无创产前检测中胎儿游离DNA浓度的影响因素及临床应用研究进展
Advances in the Influencing Factors and Clinical Application of Fetal Fraction of the Non-Invasive Prenatal Testing
DOI: 10.12677/acm.2024.14102784, PDF, HTML, XML,   
作者: 陈鹏宇:暨南大学第一临床医学院,广东 广州;张铨富*:暨南大学附属深圳市宝安区妇幼保健院产科,广东 深圳
关键词: 无创产前检测胎儿游离DNA浓度妊娠结局产前咨询Non-Invasive Prenatal Testing Fetal Fraction Pregnancy Outcome Prenatal Consultation
摘要: 无创产前检测(Non-Invasive Prenatal Testing, NIPT)自临床应用以来,因其方便快捷、无需侵入的特点于全球迅速开展。胎儿游离DNA浓度(Fetal Fraction, FF)是NIPT的质控参数,同时也可作为预测不良妊娠结局的重要指标。本文旨在分析总结FF的影响因素及与胎盘相关性不良妊娠结局的关系,以期发挥FF在临床应用中的价值。
Abstract: Non-invasive prenatal testing (NIPT) has been rapidly developed worldwide due to its characteristics, including convenience and non-invasive. Fetal fraction (FF) is a parameter of sample quality control for NIPT and can also be used as an important indicator for predicting adverse pregnancy outcomes. This article aims to analyze and summarize the influencing factors of FF and the relationship between FF with placenta-related adverse pregnancy outcomes, in order to exert the value of FF in clinical application.
文章引用:陈鹏宇, 张铨富. 无创产前检测中胎儿游离DNA浓度的影响因素及临床应用研究进展[J]. 临床医学进展, 2024, 14(10): 1182-1192. https://doi.org/10.12677/acm.2024.14102784

1. 引言

1997年,Lo等人[1]证明了胎儿DNA存在于母体的血浆中,利用母体血浆检测胎儿游离DNA (Cell-Free DNA, cfDNA)来评估胎儿是否异常的无创产前检测(Non-Invasive Perinatal Text, NIPT)成为可能。当女性妊娠时,母体血浆中的cfDNA包含来自母体的cfDNA和来自胎儿的cfDNA。母体所有的器官都可以向母体血浆释放cfDNA,但母体cfDNA的主要来源是造血细胞[2]。而胎儿cfDNA主要来源于胎盘滋养层细胞[3],当胎盘滋养层细胞发生坏死或凋亡时,胎儿cfDNA被释放到母体血浆中[4]。胎儿游离DNA浓度(Fetal Fraction, FF)是来自胎儿的cfDNA占母体血浆的总cfDNA的比例,即胎儿cfDNA/(胎儿cfDNA + 母体cfDNA)。在实验室中,FF常常被用于评估NIPT样本的质量和结果的可信度[2],因为当FF过小时,相对较低的胎儿cfDNA中的异常结果可能会被相对较多的母体cfDNA所掩盖[5],从而导致NIPT的检测结果不可信。在临床上,因胎儿cfDNA的释放与胎盘滋养层细胞的坏死和凋亡有关,所以FF也有反映胎盘功能的价值[4]。FF存在很大的个体间差异,多种因素对FF都有影响。本文旨在分析总结FF的影响因素及与胎盘相关不良妊娠结局的关系,以期发挥FF在临床应用中的价值。

2. FF的影响因素

影响FF的因素有很多,可大致归结为三类,分别为母体因素、胎儿或胎盘因素及实验因素。

2.1. 母体因素

2.1.1. 体重或体重指数

研究[6]-[10]表明,母亲的体重或体重指数(Body Mass Index, BMI)与FF呈负相关,FF随着体重的增长或BMI的增加而下降。最初,母体体重对FF的影响被归因于肥胖增加了母体循环血量,从而稀释了固定数量的胎儿cfDNA,导致FF的下降[11]。但最近,研究[12]认为,肥胖的孕妇需要通过脂肪细胞坏死和基质血管组织凋亡来重塑脂肪组织,以支持增加的脂肪量,在这一过程中,母体来源的cfDNA被释放到外周血中,从而导致FF的下降。

2.1.2. 种族

Galeva等[13]发现,与白种人相比,黑种人和南亚种族的cfDNA检测失败率分别增加了2倍和1.7倍。Ashoor等发现[14]非裔加勒比孕妇的FF低于白种人。但两项研究都未阐明FF的差异是胎儿cfDNA变化还是母体cfDNA变化引起的结果。

2.1.3. 年龄

母亲的年龄对FF的影响尚存在争议。Deng等[8]发现随着孕妇年龄增加,FF呈现下降趋势,同时认为这一关联可能是由妊娠引起的并发症所致,因为高龄增加了并发症的发生率[15]。但Zhou [6]和Hestand [16]的研究则认为孕妇年龄与FF没有相关性。因此FF与孕妇年龄的相关性还需进一步研究。

2.1.4. 母体疾病

研究发现,与正常孕妇相比,患有自身免疫性疾病的孕妇(如系统性红斑狼疮[17]、免疫性血小板减少症[18]和干燥综合征[19]等)拥有较低的FF和较高的检测失败率,而使用免疫调节抑制剂治疗后可以改善这一影响[20]。其可能的原因是,自身免疫疾病的炎症过程导致组织损伤、细胞凋亡及坏死增加,母体器官释放到血循环中的cfDNA量增加[17],从而导致FF的下降。孕妇严重的维生素B12或叶酸的缺乏也会导致FF的降低[21]。其可能的机制是,当维生素B12或叶酸缺乏时可引起巨幼红细胞性贫血,此时,造血细胞会发生过度凋亡[22],母体cfDNA释放增加,从而使FF下降。此外,研究[23]还发现,与正常孕妇相比,患有HBB相关的血红蛋白病的孕妇的FF较低,且检测失败率是正常孕妇的5倍。其原因可能是由于血管闭塞和严重贫血导致细胞坏死和DNA断裂,导致母体cfDNA的增加[23],从而造成FF下降;另一种解释是,这些孕妇因为贫血需要频繁输血,输血的同时增加了血循环中cfDNA的量而导致胎儿cfDNA的稀释[24]

