Journal, 8, e00530. https://doi.org/10.14309/crj.0000000000000530
|