[1]
|
Lo, Y.M.D., Corbetta, N., Chamberlain, P.F., Rai, V., Sargent, I.L., Redman, C.W., et al. (1997) Presence of Fetal DNA in Maternal Plasma and Serum. The Lancet, 350, 485-487. https://doi.org/10.1016/s0140-6736(97)02174-0
|
[2]
|
Hui, L. and Bianchi, D.W. (2019) Fetal Fraction and Noninvasive Prenatal Testing: What Clinicians Need to Know. Prenatal Diagnosis, 40, 155-163. https://doi.org/10.1002/pd.5620
|
[3]
|
Alberry, M., Maddocks, D., Jones, M., Abdel Hadi, M., Abdel-Fattah, S., Avent, N., et al. (2007) Free Fetal DNA in Maternal Plasma in Anembryonic Pregnancies: Confirmation That the Origin Is the Trophoblast. Prenatal Diagnosis, 27, 415-418. https://doi.org/10.1002/pd.1700
|
[4]
|
Taglauer, E.S., Wilkins-Haug, L. and Bianchi, D.W. (2014) Review: Cell-Free Fetal DNA in the Maternal Circulation as an Indication of Placental Health and Disease. Placenta, 35, S64-S68. https://doi.org/10.1016/j.placenta.2013.11.014
|
[5]
|
Mousavi, S., Shokri, Z., Bastani, P., Ghojazadeh, M., Riahifar, S. and Nateghian, H. (2022) Factors Affecting Low Fetal Fraction in Fetal Screening with Cell-Free DNA in Pregnant Women: A Systematic Review and Meta-Analysis. BMC Pregnancy and Childbirth, 22, Article No. 918. https://doi.org/10.1186/s12884-022-05224-7
|
[6]
|
Zhou, Y., Zhu, Z., Gao, Y., Yuan, Y., Guo, Y., Zhou, L., et al. (2015) Effects of Maternal and Fetal Characteristics on Cell-Free Fetal DNA Fraction in Maternal Plasma. Reproductive Sciences, 22, 1429-1435. https://doi.org/10.1177/1933719115584445
|
[7]
|
Guo, F., Yang, J., Huang, Y., Qi, Y., Hou, Y., Peng, H., et al. (2019) Association between Fetal Fraction at the Second Trimester and Subsequent Spontaneous Preterm Birth. Prenatal Diagnosis, 39, 1191-1197. https://doi.org/10.1002/pd.5566
|
[8]
|
Deng, C., Liu, J., Liu, S., Liu, H., Bai, T., Jing, X., et al. (2023) Maternal and Fetal Factors Influencing Fetal Fraction: A Retrospective Analysis of 153,306 Pregnant Women Undergoing Noninvasive Prenatal Screening. Frontiers in Pediatrics, 11, Article 1066178. https://doi.org/10.3389/fped.2023.1066178
|
[9]
|
Wang, E., Batey, A., Struble, C., Musci, T., Song, K. and Oliphant, A. (2013) Gestational Age and Maternal Weight Effects on Fetal Cell-Free DNA in Maternal Plasma. Prenatal Diagnosis, 33, 662-666. https://doi.org/10.1002/pd.4119
|
[10]
|
Scott, F.P., Menezes, M., Palma-Dias, R., Nisbet, D., Schluter, P., da Silva Costa, F., et al. (2017) Factors Affecting Cell-Free DNA Fetal Fraction and the Consequences for Test Accuracy. The Journal of Maternal-Fetal & Neonatal Medicine, 31, 1865-1872. https://doi.org/10.1080/14767058.2017.1330881
|
[11]
|
Canick, J.A., Palomaki, G.E., Kloza, E.M., Lambert-Messerlian, G.M. and Haddow, J.E. (2013) The Impact of Maternal Plasma DNA Fetal Fraction on Next Generation Sequencing Tests for Common Fetal Aneuploidies. Prenatal Diagnosis, 33, 667-674. https://doi.org/10.1002/pd.4126
|
[12]
|