2.1.5. 孕期用药

研究[25]发现,使用低分子肝素或依诺肝素后,会造成FF降低从而增加检测的失败率。Ma等[26]认为,这可能与肝素对滋养层细胞的直接作用有关,而与它的抗凝活性无关。肝素可以激活多种抗凋亡途径来减少滋养层细胞凋亡[27],从而减少胎儿cfDNA的释放。但最近研究[28]认为,低FF是由于抗凝治疗的稀释作用所致的。因此,肝素影响FF的原因还需进一步研究。服用低剂量阿司匹林与cfDNA检测的失败率增加显著相关,Nitsche等[29]发现服用低剂量阿司匹林后,检测失败率将近提高了3倍。其可能的机制是,一氧化氮合酶可以催化生成一氧化氮和超氧化物,一氧化氮和超氧化物都是活性氧的重要来源,活性氧可以诱导滋养层细胞凋亡[30],而阿司匹林能抑制血小板中的一氧化氮合酶[31],所以阿司匹林可能是通过调节与胎盘凋亡相关的氧化还原信号过程来改变滋养层细胞的活动[32]。此外,孕早期服用二甲双胍也与FF的降低有关[33],但其机制尚不明确,Kuhlmann-Capek等[33]认为二甲双胍对FF的影响可能是继发于疾病本身的,因为在这个研究中,服用二甲双胍的孕妇都合并有糖尿病,而糖尿病对FF又有影响[34]

2.1.6. 血清学指标

研究[10] [13] [14] [35]发现,FF与母亲血清的妊娠相关血浆蛋白A (Pregnancy-Associated Plasma Protein-A, PAPP-A)、游离β人绒毛膜促性腺激素(β-Human Chorionic Gonadotropin, β-hCG)及胎盘生长因子(Placental Growth Factor, PlGF)水平呈正相关。Scott [10]等认为,这些胎盘蛋白的水平与FF之间的关联可能与胎盘的质量有关,因为游离β-hCG和PAPP-A在母体血清中的浓度随着胎盘质量的增加而增加,而PlGF是滋养细胞产生的一种血管生成因子,其水平降低与胎盘功能障碍有关。除此之外,FF还与母体血中的其他一些血清学指标关系密切,比如谷丙转氨酶水平升高[36]、白细胞计数增加[37]、甘油三酯和低密度脂蛋白水平升高、高密度脂蛋白水平降低[38]以及游离甲状腺激素水平升高[39]均可以通过各种机制导致FF下降。

2.2. 胎盘或胎儿因素

2.2.1. 胎龄

多个研究[6] [10]认为胎龄与FF呈正相关。Lo等[40]发现,胎儿cfDNA在怀孕5至7周即可出现在母体血液中,且cfDNA的量随着胎龄的增加而增加,在分娩后逐渐减少。Wang等[9]发现在孕10周时,FF的中位数为10.2%。从孕10周至孕21周,FF以每周0.1%的速度增加;从妊娠21周开始,FF百分比以每周1%的速度增加。Deng等[8]也发现FF随着胎龄增加而增加,认为其可能的原因是随着胎龄的增加,胎盘体积逐渐增加,滋养层细胞的凋亡数量也逐渐增加,因此,更多的胎儿cfDNA片段被释放到母体血浆中,导致FF增加。

2.2.2. 辅助生殖技术受孕

Galeva等[13]发现,与自然受孕相比,通过体外受精(In Vitro Fertilization, IVF)受孕的孕妇中,cfDNA 检测失败率增加了3.8倍,认为其可能的原因是IVF受孕的胎盘质量较小,从而导致胎儿cfDNA释放减少;另外一个解释是IVF导致母体的炎症和内皮损伤,从而使母体cfDNA释放增加[41]。Talbot等[42]除了发现与自然受孕相比,使用辅助生殖技术受孕的FF较低外,还发现新鲜胎胚移植受孕比冷冻胚胎移植受孕拥有更低的FF。其原因可能是,新鲜胚胎移植受孕可能会诱发不明原因的绒毛炎,导致释放的胎儿cfDNA减少[43],从而FF较冷冻胚胎移植受孕低。

2.2.3. 双胎妊娠

双胎妊娠的FF较单胎妊娠高[6],但同时cfDNA检测的失败率也比单胎妊娠高[13]。研究[44]发现,尽管异卵双胎中每个胎儿贡献的FF比单胎妊娠少32%,但总的FF会比单胎妊娠高35%,此外,同卵双胎的总FF也比单胎妊娠高26%。双胎妊娠的检测失败率更高的原因可能是,因为同卵双胎和异卵双胎的FF有差异,但在进行cfDNA检测时,无论是同卵双胎还是异卵双胎,只有当FF达到8%以上时,才会出具“阳性”或“阴性”结果,否则为“无结果”,即认为检测失败[45],因此增加了双胎的检测失败率。

2.2.4. 胎儿染色体异常

研究[14]发现,与整倍体相比,当胎儿患有21三体时,母体血浆中的FF较高。其原因可能是21三体的胎儿的氧化应激导致母体血中胎儿cfDNA释放增加所致[6]。而当胎儿患有18三体或13三体时,FF较低[46],其原因可能是胎盘体积较小或功能失调[47],从而导致释放的胎儿cfDNA减少。Bianchi等[48]除了有与上述相似的发现外,还发现当胎儿患有X单体时,母体血浆中的FF也较低。除此之外,胎儿患有三倍体也被发现与低FF有关,胎盘病变和胎盘质量较小是三倍体妊娠的特征,这可能是造成FF较低的原因[49]

2.2.5. 胎儿头臀径长度

Ashoor等[50]曾报道胎儿头臀径长度对FF没有影响,而Ashoor等随后的研究[14]又认为胎儿头臀径长度与FF呈正相关,但对此并没有做出解释。Revello等[46]和Hudecova等[51]的研究也发现胎儿头臀径长度与FF呈正相关,但也并未阐明其中的原因。因此,头臀径长度与FF的关系未来还需进一步研究。

2.3. 实验因素

整个实验过程对FF的影响较多,研究人员应建立标准的实验流程,以减少对FF的影响,提高检测的成功率及准确率。

2.3.1. 采血管的类型、运输及储存的条件

研究[52]发现,在室温储存4天后,EDTA管血样中的cfDNA的总量增加了10至20倍,而Streck BCT管和PAXgene ccfDNA管都保持了相对稳定的量。尽管Fernando等[53]在研究中发现Streck BCT管的血样在室温下储存14天仍可以使FF保持稳定,但同时也指出过长的存储时间会导致有核血细胞的凋亡、死亡及裂解增加,使有核血细胞的DNA释放增加,从而会影响FF。此外,研究[54]发现,与立即取血浆进行检测的对照组相比,在23℃、37℃、40℃储存24小时后的Streck BCT管的血样中,总cfDNA的量增加,而胎儿cfDNA的量没有变化,反而FF出现下降。Hidestrand等[55]也发现,在4℃下运输的Streck BCT管的血样中,FF会显著降低。可见温度对FF的影响比较明显。

