[1]
|
Yang, J., Chen, S., Yang, Y., Ma, X., Shao, B., Yang, S., et al. (2020) Jumonji Domain‐Containing Protein 6 Protein and Its Role in Cancer. Cell Proliferation, 53, e12747. https://doi.org/10.1111/cpr.12747
|
[2]
|
Cockman, M.E., Sugimoto, Y., Pegg, H.B., Masson, N., Salah, E., Tumber, A., et al. (2022) Widespread Hydroxylation of Unstructured Lysine-Rich Protein Domains by JMJD6. Proceedings of the National Academy of Sciences of the United States of America, 119, e2201483119. https://doi.org/10.1073/pnas.2201483119
|
[3]
|
Wang, K., Yang, C., Li, H., Liu, X., Zheng, M., Xuan, Z., et al. (2022) Role of the Epigenetic Modifier JMJD6 in Tumor Development and Regulation of Immune Response. Frontiers in Immunology, 13, Article 859893. https://doi.org/10.3389/fimmu.2022.859893
|
[4]
|
Pedersen, M.T. and Helin, K. (2010) Histone Demethylases in Development and Disease. Trends in Cell Biology, 20, 662-671. https://doi.org/10.1016/j.tcb.2010.08.011
|
[5]
|
Kwok, J., O’Shea, M., Hume, D.A. and Lengeling, A. (2017) JMJD6, a JMJC Dioxygenase with Many Interaction Partners and Pleiotropic Functions. Frontiers in Genetics, 8, Article 32. https://doi.org/10.3389/fgene.2017.00032
|
[6]
|
Liu, Y., Long, Y., Wang, S., Zhang, Y., Li, Y., Mi, J., et al. (2018) JMJD6 Regulates Histone H2A.X Phosphorylation and Promotes Autophagy in Triple-Negative Breast Cancer Cells via a Novel Tyrosine Kinase Activity. Oncogene, 38, 980-997. https://doi.org/10.1038/s41388-018-0466-y
|
[7]
|
Zhou, D.X., Zhou, D., Zhan, S.Q., Wang, P., Qin, K., Gan, W., et al. (2017) Inhibition of JMJD6 Expression Reduces the Proliferation, Migration and Invasion of Neuroglioma Stem Cells. Neoplasma, 64, 700-708. https://doi.org/10.4149/neo_2017_507
|
[8]
|
Poulard, C., Rambaud, J., Lavergne, E., Jacquemetton, J., Renoir, J., Trédan, O., et al. (2015) Role of JMJD6 in Breast Tumourigenesis. PLOS ONE, 10, e0126181. https://doi.org/10.1371/journal.pone.0126181
|
[9]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[10]
|
Barzaman, K., Karami, J., Zarei, Z., Hosseinzadeh, A., Kazemi, M.H., Moradi-Kalbolandi, S., et al. (2020) Breast Cancer: Biology, Biomarkers, and Treatments. International Immunopharmacology, 84, Article ID: 106535. https://doi.org/10.1016/j.intimp.2020.106535
|
[11]
|
Lee, Y.F., Miller, L.D., Chan, X.B., Black, M.A., Pang, B., Ong, C.W., et al. (2012) JMJD6 Is a Driver of Cellular Proliferation and Motility and a Marker of Poor Prognosis in Breast Cancer. Breast Cancer Research, 14, Article No. 3001. https://doi.org/10.1186/bcr3200
|
[12]
|
Aprelikova, O., Chen, K., El Touny, L.H., Brignatz-Guittard, C., Han, J., Qiu, T., et al. (2016) The Epigenetic Modifier JMJD6 Is Amplified in Mammary Tumors and Cooperates with C-Myc to Enhance Cellular Transformation, Tumor Progression, and Metastasis. Clinical Epigenetics, 8, Article No. 38. https://doi.org/10.1186/s13148-016-0205-6
|
[13]
|
Biswas, A., Mukherjee, G., Kondaiah, P. and Desai, K.V. (2020) Both EZH2 and JMJD6 Regulate Cell Cycle Genes in Breast Cancer. BMC Cancer, 20, Article No. 1159. https://doi.org/10.1186/s12885-020-07531-8
|
[14]
|
Cioni, B., Ratti, S., Piva, A., Tripodi, I., Milani, M., Menichetti, F., et al. (2023) JMJD6 Shapes a Pro-Tumor Microenvironment via ANXA1-Dependent Macrophage Polarization in Breast Cancer. Molecular Cancer Research, 21, 614-627. https://doi.org/10.1158/1541-7786.mcr-22-0370