Haghiac, M., Vora, N.L., Basu, S., Johnson, K.L., Presley, L., Bianchi, D.W., et al. (2012) Increased Death of Adipose Cells, a Path to Release Cell-Free DNA into Systemic Circulation of Obese Women. Obesity, 20, 2213-2219. https://doi.org/10.1038/oby.2012.138
|
[13]
|
Galeva, S., Gil, M.M., Konstantinidou, L., Akolekar, R. and Nicolaides, K.H. (2019) First-Trimester Screening for Trisomies by Cfdna Testing of Maternal Blood in Singleton and Twin Pregnancies: Factors Affecting Test Failure. Ultrasound in Obstetrics & Gynecology, 53, 804-809. https://doi.org/10.1002/uog.20290
|
[14]
|
Ashoor, G., Syngelaki, A., Poon, L.C.Y., Rezende, J.C. and Nicolaides, K.H. (2012) Fetal Fraction in Maternal Plasma Cell-Free DNA at 11-13 Weeks’ Gestation: Relation to Maternal and Fetal Characteristics. Ultrasound in Obstetrics & Gynecology, 41, 26-32. https://doi.org/10.1002/uog.12331
|
[15]
|
Seoud, M.A., Nassar, A.H., Usta, I.M., Melhem, Z., Kazma, A. and Khalil, A.M. (2002) Impact of Advanced Maternal Age on Pregnancy Outcome. American Journal of Perinatology, 19, 1-8. https://doi.org/10.1055/s-2002-20175
|
[16]
|
Hestand, M.S., Bessem, M., van Rijn, P., de Menezes, R.X., Sie, D., Bakker, I., et al. (2018) Fetal Fraction Evaluation in Non-Invasive Prenatal Screening (Nips). European Journal of Human Genetics, 27, 198-202. https://doi.org/10.1038/s41431-018-0271-7
|
[17]
|
Xu, Y., Song, Y., Chang, J., Zhou, X., Qi, Q., Tian, X., et al. (2018) High Levels of Circulating Cell-Free DNA Are a Biomarker of Active SLE. European Journal of Clinical Investigation, 48, e13015. https://doi.org/10.1111/eci.13015
|
[18]
|
Hui, L., Bethune, M., Weeks, A., Kelley, J. and Hayes, L. (2014) Repeated Failed Non-Invasive Prenatal Testing Owing to Low Cell-Free Fetal DNA Fraction and Increased Variance in a Woman with Severe Autoimmune Disease. Ultrasound in Obstetrics & Gynecology, 44, 242-243. https://doi.org/10.1002/uog.13418
|
[19]
|
Bartoloni, E., Ludovini, V., Alunno, A., Pistola, L., Bistoni, O., Crinò, L., et al. (2011) Increased Levels of Circulating DNA in Patients with Systemic Autoimmune Diseases: A Possible Marker of Disease Activity in Sjögren’s Syndrome. Lupus, 20, 928-935. https://doi.org/10.1177/0961203311399606
|
[20]
|
MacKinnon, H.J., Kolarova, T.R., Katz, R., Hedge, J.M., Vinopal, E., Lockwood, C.M., et al. (2021) The Impact of Maternal Autoimmune Disease on Cell-Free DNA Test Characteristics. American Journal of Obstetrics & Gynecology MFM, 3, Article ID: 100466. https://doi.org/10.1016/j.ajogmf.2021.100466
|
[21]
|
Schuring-Blom, H., Lichtenbelt, K., van Galen, K., Elferink, M., Weiss, M., Vermeesch, J.R., et al. (2016) Maternal Vitamin B12 Deficiency and Abnormal Cell-Free DNA Results in Pregnancy. Prenatal Diagnosis, 36, 790-793. https://doi.org/10.1002/pd.4863
|
[22]
|
Koury, M.J., Price, J.O. and Hicks, G.G. (2000) Apoptosis in Megaloblastic Anemia Occurs during DNA Synthesis by a P53-Independent, Nucleoside-Reversible Mechanism. Blood, 96, 3249-3255. https://doi.org/10.1182/blood.v96.9.3249.h8003249_3249_3255