2.3.2. NIPT的操作过程

NIPT操作过程包括DNA提取、文库构建和测序。研究[56]发现,不同的DNA提取方法获得的cfDNA浓度有明显的差异。同时,过高的cfDNA浓度和文库浓度会稀释胎儿来源的cfDNA [57],从而影响FF。孕妇的母体cfDNA片段和胎儿cfDNA片段的优势峰分别为166 bp和143 bp [58],Qiao等[59]发现,通过对较短的cfDNA片段(特别是<130 bp)进行测序可以提高FF,从而降低检测失败率。

2.3.3. FF的计算方法

FF的计算方法有很多,结果的差异也很大。现在常用的计算FF方法是基于Y染色体估算法,其原理是根据母体血浆中总cfDNA中男胎Y染色体片段所占比例计算来计算FF [60],优点是简单准确,缺点是只适用于男胎。基于单核苷酸多态性(Single Nucleotide Polymorphism, SNP)的胎儿特异SNP位点法被认为是计算FF的“金标准”,其原理是选择父母双方都是纯合子但基因型又不相同的SNP位点(例如父亲是AA,母亲是BB,则胎儿为杂合子AB),可以通过计算胎儿特异性位点(B)的与总等位基因的比例来估算FF [61],此方法的优点是准确,但缺点是需要同时获取父亲的DNA。DNA核小体是最近的热门研究方向,研究[62]发现,胎儿DNA起始位置富集在核小体覆盖区域,而母体DNA富集在核小体覆盖区域以外,因此,基于核小体印迹法可以通过计算核小体覆盖区域序列部分占所有序列的比例来估算FF,但其准确度较差。其他计算方法还有基于SNP的深度靶向测序法、基于SNP的低深度测序法、基于cfDNA片段数目的方法、基于甲基化标记的方法以及基于cfDNA长度差异的方法[63]

3. 临床应用

如前所述,胎儿cfDNA来源于胎盘,与胎盘滋养层细胞的坏死及凋亡密切相关,所以FF有反映胎盘功能的价值,有可能成为预测不良妊娠结局的重要参数。已有多个队列研究[64] [65]显示,低FF与胎盘相关的不良妊娠结局之间存在关联。

3.1. 妊娠期高血压疾病

妊娠期高血压疾病是妊娠与血压升高并存的一组疾病的总称,其包括慢性高血压、妊娠期高血压、子痫前期、子痫以及慢性高血压并发子痫前期[66]。子宫胎盘螺旋动脉重塑不足,子宫胎盘灌注减少,导致胎盘功能的受损被认为与妊娠并发症的发生有关,尤其是与子痫前期有关[67] [68]。低FF已被证明与妊娠期高血压疾病之间有关联[69] [70]。Becking等[34]和Jiang等[71]发现,与正常孕妇相比,低FF孕妇的妊娠期高血压的发生率更高;同时,Becking等[34]还发现低FF的孕妇在妊娠晚期(胎龄 ≥ 34周)发生子痫前期的风险增加。Yuan等[72]也发现低FF孕妇发生子痫前期的风险更高。此外,Chan等[73]发现,因FF低而NIPT检测失败的孕妇,其子痫前期的发生风险增加。

3.2. 胎儿生长受限

胎儿生长受限(Fetal Growth Restriction, FGR)的主要特点是胎儿未能实现正常的生长潜能[74]。遗传、代谢、感染和自身免疫等多种因素都可以通过破坏胎盘来影响胎儿生长,从而导致FGR的发生[75]。Rolnik等[76]发现,FGR风险较高的孕妇往往具有较低的FF。Morano等[77]在早发性FGR的孕妇中观察到这些孕妇有较低的FF。Becking等[70]发现低FF的孕妇小于孕龄儿的发生风险较高,同时随着FF的降低,小于孕龄儿的发生风险在增加。一项双胎的研究[78]发现,与正常FF的双胎孕妇相比,低FF的双胎孕妇至少一个胎儿为小于孕龄儿的风险增加。Clapp等[79]发现低FF与新生儿出生体重小于第5百分位数、第10百分位数有关,且与出生体重小于第5百分位数的相关性更强。Yuan等[72]也发现低FF与低出生体重儿(<2500 g)的发生风险增加有关。

3.3. 早产

早产是指在妊娠37周之前的分娩,被认为是由多种机制引发的综合征,包括感染或炎症、胎盘缺血或出血、子宫过度膨胀、免疫和应激等[80]。早产被认为与“胎盘功能不全”有关,此时,子宫螺旋动脉重塑不足,子宫胎盘灌注减少,导致营养转运异常,从而造成胎盘的损伤,引起早产的发生[81]。但FF与早产的关系尚存在争议。Krishna等[65]发现,低FF的妇女的早产率更高。Yuan等[72]发现,队列中FF小于第10百分位数的孕妇的早期早产(孕周 < 34周)发生率较高。Becking等[70]发现低FF的孕妇24至37周自发性早产的发生风险较高,同时随着FF的降低,24至37周自发性早产的发生风险在增加。Zou等[82]发现,在使用IVF受孕的单胎妊娠中,早产组的FF低于无妊娠并发症组。但也有研究[7] [34] [64] [83]认为,FF与早产没有相关性。甚至,Dugo FF等[84]发现,孕14至20周FF的升高反而与早产发生率增加显著相关。这种结论不一致的原因可能在于早产的病因、机制较多,部分研究中早产的发生可能并非是胎盘因素占主导作用,而是其它因素主导,因此胎盘来源的胎儿cfDNA没有发生明显的改变。可见,FF与早产的关系未来仍需进一步研究。

3.4. 妊娠期糖尿病

妊娠期糖尿病(Gestational Diabetes Mellitus, GDM)是既往未被确诊为糖尿病的妇女在妊娠期间出现的慢性高血糖症[85]。GDM发生时,胎盘内异常的绒毛状血管形成、血管活性分子的失衡和氧化应激的增强,可以导致胎盘发育的受损[86],从而影响胎儿cfDNA的释放。Becking等[34]发现,与一般产科人群相比,低FF的孕妇的GDM发生率要高得多。Chan等[73]也发现,cfDNA检测失败的孕妇的GDM发生率更高。尽管Krishna的研究[65]发现低FF的孕妇与患GDM之间有关联,但相关性欠佳(P = 0.051)。Yuan等[72]和Hopkins等[87]一开始发现患有GDM的孕妇的FF较低,但调整BMI后,FF与GDM的关联便不再显著。如前所述,体重增加或BMI升高会导致FF降低,而肥胖又是GDM发生的危险因素[85],因此,GDM与FF的关联是疾病本身的影响还是因为体重改变产生的影响需要我们进一步去探索。

