[1]
|
Feigin, V.L., Abajobir, A.A., Abate, K.H., Abd-Allah, F., Abdulle, A.M., Abera, S.F., et al. (2017) Global, Regional, and National Burden of Neurological Disorders during 1990-2015: A Systematic Analysis for the Global Burden of Disease Study 2015. The Lancet Neurology, 16, 877-897. https://doi.org/10.1016/s1474-4422(17)30299-5
|
[2]
|
Bian, J., Wang, X., Hao, W., Zhang, G. and Wang, Y. (2023) The Differential Diagnosis Value of Radiomics-Based Machine Learning in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Frontiers in Aging Neuroscience, 15, Article 1199826. https://doi.org/10.3389/fnagi.2023.1199826
|
[3]
|
Jankovic, J. (2008) Parkinson’s Disease: Clinical Features and Diagnosis. Journal of Neurology, Neurosurgery & Psychiatry, 79, 368-376. https://doi.org/10.1136/jnnp.2007.131045
|
[4]
|
Al-Radaideh, A.M. and Rababah, E.M. (2016) The Role of Magnetic Resonance Imaging in the Diagnosis of Parkinson’s Disease: A Review. Clinical Imaging, 40, 987-996. https://doi.org/10.1016/j.clinimag.2016.05.006
|
[5]
|
Postuma, R.B., Berg, D., Stern, M., Poewe, W., Olanow, C.W., Oertel, W., et al. (2015) MDS Clinical Diagnostic Criteria for Parkinson’s Disease. Movement Disorders, 30, 1591-1601. https://doi.org/10.1002/mds.26424
|
[6]
|
Schapira, A.H.V., Chaudhuri, K.R. and Jenner, P. (2017) Non-Motor Features of Parkinson Disease. Nature Reviews Neuroscience, 18, 435-450. https://doi.org/10.1038/nrn.2017.62
|
[7]
|
van Uem, J.M.T., Marinus, J., Canning, C., van Lummel, R., Dodel, R., Liepelt-Scarfone, I., et al. (2016) Health-Related Quality of Life in Patients with Parkinson’s Disease—A Systematic Review Based on the ICF Model. Neuroscience & Biobehavioral Reviews, 61, 26-34. https://doi.org/10.1016/j.neubiorev.2015.11.014
|
[8]
|
Tolosa, E., Garrido, A., Scholz, S.W. and Poewe, W. (2021) Challenges in the Diagnosis of Parkinson’s Disease. The Lancet Neurology, 20, 385-397. https://doi.org/10.1016/s1474-4422(21)00030-2
|
[9]
|
Bloem, B.R., Okun, M.S. and Klein, C. (2021) Parkinson’s Disease. The Lancet, 397, 2284-2303. https://doi.org/10.1016/s0140-6736(21)00218-x
|
[10]
|
Weintraub, D., Aarsland, D., Chaudhuri, K.R., Dobkin, R.D., Leentjens, A.F., Rodriguez-Violante, M., et al. (2022) The Neuropsychiatry of Parkinson’s Disease: Advances and Challenges. The Lancet Neurology, 21, 89-102. https://doi.org/10.1016/s1474-4422(21)00330-6
|
[11]
|
Maries, E., Dass, B., Collier, T.J., Kordower, J.H. and Steece-Collier, K. (2003) The Role of α-Synuclein in Parkinson’s Disease: Insights from Animal Models. Nature Reviews Neuroscience, 4, 727-738. https://doi.org/10.1038/nrn1199
|
[12]
|
Braak, H., Del Tredici, K., Bratzke, H., Hamm-Clement, J., Sandmann-Keil, D. and Rüb, U. (2002) Staging of the Intracerebral Inclusion Body Pathology Associated with Idiopathic Parkinson’s Disease (Preclinical and Clinical Stages). Journal of Neurology, 249, iii1-iii5. https://doi.org/10.1007/s00415-002-1301-4
|
[13]
|
吴铮, 任志伟, 张国君. 帕金森病神经发生的研究进展[J]. 生命科学研究, 2021, 25(6): 504-508.