|
[23]
|
Putra, M., Idler, J., Patek, K., Contos, G., Walker, C., Olson, D., et al. (2019) The Association of Hbb-Related Significant Hemoglobinopathies and Low Fetal Fraction on Noninvasive Prenatal Screening for Fetal Aneuploidy. The Journal of Maternal-Fetal & Neonatal Medicine, 34, 3657-3661. https://doi.org/10.1080/14767058.2019.1689558
|
[24]
|
Shih, A.W., Bhagirath, V.C., Heddle, N.M., Acker, J.P., Liu, Y., Eikelboom, J.W., et al. (2016) Quantification of Cell-Free DNA in Red Blood Cell Units in Different Whole Blood Processing Methods. Journal of Blood Transfusion, 2016, Article ID: 9316385. https://doi.org/10.1155/2016/9316385
|
[25]
|
Burns, W., Koelper, N., Barberio, A., Deagostino-Kelly, M., Mennuti, M., Sammel, M.D., et al. (2017) The Association between Anticoagulation Therapy, Maternal Characteristics, and a Failed cfDNA Test Due to a Low Fetal Fraction. Prenatal Diagnosis, 37, 1125-1129. https://doi.org/10.1002/pd.5152
|
[26]
|
Ma, G., Wu, W., Lee, M., Lin, Y. and Chen, M. (2018) Low-Molecular-Weight Heparin Associated with Reduced Fetal Fraction and Subsequent False-Negative Cell-Free DNA Test Result for Trisomy 21. Ultrasound in Obstetrics & Gynecology, 51, 276-277. https://doi.org/10.1002/uog.17473
|
[27]
|
Hills, F.A., Abrahams, V.M., Gonzalez-Timon, B., Francis, J., Cloke, B., Hinkson, L., et al. (2006) Heparin Prevents Programmed Cell Death in Human Trophoblast. Molecular Human Reproduction, 12, 237-243. https://doi.org/10.1093/molehr/gal026
|
[28]
|
Shree, R., MacKinnon, H.J., Hannan, J., Kolarova, T.R., Reichel, J. and Lockwood, C.M. (2024) Anticoagulation Use Is Associated with Lower Fetal Fraction and More Indeterminate Results. American Journal of Obstetrics and Gynecology, 230, 95.e1-95.e10. https://doi.org/10.1016/j.ajog.2023.07.005
|
[29]
|
Nitsche, J.F., Lovell, D., Stephens, N., Conrad, S., Bebeau, K. and Brost, B.C. (2023) The Effects of Heparin, Aspirin, and Maternal Clinical Factors on the Rate of Nonreportable Cell-Free DNA Results: A Retrospective Cohort Study. American Journal of Obstetrics & Gynecology MFM, 5, Article ID: 100846. https://doi.org/10.1016/j.ajogmf.2022.100846
|
[30]
|
Wu, F., Tian, F. and Lin, Y. (2015) Oxidative Stress in Placenta: Health and Diseases. BioMed Research International, 2015, Article ID: 293271. https://doi.org/10.1155/2015/293271
|
[31]
|
Chen, L., Salafranca, M.N. and Mehta, J.L. (1997) Cyclooxygenase Inhibition Decreases Nitric Oxide Synthase Activity in Human Platelets. American Journal of Physiology-Heart and Circulatory Physiology, 273, H1854-H1859. https://doi.org/10.1152/ajpheart.1997.273.4.h1854
|
[32]
|
Bose, P., Black, S., Kadyrov, M., Weissenborn, U., Neulen, J., Regan, L., et al. (2005) Heparin and Aspirin Attenuate Placental Apoptosis in Vitro: Implications for Early Pregnancy Failure. American Journal of Obstetrics and Gynecology, 192, 23-30. https://doi.org/10.1016/j.ajog.2004.09.029