|
[15]
|
Zhang, J., Ni, S., Zhao, W., Dong, X. and Wang, J. (2013) High Expression of JMJD6 Predicts Unfavorable Survival in Lung Adenocarcinoma. Tumor Biology, 34, 2397-2401. https://doi.org/10.1007/s13277-013-0789-9
|
[16]
|
Ge, X., Jiang, Y., Hu, X. and Yu, X. (2021) MicroRNA-106a-5p Alleviated the Resistance of Cisplatin in Lung Cancer Cells by Targeting Jumonji Domain Containing 6. Transplant Immunology, 69, Article ID: 101478. https://doi.org/10.1016/j.trim.2021.101478
|
[17]
|
Zhang, Z., Yang, Y. and Zhang, X. (2017) MiR-770 Inhibits Tumorigenesis and EMT by Targeting JMJD6 and Regulating WNT/β-Catenin Pathway in Non-Small Cell Lung Cancer. Life Sciences, 188, 163-171. https://doi.org/10.1016/j.lfs.2017.09.002
|
[18]
|
Yu, X., Jiang, Y., Hu, X. and Ge, X. (2021) LINC00839/miR-519d-3p/JMJD6 Axis Modulated Cell Viability, Apoptosis, Migration and Invasiveness of Lung Cancer Cells. Folia Histochemica et Cytobiologica, 59, 271-281. https://doi.org/10.5603/fhc.a2021.0022
|
[19]
|
Maki, H. and Hasegawa, K. (2022) Advances in the Surgical Treatment of Liver Cancer. BioScience Trends, 16, 178-188. https://doi.org/10.5582/bst.2022.01245
|
[20]
|
Wan, J., Liu, H., Yang, L., Ma, L., Liu, J. and Ming, L. (2018) JMJD6 Promotes Hepatocellular Carcinoma Carcinogenesis by Targeting CDK4. International Journal of Cancer, 144, 2489-2500. https://doi.org/10.1002/ijc.31816
|
[21]
|
Zhao, J., Adams, A., Roberts, B., O’Neil, M., Vittal, A., Schmitt, T., et al. (2018) Protein Arginine Methyl Transferase 1-and Jumonji C Domain‐Containing Protein 6-Dependent Arginine Methylation Regulate Hepatocyte Nuclear Factor 4 Alpha Expression and Hepatocyte Proliferation in Mice. Hepatology, 67, 1109-1126. https://doi.org/10.1002/hep.29587
|
[22]
|
Liu, Y., Sui, A., Sun, J., Wu, Y., Liu, F. and Yang, Y. (2023) C‐Jun‐Mediated JMJD6 Restoration Enhances Resistance of Liver Cancer to Radiotherapy through the Il‐4‐Activated ERK Pathway. Cell Biology International, 47, 1392-1405. https://doi.org/10.1002/cbin.12026
|
[23]
|
Pei, R., Zhao, L., Ding, Y., Su, Z., Li, D., Zhu, S., et al. (2023) JMJD6-BRD4 Complex Stimulates LncRNA HOTAIR Transcription by Binding to the Promoter Region of HOTAIR and Induces Radioresistance in Liver Cancer Stem Cells. Journal of Translational Medicine, 21, Article No. 752. https://doi.org/10.1186/s12967-023-04394-y
|
[24]
|
Kosai-Fujimoto, Y., Itoh, S., Yugawa, K., Fukuhara, T., Okuzaki, D., Toshima, T., et al. (2022) Impact of JMJD6 on Intrahepatic Cholangiocarcinoma. Molecular and Clinical Oncology, 17, Article No. 131. https://doi.org/10.3892/mco.2022.2564
|
[25]
|
Xia, C., Dong, X., Li, H., Cao, M., Sun, D., He, S., et al. (2022) Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants. Chinese Medical Journal, 135, 584-590. https://doi.org/10.1097/cm9.0000000000002108
|
[26]
|
Yoshida, K., Hiwasa, T., Ito, M., Ushigome, M., Takizawa, H., Li, S., et al. (2023) Prognostic and Diagnostic Significance of Preoperative Jumonji Domain-Containing 6 Antibodies in Colorectal Cancer. Oncology Letters, 25, Article No. 127. https://doi.org/10.3892/ol.2023.13713
|
[27]
|