3.5. 其他妊娠并发症

Krishna等[65]发现,低FF的孕妇发生未足月胎膜早破的风险增加。Jiang等[71]发现FF与羊水过少的发生风险呈负相关。但这些研究的规模较小,因此,还需要更多的研究去证实FF与胎膜早破和羊水过少的关系。

4. 总结

FF是NIPT的质控参数,同时可以反映胎盘功能,因此也是预测不良妊娠结局的重要指标。只有充分地了解FF,才能最大限度地发挥NIPT的价值。FF受许多因素的影响,包括母体因素、胎儿或胎盘因素和实验因素。FF与多种胎盘相关的不良妊娠结局的发生相关,包括妊娠期高血压疾病、胎儿生长受限、早产、妊娠期糖尿病、胎膜早破和羊水过少,但还需要进一步去研究证实。实验人员按实验的标准流程进行操作,当发现FF过低或因FF低而导致NIPT检测失败时,应及时通知孕妇及临床医生,临床医生应向孕妇提供产前咨询,并针对孕妇可能发生的并发症制定进一步的诊疗及防治计划,同时加强对孕妇的管理,以减少妊娠并发症对母婴的危害。

NOTES

*通讯作者。

参考文献

[1] Lo, Y.M.D., Corbetta, N., Chamberlain, P.F., Rai, V., Sargent, I.L., Redman, C.W., et al. (1997) Presence of Fetal DNA in Maternal Plasma and Serum. The Lancet, 350, 485-487.
https://doi.org/10.1016/s0140-6736(97)02174-0
[2] Hui, L. and Bianchi, D.W. (2019) Fetal Fraction and Noninvasive Prenatal Testing: What Clinicians Need to Know. Prenatal Diagnosis, 40, 155-163.
https://doi.org/10.1002/pd.5620
[3] Alberry, M., Maddocks, D., Jones, M., Abdel Hadi, M., Abdel-Fattah, S., Avent, N., et al. (2007) Free Fetal DNA in Maternal Plasma in Anembryonic Pregnancies: Confirmation That the Origin Is the Trophoblast. Prenatal Diagnosis, 27, 415-418.
https://doi.org/10.1002/pd.1700
[4] Taglauer, E.S., Wilkins-Haug, L. and Bianchi, D.W. (2014) Review: Cell-Free Fetal DNA in the Maternal Circulation as an Indication of Placental Health and Disease. Placenta, 35, S64-S68.
https://doi.org/10.1016/j.placenta.2013.11.014
[5] Mousavi, S., Shokri, Z., Bastani, P., Ghojazadeh, M., Riahifar, S. and Nateghian, H. (2022) Factors Affecting Low Fetal Fraction in Fetal Screening with Cell-Free DNA in Pregnant Women: A Systematic Review and Meta-Analysis. BMC Pregnancy and Childbirth, 22, Article No. 918.
https://doi.org/10.1186/s12884-022-05224-7
[6] Zhou, Y., Zhu, Z., Gao, Y., Yuan, Y., Guo, Y., Zhou, L., et al. (2015) Effects of Maternal and Fetal Characteristics on Cell-Free Fetal DNA Fraction in Maternal Plasma. Reproductive Sciences, 22, 1429-1435.
https://doi.org/10.1177/1933719115584445
[7] Guo, F., Yang, J., Huang, Y., Qi, Y., Hou, Y., Peng, H., et al. (2019) Association between Fetal Fraction at the Second Trimester and Subsequent Spontaneous Preterm Birth. Prenatal Diagnosis, 39, 1191-1197.
https://doi.org/10.1002/pd.5566
[8] Deng, C., Liu, J., Liu, S., Liu, H., Bai, T., Jing, X., et al. (2023) Maternal and Fetal Factors Influencing Fetal Fraction: A Retrospective Analysis of 153,306 Pregnant Women Undergoing Noninvasive Prenatal Screening. Frontiers in Pediatrics, 11, Article 1066178.
https://doi.org/10.3389/fped.2023.1066178
[9] Wang, E., Batey, A., Struble, C., Musci, T., Song, K. and Oliphant, A. (2013) Gestational Age and Maternal Weight Effects on Fetal Cell-Free DNA in Maternal Plasma. Prenatal Diagnosis, 33, 662-666.
https://doi.org/10.1002/pd.4119
[10] Scott, F.P., Menezes, M., Palma-Dias, R., Nisbet, D., Schluter, P., da Silva Costa, F., et al. (2017) Factors Affecting Cell-Free DNA Fetal Fraction and the Consequences for Test Accuracy. The Journal of Maternal-Fetal & Neonatal Medicine, 31, 1865-1872.
https://doi.org/10.1080/14767058.2017.1330881
[11] Canick, J.A., Palomaki, G.E., Kloza, E.M., Lambert-Messerlian, G.M. and Haddow, J.E. (2013) The Impact of Maternal Plasma DNA Fetal Fraction on Next Generation Sequencing Tests for Common Fetal Aneuploidies. Prenatal Diagnosis, 33, 667-674.
https://doi.org/10.1002/pd.4126
[12] Haghiac, M., Vora, N.L., Basu, S., Johnson, K.L., Presley, L., Bianchi, D.W., et al. (2012) Increased Death of Adipose Cells, a Path to Release Cell-Free DNA into Systemic Circulation of Obese Women. Obesity, 20, 2213-2219.
https://doi.org/10.1038/oby.2012.138
[13] Galeva, S., Gil, M.M., Konstantinidou, L., Akolekar, R. and Nicolaides, K.H. (2019) First-Trimester Screening for Trisomies by Cfdna Testing of Maternal Blood in Singleton and Twin Pregnancies: Factors Affecting Test Failure. Ultrasound in Obstetrics & Gynecology, 53, 804-809.
https://doi.org/10.1002/uog.20290
[14] Ashoor, G., Syngelaki, A., Poon, L.C.Y., Rezende, J.C. and Nicolaides, K.H. (2012) Fetal Fraction in Maternal Plasma Cell-Free DNA at 11-13 Weeks’ Gestation: Relation to Maternal and Fetal Characteristics. Ultrasound in Obstetrics & Gynecology, 41, 26-32.
https://doi.org/10.1002/uog.12331
[15] Seoud, M.A., Nassar, A.H., Usta, I.M., Melhem, Z., Kazma, A. and Khalil, A.M. (2002) Impact of Advanced Maternal Age on Pregnancy Outcome. American Journal of Perinatology, 19, 1-8.
https://doi.org/10.1055/s-2002-20175
[16] Hestand, M.S., Bessem, M., van Rijn, P., de Menezes, R.X., Sie, D., Bakker, I., et al. (2018) Fetal Fraction Evaluation in Non-Invasive Prenatal Screening (Nips). European Journal of Human Genetics, 27, 198-202.
https://doi.org/10.1038/s41431-018-0271-7
[17] Xu, Y., Song, Y., Chang, J., Zhou, X., Qi, Q., Tian, X., et al. (2018) High Levels of Circulating Cell-Free DNA Are a Biomarker of Active SLE. European Journal of Clinical Investigation, 48, e13015.