|
[33]
|
Kuhlmann‐Capek, M., Chiossi, G., Singh, P., Monsivais, L., Lozovyy, V., Gallagher, L., et al. (2019) Effects of Medication Intake in Early Pregnancy on the Fetal Fraction of Cell-Free DNA Testing. Prenatal Diagnosis, 39, 361-368. https://doi.org/10.1002/pd.5436
|
[34]
|
Becking, E.C., Wirjosoekarto, S.A.M., Scheffer, P.G., Huiskes, J.V.M., Remmelink, M.J., Sistermans, E.A., et al. (2021) Low Fetal Fraction in Cell-Free DNA Testing Is Associated with Adverse Pregnancy Outcome: Analysis of a Subcohort of the TRIDENT-2 Study. Prenatal Diagnosis, 41, 1296-1304. https://doi.org/10.1002/pd.6034
|
[35]
|
Poon, L.C.Y., Musci, T., Song, K., Syngelaki, A. and Nicolaides, K.H. (2013) Maternal Plasma Cell-Free Fetal and Maternal DNA at 11-13 Weeks’ Gestation: Relation to Fetal and Maternal Characteristics and Pregnancy Outcomes. Fetal Diagnosis and Therapy, 33, 215-223. https://doi.org/10.1159/000346806
|
[36]
|
Chen, P., Qiao, L., Zhang, S., Jin, J., Cao, J., Zhang, Y., et al. (2022) The Effect of Elevated Alanine Transaminase on Non-Invasive Prenatal Screening Failures. Frontiers in Medicine, 9, Article 875588. https://doi.org/10.3389/fmed.2022.875588
|
[37]
|
Qiao, L., Cao, X., Tang, H., Yu, Z., Shi, J., Xue, Y., et al. (2023) White Blood Cell Count Affects Fetal Fraction and Test Failure Rates in Noninvasive Prenatal Screening. Frontiers in Medicine, 10, Article 1088745. https://doi.org/10.3389/fmed.2023.1088745
|
[38]
|
Cao, J., Qiao, L., Jin, J., Zhang, S., Chen, P., Tang, H., et al. (2022) Lipid Metabolism Affects Fetal Fraction and Screen Failures in Non-Invasive Prenatal Testing. Frontiers in Medicine, 8, Article 811385. https://doi.org/10.3389/fmed.2021.811385
|
[39]
|
Zhang, Y., Qiao, L. and Wang, T. (2023) Influence of Thyroid Function on the Fetal Fraction During Second Trimester of Pregnancy. Chinese Journal of Medical Genetics, 40, 1191-1196.
|
[40]
|
Lo, Y.M.D., Tein, M.S.C., Lau, T.K., Haines, C.J., Leung, T.N., Poon, P.M.K., et al. (1998) Quantitative Analysis of Fetal DNA in Maternal Plasma and Serum: Implications for Noninvasive Prenatal Diagnosis. The American Journal of Human Genetics, 62, 768-775. https://doi.org/10.1086/301800
|
[41]
|
Lee, T.J., Rolnik, D.L., Menezes, M.A., McLennan, A.C. and da Silva Costa, F. (2018) Cell-Free Fetal DNA Testing in Singleton IVF Conceptions. Human Reproduction, 33, 572-578. https://doi.org/10.1093/humrep/dey033
|
[42]
|
Talbot, A.L., Ambye, L., Hartwig, T.S., Werge, L., Sørensen, S., Stormlund, S., et al. (2020) Fetal Fraction of Cell-Free DNA in Pregnancies after Fresh or Frozen Embryo Transfer Following Assisted Reproductive Technologies. Human Reproduction, 35, 1267-1275. https://doi.org/10.1093/humrep/deaa110
|
[43]
|