Wang, F., He, L., Huangyang, P., Liang, J., Si, W., Yan, R., et al. (2014) JMJD6 Promotes Colon Carcinogenesis through Negative Regulation of P53 by Hydroxylation. PLOS Biology, 12, e1001819. https://doi.org/10.1371/journal.pbio.1001819
|
[28]
|
Ge, Y., Liu, B., Cui, J. and Li, S. (2019) Livin Promotes Colon Cancer Progression by Regulation of H2A.XY39ph via Jmjd6. Life Sciences, 234, Article ID: 116788. https://doi.org/10.1016/j.lfs.2019.116788
|
[29]
|
Motzer, R.J., Jonasch, E., Agarwal, N., Alva, A., Baine, M., Beckermann, K., et al. (2022) Kidney Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 20, 71-90. https://doi.org/10.6004/jnccn.2022.0001
|
[30]
|
Zhang, C., Lu, X., Huang, J., He, H., Chen, L., Liu, Y., et al. (2021) Epigenome Screening Highlights That JMJD6 Confers an Epigenetic Vulnerability and Mediates Sunitinib Sensitivity in Renal Cell Carcinoma. Clinical and Translational Medicine, 11, e328. https://doi.org/10.1002/ctm2.328
|
[31]
|
Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. https://doi.org/10.3322/caac.21763
|
[32]
|
Li, Y., Yu, P., Zou, Y., Cai, W., Sun, W. and Han, N. (2019) Kras-erk Signalling Promotes the Onset and Maintenance of Uveal Melanoma through Regulating JMJD6-Mediated H2A.X Phosphorylation at Tyrosine 39. Artificial Cells, Nanomedicine, and Biotechnology, 47, 4257-4265. https://doi.org/10.1080/21691401.2019.1673764
|
[33]
|
Liu, X., Si, W., Liu, X., He, L., Ren, J., Yang, Z., et al. (2017) JMJD6 Promotes Melanoma Carcinogenesis through Regulation of the Alternative Splicing of PAK1, a Key MAPK Signaling Component. Molecular Cancer, 16, Article No. 175. https://doi.org/10.1186/s12943-017-0744-2
|
[34]
|
Anelli, V., Ordas, A., Kneitz, S., Sagredo, L.M., Gourain, V., Schartl, M., et al. (2018) Ras-Induced miR-146a and 193a Target JMJD6 to Regulate Melanoma Progression. Frontiers in Genetics, 9, Article 675. https://doi.org/10.3389/fgene.2018.00675
|
[35]
|
Lee, E., Yong, R.L., Paddison, P. and Zhu, J. (2018) Comparison of Glioblastoma (GBM) Molecular Classification Methods. Seminars in Cancer Biology, 53, 201-211. https://doi.org/10.1016/j.semcancer.2018.07.006
|
[36]
|
Rosager, A.M., Dahlrot, R.H., Sørensen, M.D., Bangsø, J.A., Hansen, S. and Kristensen, B.W. (2021) The Epigenetic Regulator Jumonji Domain-Containing Protein 6 (JMJD6) Is Highly Expressed but Not Prognostic in IDH-Wildtype Glioblastoma Patients. Journal of Neuropathology & Experimental Neurology, 81, 54-60. https://doi.org/10.1093/jnen/nlab124
|
[37]
|
Wong, M., Sun, Y., Xi, Z., Milazzo, G., Poulos, R.C., Bartenhagen, C., et al. (2019) JMJD6 Is a Tumorigenic Factor and Therapeutic Target in Neuroblastoma. Nature Communications, 10, Article No. 3319. https://doi.org/10.1038/s41467-019-11132-w
|
[38]
|
Miller, T.E., Liau, B.B., Wallace, L.C., Morton, A.R., Xie, Q., Dixit, D., et al. (2017) Transcription Elongation Factors Represent in Vivo Cancer Dependencies in Glioblastoma. Nature, 547, 355-359. https://doi.org/10.1038/nature23000
|
[39]
|
Northcott, P.A. (2017) Keeping It Real to Kill Glioblastoma. Nature, 547, 291-292. https://doi.org/10.1038/nature23095
|
[40]
|
Wang, J., Lv, N., Lu, X., Yuan, R., Chen, Z. and Yu, J. (2020) Diagnostic and Therapeutic Role of MicroRNAs in Oral Cancer (Review). Oncology Reports, 45, 58-64. https://doi.org/10.3892/or.2020.7854