https://doi.org/10.1111/eci.13015
[18] Hui, L., Bethune, M., Weeks, A., Kelley, J. and Hayes, L. (2014) Repeated Failed Non-Invasive Prenatal Testing Owing to Low Cell-Free Fetal DNA Fraction and Increased Variance in a Woman with Severe Autoimmune Disease. Ultrasound in Obstetrics & Gynecology, 44, 242-243.
https://doi.org/10.1002/uog.13418
[19] Bartoloni, E., Ludovini, V., Alunno, A., Pistola, L., Bistoni, O., Crinò, L., et al. (2011) Increased Levels of Circulating DNA in Patients with Systemic Autoimmune Diseases: A Possible Marker of Disease Activity in Sjögren’s Syndrome. Lupus, 20, 928-935.
https://doi.org/10.1177/0961203311399606
[20] MacKinnon, H.J., Kolarova, T.R., Katz, R., Hedge, J.M., Vinopal, E., Lockwood, C.M., et al. (2021) The Impact of Maternal Autoimmune Disease on Cell-Free DNA Test Characteristics. American Journal of Obstetrics & Gynecology MFM, 3, Article ID: 100466.
https://doi.org/10.1016/j.ajogmf.2021.100466
[21] Schuring-Blom, H., Lichtenbelt, K., van Galen, K., Elferink, M., Weiss, M., Vermeesch, J.R., et al. (2016) Maternal Vitamin B12 Deficiency and Abnormal Cell-Free DNA Results in Pregnancy. Prenatal Diagnosis, 36, 790-793.
https://doi.org/10.1002/pd.4863
[22] Koury, M.J., Price, J.O. and Hicks, G.G. (2000) Apoptosis in Megaloblastic Anemia Occurs during DNA Synthesis by a P53-Independent, Nucleoside-Reversible Mechanism. Blood, 96, 3249-3255.
https://doi.org/10.1182/blood.v96.9.3249.h8003249_3249_3255
[23] Putra, M., Idler, J., Patek, K., Contos, G., Walker, C., Olson, D., et al. (2019) The Association of Hbb-Related Significant Hemoglobinopathies and Low Fetal Fraction on Noninvasive Prenatal Screening for Fetal Aneuploidy. The Journal of Maternal-Fetal & Neonatal Medicine, 34, 3657-3661.
https://doi.org/10.1080/14767058.2019.1689558
[24] Shih, A.W., Bhagirath, V.C., Heddle, N.M., Acker, J.P., Liu, Y., Eikelboom, J.W., et al. (2016) Quantification of Cell-Free DNA in Red Blood Cell Units in Different Whole Blood Processing Methods. Journal of Blood Transfusion, 2016, Article ID: 9316385.
https://doi.org/10.1155/2016/9316385
[25] Burns, W., Koelper, N., Barberio, A., Deagostino-Kelly, M., Mennuti, M., Sammel, M.D., et al. (2017) The Association between Anticoagulation Therapy, Maternal Characteristics, and a Failed cfDNA Test Due to a Low Fetal Fraction. Prenatal Diagnosis, 37, 1125-1129.
https://doi.org/10.1002/pd.5152
[26] Ma, G., Wu, W., Lee, M., Lin, Y. and Chen, M. (2018) Low-Molecular-Weight Heparin Associated with Reduced Fetal Fraction and Subsequent False-Negative Cell-Free DNA Test Result for Trisomy 21. Ultrasound in Obstetrics & Gynecology, 51, 276-277.
https://doi.org/10.1002/uog.17473
[27] Hills, F.A., Abrahams, V.M., Gonzalez-Timon, B., Francis, J., Cloke, B., Hinkson, L., et al. (2006) Heparin Prevents Programmed Cell Death in Human Trophoblast. Molecular Human Reproduction, 12, 237-243.
https://doi.org/10.1093/molehr/gal026
[28] Shree, R., MacKinnon, H.J., Hannan, J., Kolarova, T.R., Reichel, J. and Lockwood, C.M. (2024) Anticoagulation Use Is Associated with Lower Fetal Fraction and More Indeterminate Results. American Journal of Obstetrics and Gynecology, 230, 95.e1-95.e10.
https://doi.org/10.1016/j.ajog.2023.07.005
[29] Nitsche, J.F., Lovell, D., Stephens, N., Conrad, S., Bebeau, K. and Brost, B.C. (2023) The Effects of Heparin, Aspirin, and Maternal Clinical Factors on the Rate of Nonreportable Cell-Free DNA Results: A Retrospective Cohort Study. American Journal of Obstetrics & Gynecology MFM, 5, Article ID: 100846.
https://doi.org/10.1016/j.ajogmf.2022.100846
[30] Wu, F., Tian, F. and Lin, Y. (2015) Oxidative Stress in Placenta: Health and Diseases. BioMed Research International, 2015, Article ID: 293271.
https://doi.org/10.1155/2015/293271
[31] Chen, L., Salafranca, M.N. and Mehta, J.L. (1997) Cyclooxygenase Inhibition Decreases Nitric Oxide Synthase Activity in Human Platelets. American Journal of Physiology-Heart and Circulatory Physiology, 273, H1854-H1859.
https://doi.org/10.1152/ajpheart.1997.273.4.h1854
[32] Bose, P., Black, S., Kadyrov, M., Weissenborn, U., Neulen, J., Regan, L., et al. (2005) Heparin and Aspirin Attenuate Placental Apoptosis in Vitro: Implications for Early Pregnancy Failure. American Journal of Obstetrics and Gynecology, 192, 23-30.
https://doi.org/10.1016/j.ajog.2004.09.029
[33] Kuhlmann‐Capek, M., Chiossi, G., Singh, P., Monsivais, L., Lozovyy, V., Gallagher, L., et al. (2019) Effects of Medication Intake in Early Pregnancy on the Fetal Fraction of Cell-Free DNA Testing. Prenatal Diagnosis, 39, 361-368.
https://doi.org/10.1002/pd.5436