Herman, H.G., Tamayev, L., Feldstein, O., Bustan, M., Rachmiel, Z., Schreiber, L., et al. (2020) Placental-Related Disorders of Pregnancy and IVF: Does Placental Histological Examination Explain the Excess Risk? Reproductive BioMedicine Online, 41, 81-87. https://doi.org/10.1016/j.rbmo.2020.04.001
|
[44]
|
Hedriana, H., Martin, K., Saltzman, D., Billings, P., Demko, Z. and Benn, P. (2019) Cell-Free DNA Fetal Fraction in Twin Gestations in Single-Nucleotide Polymorphism-Based Noninvasive Prenatal Screening. Prenatal Diagnosis, 40, 179-184. https://doi.org/10.1002/pd.5609
|
[45]
|
Le Conte, G., Letourneau, A., Jani, J., Kleinfinger, P., Lohmann, L., Costa, J., et al. (2018) Cell-Free Fetal DNA Analysis in Maternal Plasma as Screening Test for Trisomies 21, 18 and 13 in Twin Pregnancy. Ultrasound in Obstetrics & Gynecology, 52, 318-324. https://doi.org/10.1002/uog.18838
|
[46]
|
Revello, R., Sarno, L., Ispas, A., Akolekar, R. and Nicolaides, K.H. (2016) Screening for Trisomies by Cell-Free DNA Testing of Maternal Blood: Consequences of a Failed Result. Ultrasound in Obstetrics & Gynecology, 47, 698-704. https://doi.org/10.1002/uog.15851
|
[47]
|
Pergament, E., Cuckle, H., Zimmermann, B., Banjevic, M., Sigurjonsson, S., Ryan, A., et al. (2014) Single-Nucleotide Polymorphism-Based Noninvasive Prenatal Screening in a High-Risk and Low-Risk Cohort. Obstetrics & Gynecology, 124, 210-218. https://doi.org/10.1097/aog.0000000000000363
|
[48]
|
Rava, R.P., Srinivasan, A., Sehnert, A.J. and Bianchi, D.W. (2014) Circulating Fetal Cell-Free DNA Fractions Differ in Autosomal Aneuploidies and Monosomy X. Clinical Chemistry, 60, 243-250. https://doi.org/10.1373/clinchem.2013.207951
|
[49]
|
Becking, E.C., Schuit, E., van Baar de Knegt, S.M.E., Sistermans, E.A., Henneman, L., Bekker, M.N., et al. (2023) Association between Low Fetal Fraction in Cell-Free DNA Screening and Fetal Chromosomal Aberrations: A Systematic Review and Meta-Analysis. Prenatal Diagnosis, 43, 838-853. https://doi.org/10.1002/pd.6366
|
[50]
|
Ashoor, G., Poon, L., Syngelaki, A., Mosimann, B. and Nicolaides, K.H. (2012) Fetal Fraction in Maternal Plasma Cell-Free DNA at 11-13 Weeks’ Gestation: Effect of Maternal and Fetal Factors. Fetal Diagnosis and Therapy, 31, 237-243. https://doi.org/10.1159/000337373
|
[51]
|
Hudecova, I., Sahota, D., Heung, M.M.S., Jin, Y., Lee, W.S., Leung, T.Y., et al. (2014) Maternal Plasma Fetal DNA Fractions in Pregnancies with Low and High Risks for Fetal Chromosomal Aneuploidies. PLOS ONE, 9, e88484. https://doi.org/10.1371/journal.pone.0088484
|
[52]
|
Warton, K., Yuwono, N.L., Cowley, M.J., McCabe, M.J., So, A. and Ford, C.E. (2017) Evaluation of Streck BCT and Paxgene Stabilised Blood Collection Tubes for Cell-Free Circulating DNA Studies in Plasma. Molecular Diagnosis & Therapy, 21, 563-570. https://doi.org/10.1007/s40291-017-0284-x
|
[53]
|
Fernando, M.R., Chen, K., Norton, S., Krzyzanowski, G., Bourne, D., Hunsley, B., et al. (2010) A New Methodology to Preserve the Original Proportion and Integrity of Cell-Free Fetal DNA in Maternal Plasma during Sample Processing and Storage. Prenatal Diagnosis, 30, 418-424. https://doi.org/10.1002/pd.2484