|
[41]
|
Lee, C., Lee, S.H., Rigas, N.K., Kim, R.H., Kang, M.K., Park, N., et al. (2015) Elevated Expression of JMJD6 Is Associated with Oral Carcinogenesis and Maintains Cancer Stemness Properties. Carcinogenesis, 37, 119-128. https://doi.org/10.1093/carcin/bgv169
|
[42]
|
Han, Y., Wang, X., Xia, K. and Su, T. (2021) A Novel Defined Hypoxia-Related Gene Signature to Predict the Prognosis of Oral Squamous Cell Carcinoma. Annals of Translational Medicine, 9, 1565-1565. https://doi.org/10.21037/atm-21-4990
|
[43]
|
Zheng, H., Tie, Y., Fang, Z., Wu, X., Yi, T., Huang, S., et al. (2019) Jumonji Domain-Containing 6 (JMJD6) Identified as a Potential Therapeutic Target in Ovarian Cancer. Signal Transduction and Targeted Therapy, 4, Article No. 24. https://doi.org/10.1038/s41392-019-0055-8
|
[44]
|
Tong, D. (2021) The Role of JMJD6/U2AF65/AR-V7 Axis in Castration-Resistant Prostate Cancer Progression. Cancer Cell International, 21, Article No. 45. https://doi.org/10.1186/s12935-020-01739-1
|
[45]
|
Paschalis, A., Welti, J., Neeb, A.J., Yuan, W., Figueiredo, I., Pereira, R., et al. (2021) JMJD6 Is a Druggable Oxygenase That Regulates AR-V7 Expression in Prostate Cancer. Cancer Research, 81, 1087-1100. https://doi.org/10.1158/0008-5472.can-20-1807
|
[46]
|
Cangiano, M., Grudniewska, M., Salji, M.J., Nykter, M., Jenster, G., Urbanucci, A., et al. (2021) Gene Regulation Network Analysis on Human Prostate Orthografts Highlights a Potential Role for the JMJD6 Regulon in Clinical Prostate Cancer. Cancers, 13, Article 2094. https://doi.org/10.3390/cancers13092094
|
[47]
|
Islam, M.S., Thinnes, C.C., Holt‐Martyn, J.P., Chowdhury, R., McDonough, M.A. and Schofield, C.J. (2021) Inhibition of JMJD6 by 2‐oxoglutarate Mimics. ChemMedChem, 17, e20210039. https://doi.org/10.1002/cmdc.202100398
|
[48]
|
Suvà, M.L. and Tirosh, I. (2020) The Glioma Stem Cell Model in the Era of Single-Cell Genomics. Cancer Cell, 37, 630-636. https://doi.org/10.1016/j.ccell.2020.04.001
|
[49]
|
Napier, K.J. (2014) Esophageal Cancer: A Review of Epidemiology, Pathogenesis, Staging Workup and Treatment Modalities. World Journal of Gastrointestinal Oncology, 6, 112-120. https://doi.org/10.4251/wjgo.v6.i5.112
|
[50]
|
Golyan, F.F., Druley, T.E. and Abbaszadegan, M.R. (2019) Whole-Exome Sequencing of Familial Esophageal Squamous Cell Carcinoma Identified Rare Pathogenic Variants in New Predisposition Genes. Clinical and Translational Oncology, 22, 681-693. https://doi.org/10.1007/s12094-019-02174-z
|
[51]
|
Liu, H., Jiang, M., Ma, F., Qin, J., Zhou, X., Xu, L., et al. (2023) JMJD6 Functions as an Oncogene and Is Associated with Poor Prognosis in Esophageal Squamous Cell Carcinoma. BMC Cancer, 23, Article No. 696. https://doi.org/10.1186/s12885-023-11171-z
|
[52]
|
Johnson, D.E., Burtness, B., Leemans, C.R., Lui, V.W.Y., Bauman, J.E. and Grandis, J.R. (2020) Head and Neck Squamous Cell Carcinoma. Nature Reviews Disease Primers, 6, Article No. 92. https://doi.org/10.1038/s41572-020-00224-3
|
[53]
|
Guo, B., Wang, L., Qin, X., Shen, Y. and Ma, C. (2019) Jumonji Domain-Containing Protein 6 Functions as a Marker of Head and Neck Squamous Cell Carcinoma at Advanced Stage with No Effect on Prognosis. Oncology Letters, 18, 5843-5852. https://doi.org/10.3892/ol.2019.10938
|