[34] Becking, E.C., Wirjosoekarto, S.A.M., Scheffer, P.G., Huiskes, J.V.M., Remmelink, M.J., Sistermans, E.A., et al. (2021) Low Fetal Fraction in Cell-Free DNA Testing Is Associated with Adverse Pregnancy Outcome: Analysis of a Subcohort of the TRIDENT-2 Study. Prenatal Diagnosis, 41, 1296-1304.
https://doi.org/10.1002/pd.6034
[35] Poon, L.C.Y., Musci, T., Song, K., Syngelaki, A. and Nicolaides, K.H. (2013) Maternal Plasma Cell-Free Fetal and Maternal DNA at 11-13 Weeks’ Gestation: Relation to Fetal and Maternal Characteristics and Pregnancy Outcomes. Fetal Diagnosis and Therapy, 33, 215-223.
https://doi.org/10.1159/000346806
[36] Chen, P., Qiao, L., Zhang, S., Jin, J., Cao, J., Zhang, Y., et al. (2022) The Effect of Elevated Alanine Transaminase on Non-Invasive Prenatal Screening Failures. Frontiers in Medicine, 9, Article 875588.
https://doi.org/10.3389/fmed.2022.875588
[37] Qiao, L., Cao, X., Tang, H., Yu, Z., Shi, J., Xue, Y., et al. (2023) White Blood Cell Count Affects Fetal Fraction and Test Failure Rates in Noninvasive Prenatal Screening. Frontiers in Medicine, 10, Article 1088745.
https://doi.org/10.3389/fmed.2023.1088745
[38] Cao, J., Qiao, L., Jin, J., Zhang, S., Chen, P., Tang, H., et al. (2022) Lipid Metabolism Affects Fetal Fraction and Screen Failures in Non-Invasive Prenatal Testing. Frontiers in Medicine, 8, Article 811385.
https://doi.org/10.3389/fmed.2021.811385
[39] Zhang, Y., Qiao, L. and Wang, T. (2023) Influence of Thyroid Function on the Fetal Fraction During Second Trimester of Pregnancy. Chinese Journal of Medical Genetics, 40, 1191-1196.
[40] Lo, Y.M.D., Tein, M.S.C., Lau, T.K., Haines, C.J., Leung, T.N., Poon, P.M.K., et al. (1998) Quantitative Analysis of Fetal DNA in Maternal Plasma and Serum: Implications for Noninvasive Prenatal Diagnosis. The American Journal of Human Genetics, 62, 768-775.
https://doi.org/10.1086/301800
[41] Lee, T.J., Rolnik, D.L., Menezes, M.A., McLennan, A.C. and da Silva Costa, F. (2018) Cell-Free Fetal DNA Testing in Singleton IVF Conceptions. Human Reproduction, 33, 572-578.
https://doi.org/10.1093/humrep/dey033
[42] Talbot, A.L., Ambye, L., Hartwig, T.S., Werge, L., Sørensen, S., Stormlund, S., et al. (2020) Fetal Fraction of Cell-Free DNA in Pregnancies after Fresh or Frozen Embryo Transfer Following Assisted Reproductive Technologies. Human Reproduction, 35, 1267-1275.
https://doi.org/10.1093/humrep/deaa110
[43] Herman, H.G., Tamayev, L., Feldstein, O., Bustan, M., Rachmiel, Z., Schreiber, L., et al. (2020) Placental-Related Disorders of Pregnancy and IVF: Does Placental Histological Examination Explain the Excess Risk? Reproductive BioMedicine Online, 41, 81-87.
https://doi.org/10.1016/j.rbmo.2020.04.001
[44] Hedriana, H., Martin, K., Saltzman, D., Billings, P., Demko, Z. and Benn, P. (2019) Cell-Free DNA Fetal Fraction in Twin Gestations in Single-Nucleotide Polymorphism-Based Noninvasive Prenatal Screening. Prenatal Diagnosis, 40, 179-184.
https://doi.org/10.1002/pd.5609
[45] Le Conte, G., Letourneau, A., Jani, J., Kleinfinger, P., Lohmann, L., Costa, J., et al. (2018) Cell-Free Fetal DNA Analysis in Maternal Plasma as Screening Test for Trisomies 21, 18 and 13 in Twin Pregnancy. Ultrasound in Obstetrics & Gynecology, 52, 318-324.
https://doi.org/10.1002/uog.18838
[46] Revello, R., Sarno, L., Ispas, A., Akolekar, R. and Nicolaides, K.H. (2016) Screening for Trisomies by Cell-Free DNA Testing of Maternal Blood: Consequences of a Failed Result. Ultrasound in Obstetrics & Gynecology, 47, 698-704.
https://doi.org/10.1002/uog.15851
[47] Pergament, E., Cuckle, H., Zimmermann, B., Banjevic, M., Sigurjonsson, S., Ryan, A., et al. (2014) Single-Nucleotide Polymorphism-Based Noninvasive Prenatal Screening in a High-Risk and Low-Risk Cohort. Obstetrics & Gynecology, 124, 210-218.
https://doi.org/10.1097/aog.0000000000000363
[48] Rava, R.P., Srinivasan, A., Sehnert, A.J. and Bianchi, D.W. (2014) Circulating Fetal Cell-Free DNA Fractions Differ in Autosomal Aneuploidies and Monosomy X. Clinical Chemistry, 60, 243-250.
https://doi.org/10.1373/clinchem.2013.207951
[49] Becking, E.C., Schuit, E., van Baar de Knegt, S.M.E., Sistermans, E.A., Henneman, L., Bekker, M.N., et al. (2023) Association between Low Fetal Fraction in Cell-Free DNA Screening and Fetal Chromosomal Aberrations: A Systematic Review and Meta-Analysis. Prenatal Diagnosis, 43, 838-853.
https://doi.org/10.1002/pd.6366
[50] Ashoor, G., Poon, L., Syngelaki, A., Mosimann, B. and Nicolaides, K.H. (2012) Fetal Fraction in Maternal Plasma Cell-Free DNA at 11-13 Weeks’ Gestation: Effect of Maternal and Fetal Factors. Fetal Diagnosis and Therapy, 31, 237-243.
https://doi.org/10.1159/000337373
[51] Hudecova, I., Sahota, D., Heung, M.M.S., Jin, Y., Lee, W.S., Leung, T.Y., et al. (2014) Maternal Plasma Fetal DNA Fractions in Pregnancies with Low and High Risks for Fetal Chromosomal Aneuploidies. PLOS ONE, 9, e88484.