|
[54]
|
Wong, D., Moturi, S., Angkachatchai, V., Mueller, R., DeSantis, G., van den Boom, D., et al. (2013) Optimizing Blood Collection, Transport and Storage Conditions for Cell Free DNA Increases Access to Prenatal Testing. Clinical Biochemistry, 46, 1099-1104. https://doi.org/10.1016/j.clinbiochem.2013.04.023
|
[55]
|
Hidestrand, M., Stokowski, R., Song, K., Oliphant, A., Deavers, J., Goetsch, M., et al. (2012) Influence of Temperature during Transportation on Cell-Free DNA Analysis. Fetal Diagnosis and Therapy, 31, 122-128. https://doi.org/10.1159/000335020
|
[56]
|
Legler, T.J., Liu, Z., Mavrou, A., Finning, K., Hromadnikova, I., Galbiati, S., et al. (2007) Workshop Report on the Extraction of Foetal DNA from Maternal Plasma. Prenatal Diagnosis, 27, 824-829. https://doi.org/10.1002/pd.1783
|
[57]
|
Qiao, L., Mao, J., Liu, M., Liu, Y., Song, X., Tang, H., et al. (2019) Experimental Factors Are Associated with Fetal Fraction in Size Selection Noninvasive Prenatal Testing. American Journal of Translational Research, 11, 6370-6381
|
[58]
|
Shi, J., Zhang, R., Li, J. and Zhang, R. (2020) Size Profile of Cell-Free DNA: A Beacon Guiding the Practice and Innovation of Clinical Testing. Theranostics, 10, 4737-4748. https://doi.org/10.7150/thno.42565
|
[59]
|
Qiao, L., Yu, B., Liang, Y., Zhang, C., Wu, X., Xue, Y., et al. (2019) Sequencing Shorter cfDNA Fragments Improves the Fetal DNA Fraction in Noninvasive Prenatal Testing. American Journal of Obstetrics and Gynecology, 221, 345.e1-345.e11. https://doi.org/10.1016/j.ajog.2019.05.023
|
[60]
|
Chiu, R.W.K., Akolekar, R., Zheng, Y.W.L., Leung, T.Y., Sun, H., Chan, K.C.A., et al. (2011) Non-Invasive Prenatal Assessment of Trisomy 21 by Multiplexed Maternal Plasma DNA Sequencing: Large Scale Validity Study. BMJ, 342, c7401. https://doi.org/10.1136/bmj.c7401
|
[61]
|
Chu, T., Bunce, K., Hogge, W.A. and Peters, D.G. (2010) A Novel Approach toward the Challenge of Accurately Quantifying Fetal DNA in Maternal Plasma. Prenatal Diagnosis, 30, 1226-1229. https://doi.org/10.1002/pd.2656
|
[62]
|
Straver, R., Oudejans, C.B.M., Sistermans, E.A. and Reinders, M.J.T. (2016) Calculating the Fetal Fraction for Noninvasive Prenatal Testing Based on Genome-Wide Nucleosome Profiles. Prenatal Diagnosis, 36, 614-621. https://doi.org/10.1002/pd.4816
|
[63]
|
Peng, X. and Jiang, P. (2017) Bioinformatics Approaches for Fetal DNA Fraction Estimation in Noninvasive Prenatal Testing. International Journal of Molecular Sciences, 18, Article 453. https://doi.org/10.3390/ijms18020453
|
[64]
|
Gerson, K.D., Truong, S., Haviland, M.J., O’Brien, B.M., Hacker, M.R. and Spiel, M.H. (2019) Low Fetal Fraction of Cell-Free DNA Predicts Placental Dysfunction and Hypertensive Disease in Pregnancy. Pregnancy Hypertension, 16, 148-153. https://doi.org/10.1016/j.preghy.2019.04.002
