|
[1]
|
Feigin, V.L., Abajobir, A.A., Abate, K.H., Abd-Allah, F., Abdulle, A.M., Abera, S.F., et al. (2017) Global, Regional, and National Burden of Neurological Disorders during 1990-2015: A Systematic Analysis for the Global Burden of Disease Study 2015. The Lancet Neurology, 16, 877-897. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bian, J., Wang, X., Hao, W., Zhang, G. and Wang, Y. (2023) The Differential Diagnosis Value of Radiomics-Based Machine Learning in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Frontiers in Aging Neuroscience, 15, Article 1199826. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Jankovic, J. (2008) Parkinson’s Disease: Clinical Features and Diagnosis. Journal of Neurology, Neurosurgery & Psychiatry, 79, 368-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Al-Radaideh, A.M. and Rababah, E.M. (2016) The Role of Magnetic Resonance Imaging in the Diagnosis of Parkinson’s Disease: A Review. Clinical Imaging, 40, 987-996. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Postuma, R.B., Berg, D., Stern, M., Poewe, W., Olanow, C.W., Oertel, W., et al. (2015) MDS Clinical Diagnostic Criteria for Parkinson’s Disease. Movement Disorders, 30, 1591-1601. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Schapira, A.H.V., Chaudhuri, K.R. and Jenner, P. (2017) Non-Motor Features of Parkinson Disease. Nature Reviews Neuroscience, 18, 435-450. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
van Uem, J.M.T., Marinus, J., Canning, C., van Lummel, R., Dodel, R., Liepelt-Scarfone, I., et al. (2016) Health-Related Quality of Life in Patients with Parkinson’s Disease—A Systematic Review Based on the ICF Model. Neuroscience & Biobehavioral Reviews, 61, 26-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tolosa, E., Garrido, A., Scholz, S.W. and Poewe, W. (2021) Challenges in the Diagnosis of Parkinson’s Disease. The Lancet Neurology, 20, 385-397. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bloem, B.R., Okun, M.S. and Klein, C. (2021) Parkinson’s Disease. The Lancet, 397, 2284-2303. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Weintraub, D., Aarsland, D., Chaudhuri, K.R., Dobkin, R.D., Leentjens, A.F., Rodriguez-Violante, M., et al. (2022) The Neuropsychiatry of Parkinson’s Disease: Advances and Challenges. The Lancet Neurology, 21, 89-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Maries, E., Dass, B., Collier, T.J., Kordower, J.H. and Steece-Collier, K. (2003) The Role of α-Synuclein in Parkinson’s Disease: Insights from Animal Models. Nature Reviews Neuroscience, 4, 727-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Braak, H., Del Tredici, K., Bratzke, H., Hamm-Clement, J., Sandmann-Keil, D. and Rüb, U. (2002) Staging of the Intracerebral Inclusion Body Pathology Associated with Idiopathic Parkinson’s Disease (Preclinical and Clinical Stages). Journal of Neurology, 249, iii1-iii5. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
吴铮, 任志伟, 张国君. 帕金森病神经发生的研究进展[J]. 生命科学研究, 2021, 25(6): 504-508.
|
|
[14]
|
Feraco, P., Gagliardo, C., La Tona, G., Bruno, E., D’angelo, C., Marrale, M., et al. (2021) Imaging of Substantia Nigra in Parkinson’s Disease: A Narrative Review. Brain Sciences, 11, Article 769. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G.P.M., Granton, P., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Summers, R.M. (2016) Texture Analysis in Radiology: Does the Emperor Have No Clothes? Abdominal Radiology, 42, 342-345. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
高平, 周佩洋, 李光, 等. 3T磁敏感加权成像中非帕金森病者黑质“燕尾征”存在普遍性的分析[J]. 中山大学学报(医学科学版), 2015, 36(4): 635-640.
|
|
[19]
|
刘磐石, 郑石磊, 王晗, 等. 常规T2 FLAIR序列自回归模型纹理分析对帕金森病的诊断价值[J]. 中国医学影像学杂志, 2019, 27(2): 107-111.