https://doi.org/10.1371/journal.pone.0088484
[52] Warton, K., Yuwono, N.L., Cowley, M.J., McCabe, M.J., So, A. and Ford, C.E. (2017) Evaluation of Streck BCT and Paxgene Stabilised Blood Collection Tubes for Cell-Free Circulating DNA Studies in Plasma. Molecular Diagnosis & Therapy, 21, 563-570.
https://doi.org/10.1007/s40291-017-0284-x
[53] Fernando, M.R., Chen, K., Norton, S., Krzyzanowski, G., Bourne, D., Hunsley, B., et al. (2010) A New Methodology to Preserve the Original Proportion and Integrity of Cell-Free Fetal DNA in Maternal Plasma during Sample Processing and Storage. Prenatal Diagnosis, 30, 418-424.
https://doi.org/10.1002/pd.2484
[54] Wong, D., Moturi, S., Angkachatchai, V., Mueller, R., DeSantis, G., van den Boom, D., et al. (2013) Optimizing Blood Collection, Transport and Storage Conditions for Cell Free DNA Increases Access to Prenatal Testing. Clinical Biochemistry, 46, 1099-1104.
https://doi.org/10.1016/j.clinbiochem.2013.04.023
[55] Hidestrand, M., Stokowski, R., Song, K., Oliphant, A., Deavers, J., Goetsch, M., et al. (2012) Influence of Temperature during Transportation on Cell-Free DNA Analysis. Fetal Diagnosis and Therapy, 31, 122-128.
https://doi.org/10.1159/000335020
[56] Legler, T.J., Liu, Z., Mavrou, A., Finning, K., Hromadnikova, I., Galbiati, S., et al. (2007) Workshop Report on the Extraction of Foetal DNA from Maternal Plasma. Prenatal Diagnosis, 27, 824-829.
https://doi.org/10.1002/pd.1783
[57] Qiao, L., Mao, J., Liu, M., Liu, Y., Song, X., Tang, H., et al. (2019) Experimental Factors Are Associated with Fetal Fraction in Size Selection Noninvasive Prenatal Testing. American Journal of Translational Research, 11, 6370-6381
[58] Shi, J., Zhang, R., Li, J. and Zhang, R. (2020) Size Profile of Cell-Free DNA: A Beacon Guiding the Practice and Innovation of Clinical Testing. Theranostics, 10, 4737-4748.
https://doi.org/10.7150/thno.42565
[59] Qiao, L., Yu, B., Liang, Y., Zhang, C., Wu, X., Xue, Y., et al. (2019) Sequencing Shorter cfDNA Fragments Improves the Fetal DNA Fraction in Noninvasive Prenatal Testing. American Journal of Obstetrics and Gynecology, 221, 345.e1-345.e11.
https://doi.org/10.1016/j.ajog.2019.05.023
[60] Chiu, R.W.K., Akolekar, R., Zheng, Y.W.L., Leung, T.Y., Sun, H., Chan, K.C.A., et al. (2011) Non-Invasive Prenatal Assessment of Trisomy 21 by Multiplexed Maternal Plasma DNA Sequencing: Large Scale Validity Study. BMJ, 342, c7401.
https://doi.org/10.1136/bmj.c7401
[61] Chu, T., Bunce, K., Hogge, W.A. and Peters, D.G. (2010) A Novel Approach toward the Challenge of Accurately Quantifying Fetal DNA in Maternal Plasma. Prenatal Diagnosis, 30, 1226-1229.
https://doi.org/10.1002/pd.2656
[62] Straver, R., Oudejans, C.B.M., Sistermans, E.A. and Reinders, M.J.T. (2016) Calculating the Fetal Fraction for Noninvasive Prenatal Testing Based on Genome-Wide Nucleosome Profiles. Prenatal Diagnosis, 36, 614-621.
https://doi.org/10.1002/pd.4816
[63] Peng, X. and Jiang, P. (2017) Bioinformatics Approaches for Fetal DNA Fraction Estimation in Noninvasive Prenatal Testing. International Journal of Molecular Sciences, 18, Article 453.
https://doi.org/10.3390/ijms18020453
[64] Gerson, K.D., Truong, S., Haviland, M.J., O’Brien, B.M., Hacker, M.R. and Spiel, M.H. (2019) Low Fetal Fraction of Cell-Free DNA Predicts Placental Dysfunction and Hypertensive Disease in Pregnancy. Pregnancy Hypertension, 16, 148-153.
https://doi.org/10.1016/j.preghy.2019.04.002
[65] Krishna, I., Badell, M., Loucks, T.L., Lindsay, M. and Samuel, A. (2016) Adverse Perinatal Outcomes Are More Frequent in Pregnancies with a Low Fetal Fraction Result on Noninvasive Prenatal Testing. Prenatal Diagnosis, 36, 210-215.
https://doi.org/10.1002/pd.4779
[66] Garovic, V.D., Dechend, R., Easterling, T., Karumanchi, S.A., McMurtry Baird, S., Magee, L.A., et al. (2022) Hypertension in Pregnancy: Diagnosis, Blood Pressure Goals, and Pharmacotherapy: A Scientific Statement from the American Heart Association. Hypertension, 79, e21-e41.
https://doi.org/10.1161/hyp.0000000000000208
[67] Staff, A.C., Fjeldstad, H.E., Fosheim, I.K., Moe, K., Turowski, G., Johnsen, G.M., et al. (2022) Failure of Physiological Transformation and Spiral Artery Atherosis: Their Roles in Preeclampsia. American Journal of Obstetrics and Gynecology, 226, S895-S906.
https://doi.org/10.1016/j.ajog.2020.09.026
[68] Varberg, K.M. and Soares, M.J. (2021) Paradigms for Investigating Invasive Trophoblast Cell Development and Contributions to Uterine Spiral Artery Remodeling. Placenta, 113, 48-56.
https://doi.org/10.1016/j.placenta.2021.04.012
[69] Madala, D., Maktabi, M.A., Sabbagh, R., Erfani, H., Moon, A. and Van den Veyver, I.B. (2022) Lower Fetal Fraction in Clinical Cell-Free DNA Screening Results Is Associated with Increased Risk of Hypertensive Disorders of Pregnancy. Prenatal Diagnosis, 42, 1253-1261.