|
[65]
|
Krishna, I., Badell, M., Loucks, T.L., Lindsay, M. and Samuel, A. (2016) Adverse Perinatal Outcomes Are More Frequent in Pregnancies with a Low Fetal Fraction Result on Noninvasive Prenatal Testing. Prenatal Diagnosis, 36, 210-215. https://doi.org/10.1002/pd.4779
|
[66]
|
Garovic, V.D., Dechend, R., Easterling, T., Karumanchi, S.A., McMurtry Baird, S., Magee, L.A., et al. (2022) Hypertension in Pregnancy: Diagnosis, Blood Pressure Goals, and Pharmacotherapy: A Scientific Statement from the American Heart Association. Hypertension, 79, e21-e41. https://doi.org/10.1161/hyp.0000000000000208
|
[67]
|
Staff, A.C., Fjeldstad, H.E., Fosheim, I.K., Moe, K., Turowski, G., Johnsen, G.M., et al. (2022) Failure of Physiological Transformation and Spiral Artery Atherosis: Their Roles in Preeclampsia. American Journal of Obstetrics and Gynecology, 226, S895-S906. https://doi.org/10.1016/j.ajog.2020.09.026
|
[68]
|
Varberg, K.M. and Soares, M.J. (2021) Paradigms for Investigating Invasive Trophoblast Cell Development and Contributions to Uterine Spiral Artery Remodeling. Placenta, 113, 48-56. https://doi.org/10.1016/j.placenta.2021.04.012
|
[69]
|
Madala, D., Maktabi, M.A., Sabbagh, R., Erfani, H., Moon, A. and Van den Veyver, I.B. (2022) Lower Fetal Fraction in Clinical Cell-Free DNA Screening Results Is Associated with Increased Risk of Hypertensive Disorders of Pregnancy. Prenatal Diagnosis, 42, 1253-1261. https://doi.org/10.1002/pd.6221
|
[70]
|
Becking, E.C., Scheffer, P.G., Henrichs, J., Bax, C.J., Crombag, N.M.T.H., Weiss, M.M., et al. (2023) Fetal Fraction of Cell-Free DNA in Noninvasive Prenatal Testing and Adverse Pregnancy Outcomes: A Nationwide Retrospective Cohort Study of 56, 110 Pregnant Women. American Journal of Obstetrics and Gynecology, 231, 244.e1-244.e18. https://10.1016/j.ajog.2023.12.008
|
[71]
|
Jiang, Y., Zhang, Y., Yang, Q., Zeng, D., Zhao, K., Ma, X., et al. (2022) The Association between Fetal Fraction and Pregnancy-Related Complications among Chinese Population. PLOS ONE, 17, e0271219. https://doi.org/10.1371/journal.pone.0271219
|
[72]
|
Yuan, X., Zhou, L., Zhang, B., Wang, H., Yu, B. and Xu, J. (2020) Association between Low Fetal Fraction of Cell Free DNA at the Early Second-Trimester and Adverse Pregnancy Outcomes. Pregnancy Hypertension, 22, 101-108. https://doi.org/10.1016/j.preghy.2020.07.015
|
[73]
|
Chan, N., Smet, M., Sandow, R., da Silva Costa, F. and McLennan, A. (2017) Implications of Failure to Achieve a Result from Prenatal Maternal Serum Cell-Free DNA Testing: A Historical Cohort Study. BJOG: An International Journal of Obstetrics & Gynaecology, 125, 848-855. https://doi.org/10.1111/1471-0528.15006
|
[74]
|
Gourvas, V., Dalpa, E., Konstantinidou, A., Vrachnis, N., Spandidos, D.A. and Sifakis, S. (2012) Angiogenic Factors in Placentas from Pregnancies Complicated by Fetal Growth Restriction (Review). Molecular Medicine Reports, 6, 23-27.