|
[14]
|
Feraco, P., Gagliardo, C., La Tona, G., Bruno, E., D’angelo, C., Marrale, M., et al. (2021) Imaging of Substantia Nigra in Parkinson’s Disease: A Narrative Review. Brain Sciences, 11, Article 769. https://doi.org/10.3390/brainsci11060769
|
[15]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G.P.M., Granton, P., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446. https://doi.org/10.1016/j.ejca.2011.11.036
|
[16]
|
Summers, R.M. (2016) Texture Analysis in Radiology: Does the Emperor Have No Clothes? Abdominal Radiology, 42, 342-345. https://doi.org/10.1007/s00261-016-0950-1
|
[17]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. https://doi.org/10.1148/radiol.2015151169
|
[18]
|
高平, 周佩洋, 李光, 等. 3T磁敏感加权成像中非帕金森病者黑质“燕尾征”存在普遍性的分析[J]. 中山大学学报(医学科学版), 2015, 36(4): 635-640.
|
[19]
|
刘磐石, 郑石磊, 王晗, 等. 常规T2 FLAIR序列自回归模型纹理分析对帕金森病的诊断价值[J]. 中国医学影像学杂志, 2019, 27(2): 107-111.
|
[20]
|
Li, J., Liu, X., Wang, X., Liu, H., Lin, Z. and Xiong, N. (2022) Diffusion Tensor Imaging Radiomics for Diagnosis of Parkinson’s Disease. Brain Sciences, 12, Article 851. https://doi.org/10.3390/brainsci12070851
|
[21]
|
Liu, P., Wang, H., Zheng, S., Zhang, F. and Zhang, X. (2020) Parkinson’s Disease Diagnosis Using Neostriatum Radiomic Features Based on T2-Weighted Magnetic Resonance Imaging. Frontiers in Neurology, 11, Article 248. https://doi.org/10.3389/fneur.2020.00248
|
[22]
|
Ren, Q., Wang, Y., Leng, S., Nan, X., Zhang, B., Shuai, X., et al. (2021) Substantia Nigra Radiomics Feature Extraction of Parkinson’s Disease Based on Magnitude Images of Susceptibility-Weighted Imaging. Frontiers in Neuroscience, 15, Article 646617. https://doi.org/10.3389/fnins.2021.646617
|
[23]
|
Shi, J., Yan, M., Dong, Y., Zheng, X., Zhang, Q. and An, H. (2018) Multiple Kernel Learning Based Classification of Parkinson’s Disease with Multi-Modal Transcranial Sonography. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, 18-21 July 2018, 61-64. https://doi.org/10.1109/embc.2018.8512194
|
[24]
|
Tatsch, K. (2010) Positron Emission Tomography in Diagnosis and Differential Diagnosis of Parkinson’s Disease. Neurodegenerative Diseases, 7, 330-340. https://doi.org/10.1159/000314499
|
[25]
|
Strafella, A.P., Bohnen, N.I., Perlmutter, J.S., Eidelberg, D., Pavese, N., Van Eimeren, T., et al. (2017) Molecular Imaging to Track Parkinson’s Disease and Atypical Parkinsonisms: New Imaging Frontiers. Movement Disorders, 32, 181-192. https://doi.org/10.1002/mds.26907
|
[26]
|
Sun, X., Ge, J., Li, L., Zhang, Q., Lin, W., Chen, Y., et al. (2022) Use of Deep Learning-Based Radiomics to Differentiate Parkinson’s Disease Patients from Normal Controls: A Study Based on [18F]FDG PET Imaging. European Radiology, 32, 8008-8018. https://doi.org/10.1007/s00330-022-08799-z
|
[27]
|
Shiiba, T., Takano, K., Takaki, A. and Suwazono, S. (2022) Dopamine Transporter Single-Photon Emission Computed Tomography-Derived Radiomics Signature for Detecting Parkinson’s Disease. EJNMMI Research, 12, Article No. 39. https://doi.org/10.1186/s13550-022-00910-1
|
[28]
|
Adler, C.H., Beach, T.G., Hentz, J.G., Shill, H.A., Caviness, J.N., Driver-Dunckley, E., et al. (2014) Low Clinical Diagnostic Accuracy of Early vs Advanced Parkinson Disease: Clinicopathologic Study. Neurology, 83, 406-412. https://doi.org/10.1212/wnl.0000000000000641
|
[29]
|
Pang, H., Yu, Z., Yu, H., Chang, M., Cao, J., Li, Y., et al. (2022) Multimodal Striatal Neuromarkers in Distinguishing Parkinsonian Variant of Multiple System Atrophy from Idiopathic Parkinson’s Disease. CNS Neuroscience & Therapeutics, 28, 2172-2182. https://doi.org/10.1111/cns.13959