https://doi.org/10.1002/pd.6221
[70] Becking, E.C., Scheffer, P.G., Henrichs, J., Bax, C.J., Crombag, N.M.T.H., Weiss, M.M., et al. (2023) Fetal Fraction of Cell-Free DNA in Noninvasive Prenatal Testing and Adverse Pregnancy Outcomes: A Nationwide Retrospective Cohort Study of 56, 110 Pregnant Women. American Journal of Obstetrics and Gynecology, 231, 244.e1-244.e18.
https://10.1016/j.ajog.2023.12.008
[71] Jiang, Y., Zhang, Y., Yang, Q., Zeng, D., Zhao, K., Ma, X., et al. (2022) The Association between Fetal Fraction and Pregnancy-Related Complications among Chinese Population. PLOS ONE, 17, e0271219.
https://doi.org/10.1371/journal.pone.0271219
[72] Yuan, X., Zhou, L., Zhang, B., Wang, H., Yu, B. and Xu, J. (2020) Association between Low Fetal Fraction of Cell Free DNA at the Early Second-Trimester and Adverse Pregnancy Outcomes. Pregnancy Hypertension, 22, 101-108.
https://doi.org/10.1016/j.preghy.2020.07.015
[73] Chan, N., Smet, M., Sandow, R., da Silva Costa, F. and McLennan, A. (2017) Implications of Failure to Achieve a Result from Prenatal Maternal Serum Cell-Free DNA Testing: A Historical Cohort Study. BJOG: An International Journal of Obstetrics & Gynaecology, 125, 848-855.
https://doi.org/10.1111/1471-0528.15006
[74] Gourvas, V., Dalpa, E., Konstantinidou, A., Vrachnis, N., Spandidos, D.A. and Sifakis, S. (2012) Angiogenic Factors in Placentas from Pregnancies Complicated by Fetal Growth Restriction (Review). Molecular Medicine Reports, 6, 23-27.
[75] Cetin, I., Foidart, J., Miozzo, M., Raun, T., Jansson, T., Tsatsaris, V., et al. (2004) Fetal Growth Restriction: A Workshop Report. Placenta, 25, 753-757.
https://doi.org/10.1016/j.placenta.2004.02.004
[76] Rolnik, D.L., da Silva Costa, F., Lee, T.J., Schmid, M. and McLennan, A.C. (2018) Association between Fetal Fraction on Cell-Free DNA Testing and First-Trimester Markers for Pre-Eclampsia. Ultrasound in Obstetrics & Gynecology, 52, 722-727.
https://doi.org/10.1002/uog.18993
[77] Morano, D., Rossi, S., Lapucci, C., Pittalis, M.C. and Farina, A. (2018) Cell-Free DNA (cfDNA) Fetal Fraction in Early-and Late-Onset Fetal Growth Restriction. Molecular Diagnosis & Therapy, 22, 613-619.
https://doi.org/10.1007/s40291-018-0353-9
[78] Li, J., Gu, X., Wei, Y., Tao, Y., Zhai, B., Peng, C., et al. (2022) Correlation of Low Fetal Fraction of Cell-Free DNA at the Early Second-Trimester and Pregnancy Complications Related to Placental Dysfunction in Twin Pregnancy. Frontiers in Medicine, 9, Article 1011366.
https://doi.org/10.3389/fmed.2022.1011366
[79] Clapp, M.A., Berry, M., Shook, L.L., Roberts, P.S., Goldfarb, I.T. and Bernstein, S.N. (2019) Low Fetal Fraction and Birth Weight in Women with Negative First-Trimester Cell-Free DNA Screening. American Journal of Perinatology, 37, 86-91.
https://doi.org/10.1055/s-0039-1700860
[80] Goldenberg, R.L., Culhane, J.F., Iams, J.D. and Romero, R. (2008) Epidemiology and Causes of Preterm Birth. The Lancet, 371, 75-84.
https://doi.org/10.1016/s0140-6736(08)60074-4
[81] Morgan, T. (2016) Role of the Placenta in Preterm Birth: A Review. American Journal of Perinatology, 33, 258-266.
https://doi.org/10.1055/s-0035-1570379
[82] Zou, Y., Xie, H., Hu, J., Cui, L., Liu, G., Wang, L., et al. (2022) The Low Fetal Fraction at the First Trimester Is Associated with Adverse Pregnancy Outcomes in IVF Singleton Pregnancies with Single Embryo Transfer from Frozen Cycles. Journal of Assisted Reproduction and Genetics, 39, 1603-1610.
https://doi.org/10.1007/s10815-022-02488-y
[83] Luo, Y., Xu, L., Ma, Y., Yan, X., Hou, R., Huang, Y., et al. (2023) Association between the First and Second Trimester Cell Free DNA Fetal Fraction and Spontaneous Preterm Birth. Expert Review of Molecular Diagnostics, 23, 635-642.
https://doi.org/10.1080/14737159.2023.2217331
[84] Dugoff, L., Barberio, A., Whittaker, P.G., Schwartz, N., Sehdev, H. and Bastek, J.A. (2016) Cell-Free DNA Fetal Fraction and Preterm Birth. American Journal of Obstetrics and Gynecology, 215, 231.e1-231.e7.
https://doi.org/10.1016/j.ajog.2016.02.009
[85] Plows, J.F., Stanley, J.L., Baker, P.N., Reynolds, C.M. and Vickers, M.H. (2018) The Pathophysiology of Gestational Diabetes Mellitus. International Journal of Molecular Sciences, 19, Article 3342.
https://doi.org/10.3390/ijms19113342
[86] Gauster, M., Desoye, G., Tötsch, M. and Hiden, U. (2011) The Placenta and Gestational Diabetes Mellitus. Current Diabetes Reports, 12, 16-23.
https://doi.org/10.1007/s11892-011-0244-5
[87] Hopkins, M.K., Koelper, N., Bender, W., Durnwald, C., Sammel, M. and Dugoff, L. (2020) Association between Cell-Free DNA Fetal Fraction and Gestational Diabetes. Prenatal Diagnosis, 40, 724-727.
https://doi.org/10.1002/pd.5671