|
|
[20]
|
Li, J., Liu, X., Wang, X., Liu, H., Lin, Z. and Xiong, N. (2022) Diffusion Tensor Imaging Radiomics for Diagnosis of Parkinson’s Disease. Brain Sciences, 12, Article 851. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, P., Wang, H., Zheng, S., Zhang, F. and Zhang, X. (2020) Parkinson’s Disease Diagnosis Using Neostriatum Radiomic Features Based on T2-Weighted Magnetic Resonance Imaging. Frontiers in Neurology, 11, Article 248. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ren, Q., Wang, Y., Leng, S., Nan, X., Zhang, B., Shuai, X., et al. (2021) Substantia Nigra Radiomics Feature Extraction of Parkinson’s Disease Based on Magnitude Images of Susceptibility-Weighted Imaging. Frontiers in Neuroscience, 15, Article 646617. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Shi, J., Yan, M., Dong, Y., Zheng, X., Zhang, Q. and An, H. (2018) Multiple Kernel Learning Based Classification of Parkinson’s Disease with Multi-Modal Transcranial Sonography. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, 18-21 July 2018, 61-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Tatsch, K. (2010) Positron Emission Tomography in Diagnosis and Differential Diagnosis of Parkinson’s Disease. Neurodegenerative Diseases, 7, 330-340. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Strafella, A.P., Bohnen, N.I., Perlmutter, J.S., Eidelberg, D., Pavese, N., Van Eimeren, T., et al. (2017) Molecular Imaging to Track Parkinson’s Disease and Atypical Parkinsonisms: New Imaging Frontiers. Movement Disorders, 32, 181-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sun, X., Ge, J., Li, L., Zhang, Q., Lin, W., Chen, Y., et al. (2022) Use of Deep Learning-Based Radiomics to Differentiate Parkinson’s Disease Patients from Normal Controls: A Study Based on [18F]FDG PET Imaging. European Radiology, 32, 8008-8018. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Shiiba, T., Takano, K., Takaki, A. and Suwazono, S. (2022) Dopamine Transporter Single-Photon Emission Computed Tomography-Derived Radiomics Signature for Detecting Parkinson’s Disease. EJNMMI Research, 12, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Adler, C.H., Beach, T.G., Hentz, J.G., Shill, H.A., Caviness, J.N., Driver-Dunckley, E., et al. (2014) Low Clinical Diagnostic Accuracy of Early vs Advanced Parkinson Disease: Clinicopathologic Study. Neurology, 83, 406-412. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Pang, H., Yu, Z., Yu, H., Chang, M., Cao, J., Li, Y., et al. (2022) Multimodal Striatal Neuromarkers in Distinguishing Parkinsonian Variant of Multiple System Atrophy from Idiopathic Parkinson’s Disease. CNS Neuroscience & Therapeutics, 28, 2172-2182. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Shinde, S., Prasad, S., Saboo, Y., Kaushick, R., Saini, J., Pal, P.K., et al. (2019) Predictive Markers for Parkinson’s Disease Using Deep Neural Nets on Neuromelanin Sensitive MRI. NeuroImage: Clinical, 22, Article ID: 101748. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Sun, J., Cong, C., Li, X., Zhou, W., Xia, R., Liu, H., et al. (2023) Identification of Parkinson’s Disease and Multiple System Atrophy Using Multimodal PET/MRI Radiomics. European Radiology, 34, 662-672. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Alexopoulos, G.S. (2019) Mechanisms and Treatment of Late-Life Depression. Translational Psychiatry, 9, Article No. 188. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhang, X., Cao, X., Xue, C., Zheng, J., Zhang, S., Huang, Q., et al. (2021) Aberrant Functional Connectivity and Activity in Parkinson’s Disease and Comorbidity with Depression Based on Radiomic Analysis. Brain and Behavior, 11, e02103. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yang, Y., Yang, Y., Pan, A., Xu, Z., Wang, L., Zhang, Y., et al. (2022) Identifying Depression in Parkinson’s Disease by Using Combined Diffusion Tensor Imaging and Support Vector Machine. Frontiers in Neurology, 13, Article 878691. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wolters, A.F., van de Weijer, S.C.F., Leentjens, A.F.G., Duits, A.A., Jacobs, H.I.L. and Kuijf, M.L. (2019) Resting-State Fmri in Parkinson’s Disease Patients with Cognitive Impairment: A Meta-Analysis. Parkinsonism & Related Disorders, 62, 16-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
陈方政, 刘军. 重视帕金森病的认知障碍[J]. 中华神经科杂志, 2020, 53(7): 481-484.
|
|
[37]
|
Hosseinzadeh, M., Gorji, A., Fathi Jouzdani, A., Rezaeijo, S.M., Rahmim, A. and Salmanpour, M.R. (2023) Prediction of Cognitive Decline in Parkinson’s Disease Using Clinical and DAT SPECT Imaging Features, and Hybrid Machine Learning Systems. Diagnostics, 13, Article 1691. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kang, J.J., Chen, Y., Xu, G.D., Bao, S.L., Wang, J., Ge, M., et al. (2022) Combining Quantitative Susceptibility Mapping to Radiomics in Diagnosing Parkinson’s Disease and Assessing Cognitive Impairment. European Radiology, 32, 6992-7003. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Shu, Z., Cui, S., Wu, X., Xu, Y., Huang, P., Pang, P., et al. (2020) Predicting the Progression of Parkinson’s Disease Using Conventional MRI and Machine Learning: An Application of Radiomic Biomarkers in Whole‐brain White Matter. Magnetic Resonance in Medicine, 85, 1611-1624. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Adams, M.P., Rahmim, A. and Tang, J. (2021) Improved Motor Outcome Prediction in Parkinson’s Disease Applying Deep Learning to DaTscan SPECT Images. Computers in Biology and Medicine, 132, Article ID: 104312. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Li, X., Hao, D., Qu, M., Zhang, M., Ma, A., Pan, X., et al. (2021) Development and Validation of a Plasma FAM19A5 and MRI-Based Radiomics Model for Prediction of Parkinson’s Disease and Parkinson’s Disease with Depression. Frontiers in Neuroscience, 15, Article 795539. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Cao, X., Wang, X., Xue, C., Zhang, S., Huang, Q. and Liu, W. (2020) A Radiomics Approach to Predicting Parkinson’s Disease by Incorporating Whole-Brain Functional Activity and Gray Matter Structure. Frontiers in Neuroscience, 14, Article 751. [Google Scholar] [CrossRef] [PubMed]
|