|
[75]
|
Cetin, I., Foidart, J., Miozzo, M., Raun, T., Jansson, T., Tsatsaris, V., et al. (2004) Fetal Growth Restriction: A Workshop Report. Placenta, 25, 753-757. https://doi.org/10.1016/j.placenta.2004.02.004
|
[76]
|
Rolnik, D.L., da Silva Costa, F., Lee, T.J., Schmid, M. and McLennan, A.C. (2018) Association between Fetal Fraction on Cell-Free DNA Testing and First-Trimester Markers for Pre-Eclampsia. Ultrasound in Obstetrics & Gynecology, 52, 722-727. https://doi.org/10.1002/uog.18993
|
[77]
|
Morano, D., Rossi, S., Lapucci, C., Pittalis, M.C. and Farina, A. (2018) Cell-Free DNA (cfDNA) Fetal Fraction in Early-and Late-Onset Fetal Growth Restriction. Molecular Diagnosis & Therapy, 22, 613-619. https://doi.org/10.1007/s40291-018-0353-9
|
[78]
|
Li, J., Gu, X., Wei, Y., Tao, Y., Zhai, B., Peng, C., et al. (2022) Correlation of Low Fetal Fraction of Cell-Free DNA at the Early Second-Trimester and Pregnancy Complications Related to Placental Dysfunction in Twin Pregnancy. Frontiers in Medicine, 9, Article 1011366. https://doi.org/10.3389/fmed.2022.1011366
|
[79]
|
Clapp, M.A., Berry, M., Shook, L.L., Roberts, P.S., Goldfarb, I.T. and Bernstein, S.N. (2019) Low Fetal Fraction and Birth Weight in Women with Negative First-Trimester Cell-Free DNA Screening. American Journal of Perinatology, 37, 86-91. https://doi.org/10.1055/s-0039-1700860
|
[80]
|
Goldenberg, R.L., Culhane, J.F., Iams, J.D. and Romero, R. (2008) Epidemiology and Causes of Preterm Birth. The Lancet, 371, 75-84. https://doi.org/10.1016/s0140-6736(08)60074-4
|
[81]
|
Morgan, T. (2016) Role of the Placenta in Preterm Birth: A Review. American Journal of Perinatology, 33, 258-266. https://doi.org/10.1055/s-0035-1570379
|
[82]
|
Zou, Y., Xie, H., Hu, J., Cui, L., Liu, G., Wang, L., et al. (2022) The Low Fetal Fraction at the First Trimester Is Associated with Adverse Pregnancy Outcomes in IVF Singleton Pregnancies with Single Embryo Transfer from Frozen Cycles. Journal of Assisted Reproduction and Genetics, 39, 1603-1610. https://doi.org/10.1007/s10815-022-02488-y
|
[83]
|
Luo, Y., Xu, L., Ma, Y., Yan, X., Hou, R., Huang, Y., et al. (2023) Association between the First and Second Trimester Cell Free DNA Fetal Fraction and Spontaneous Preterm Birth. Expert Review of Molecular Diagnostics, 23, 635-642. https://doi.org/10.1080/14737159.2023.2217331
|
[84]
|
Dugoff, L., Barberio, A., Whittaker, P.G., Schwartz, N., Sehdev, H. and Bastek, J.A. (2016) Cell-Free DNA Fetal Fraction and Preterm Birth. American Journal of Obstetrics and Gynecology, 215, 231.e1-231.e7. https://doi.org/10.1016/j.ajog.2016.02.009
|
[85]
|
Plows, J.F., Stanley, J.L., Baker, P.N., Reynolds, C.M. and Vickers, M.H. (2018) The Pathophysiology of Gestational Diabetes Mellitus. International Journal of Molecular Sciences, 19, Article 3342. https://doi.org/10.3390/ijms19113342
|
[86]
|
Gauster, M., Desoye, G., Tötsch, M. and Hiden, U. (2011) The Placenta and Gestational Diabetes Mellitus. Current Diabetes Reports, 12, 16-23. https://doi.org/10.1007/s11892-011-0244-5
|
[87]
|
Hopkins, M.K., Koelper, N., Bender, W., Durnwald, C., Sammel, M. and Dugoff, L. (2020) Association between Cell-Free DNA Fetal Fraction and Gestational Diabetes. Prenatal Diagnosis, 40, 724-727. https://doi.org/10.1002/pd.5671
|