|
[30]
|
Shinde, S., Prasad, S., Saboo, Y., Kaushick, R., Saini, J., Pal, P.K., et al. (2019) Predictive Markers for Parkinson’s Disease Using Deep Neural Nets on Neuromelanin Sensitive MRI. NeuroImage: Clinical, 22, Article ID: 101748. https://doi.org/10.1016/j.nicl.2019.101748
|
[31]
|
Sun, J., Cong, C., Li, X., Zhou, W., Xia, R., Liu, H., et al. (2023) Identification of Parkinson’s Disease and Multiple System Atrophy Using Multimodal PET/MRI Radiomics. European Radiology, 34, 662-672. https://doi.org/10.1007/s00330-023-10003-9
|
[32]
|
Alexopoulos, G.S. (2019) Mechanisms and Treatment of Late-Life Depression. Translational Psychiatry, 9, Article No. 188. https://doi.org/10.1038/s41398-019-0514-6
|
[33]
|
Zhang, X., Cao, X., Xue, C., Zheng, J., Zhang, S., Huang, Q., et al. (2021) Aberrant Functional Connectivity and Activity in Parkinson’s Disease and Comorbidity with Depression Based on Radiomic Analysis. Brain and Behavior, 11, e02103. https://doi.org/10.1002/brb3.2103
|
[34]
|
Yang, Y., Yang, Y., Pan, A., Xu, Z., Wang, L., Zhang, Y., et al. (2022) Identifying Depression in Parkinson’s Disease by Using Combined Diffusion Tensor Imaging and Support Vector Machine. Frontiers in Neurology, 13, Article 878691. https://doi.org/10.3389/fneur.2022.878691
|
[35]
|
Wolters, A.F., van de Weijer, S.C.F., Leentjens, A.F.G., Duits, A.A., Jacobs, H.I.L. and Kuijf, M.L. (2019) Resting-State Fmri in Parkinson’s Disease Patients with Cognitive Impairment: A Meta-Analysis. Parkinsonism & Related Disorders, 62, 16-27. https://doi.org/10.1016/j.parkreldis.2018.12.016
|
[36]
|
陈方政, 刘军. 重视帕金森病的认知障碍[J]. 中华神经科杂志, 2020, 53(7): 481-484.
|
[37]
|
Hosseinzadeh, M., Gorji, A., Fathi Jouzdani, A., Rezaeijo, S.M., Rahmim, A. and Salmanpour, M.R. (2023) Prediction of Cognitive Decline in Parkinson’s Disease Using Clinical and DAT SPECT Imaging Features, and Hybrid Machine Learning Systems. Diagnostics, 13, Article 1691. https://doi.org/10.3390/diagnostics13101691
|
[38]
|
Kang, J.J., Chen, Y., Xu, G.D., Bao, S.L., Wang, J., Ge, M., et al. (2022) Combining Quantitative Susceptibility Mapping to Radiomics in Diagnosing Parkinson’s Disease and Assessing Cognitive Impairment. European Radiology, 32, 6992-7003. https://doi.org/10.1007/s00330-022-08790-8
|
[39]
|
Shu, Z., Cui, S., Wu, X., Xu, Y., Huang, P., Pang, P., et al. (2020) Predicting the Progression of Parkinson’s Disease Using Conventional MRI and Machine Learning: An Application of Radiomic Biomarkers in Whole‐brain White Matter. Magnetic Resonance in Medicine, 85, 1611-1624. https://doi.org/10.1002/mrm.28522
|
[40]
|
Adams, M.P., Rahmim, A. and Tang, J. (2021) Improved Motor Outcome Prediction in Parkinson’s Disease Applying Deep Learning to DaTscan SPECT Images. Computers in Biology and Medicine, 132, Article ID: 104312. https://doi.org/10.1016/j.compbiomed.2021.104312
|
[41]
|
Li, X., Hao, D., Qu, M., Zhang, M., Ma, A., Pan, X., et al. (2021) Development and Validation of a Plasma FAM19A5 and MRI-Based Radiomics Model for Prediction of Parkinson’s Disease and Parkinson’s Disease with Depression. Frontiers in Neuroscience, 15, Article 795539. https://doi.org/10.3389/fnins.2021.795539
|
[42]
|
Cao, X., Wang, X., Xue, C., Zhang, S., Huang, Q. and Liu, W. (2020) A Radiomics Approach to Predicting Parkinson’s Disease by Incorporating Whole-Brain Functional Activity and Gray Matter Structure. Frontiers in Neuroscience, 14, Article 751. https://doi.org/10.3389/fnins.2020.00751
|