|
[1]
|
Kaplan, G.G. (2015) The Global Burden of IBD: From 2015 to 2025. Nature Reviews Gastroenterology & Hepatology, 12, 720-727. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ott, C. and Schölmerich, J. (2013) Extraintestinal Manifestations and Complications in IBD. Nature Reviews Gastroenterology & Hepatology, 10, 585-595. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Sigurdsson, G.V., Schmidt, S., Mellström, D., Ohlsson, C., Saalman, R. and Lorentzon, M. (2022) Young Adult Male Patients with Childhood-Onset IBD Have Increased Risks of Compromised Cortical and Trabecular Bone Microstructures. Inflammatory Bowel Diseases, 29, 1065-1072. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Oostlander, A.E., Bravenboer, N., Sohl, E., Holzmann, P.J., van der Woude, C.J., Dijkstra, G., et al. (2011) Histomorphometric Analysis Reveals Reduced Bone Mass and Bone Formation in Patients with Quiescent Crohn’s Disease. Gastroenterology, 140, 116-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Argollo, M., Gilardi, D., Peyrin-Biroulet, C., Chabot, J., Peyrin-Biroulet, L. and Danese, S. (2019) Comorbidities in Inflammatory Bowel Disease: A Call for Action. The Lancet Gastroenterology & Hepatology, 4, 643-654. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Peek, C.T., Ford, C.A., Eichelberger, K.R., Jacobse, J., Torres, T.P., Maseda, D., et al. (2022) Intestinal Inflammation Promotes MDL-1+ Osteoclast Precursor Expansion to Trigger Osteoclastogenesis and Bone Loss. Cellular and Molecular Gastroenterology and Hepatology, 14, 731-750. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Massironi, S., Viganò, C., Palermo, A., Pirola, L., Mulinacci, G., Allocca, M., et al. (2023) Inflammation and Malnutrition in Inflammatory Bowel Disease. The Lancet Gastroenterology & Hepatology, 8, 579-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bruscoli, S., Febo, M., Riccardi, C. and Migliorati, G. (2021) Glucocorticoid Therapy in Inflammatory Bowel Disease: Mechanisms and Clinical Practice. Frontiers in Immunology, 12, Article ID: 691480. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhao, Y., Peng, X., Wang, Q., Zhang, Z., Wang, L., Xu, Y., et al. (2023) Crosstalk between the Neuroendocrine System and Bone Homeostasis. Endocrine Reviews, 45, 95-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bolamperti, S., Villa, I. and Rubinacci, A. (2022) Bone Remodeling: An Operational Process Ensuring Survival and Bone Mechanical Competence. Bone Research, 10, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ponzetti, M. and Rucci, N. (2021) Osteoblast Differentiation and Signaling: Established Concepts and Emerging Topics. International Journal of Molecular Sciences, 22, Article No. 6651. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Teitelbaum, S.L. (2000) Bone Resorption by Osteoclasts. Science, 289, 1504-1508. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hegarty, L.M., Jones, G. and Bain, C.C. (2023) Macrophages in Intestinal Homeostasis and Inflammatory Bowel Disease. Nature Reviews Gastroenterology & Hepatology, 20, 538-553. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Peterson, L.W. and Artis, D. (2014) Intestinal Epithelial Cells: Regulators of Barrier Function and Immune Homeostasis. Nature Reviews Immunology, 14, 141-153. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Dang, A.T. and Marsland, B.J. (2019) Microbes, Metabolites, and the Gut-Lung Axis. Mucosal Immunology, 12, 843-850. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Merlotti, D., Mingiano, C., Valenti, R., Cavati, G., Calabrese, M., Pirrotta, F., et al. (2022) Bone Fragility in Gastrointestinal Disorders. International Journal of Molecular Sciences, 23, Article No. 2713. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Tilg, H., Moschen, A.R., Kaser, A., Pines, A. and Dotan, I. (2008) Gut, Inflammation and Osteoporosis: Basic and Clinical Concepts. Gut, 57, 684-694. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ünal, N.G., Oruç, N., Tomey, O. and Ömer Özütemiz, A. (2021) Malnutrition and Sarcopenia Are Prevalent among Inflammatory Bowel Disease Patients with Clinical Remission. European Journal of Gastroenterology & Hepatology, 33, 1367-1375. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Gold, S.L., Rabinowitz, L.G., Manning, L., Keefer, L., Rivera-Carrero, W., Stanley, S., et al. (2022) High Prevalence of Malnutrition and Micronutrient Deficiencies in Patients with Inflammatory Bowel Disease Early in Disease Course. Inflammatory Bowel Diseases, 29, 423-429. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Balestrieri, P., Ribolsi, M., Guarino, M.P.L., Emerenziani, S., Altomare, A. and Cicala, M. (2020) Nutritional Aspects in Inflammatory Bowel Diseases. Nutrients, 12, Article No. 372. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yakut, M., Üstün, Y., Kabaçam, G. and Soykan, I. (2010) Serum Vitamin B12 and Folate Status in Patients with Inflammatory Bowel Diseases. European Journal of Internal Medicine, 21, 320-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Burrelli Scotti, G., Afferri, M.T., De Carolis, A., Vaiarello, V., Fassino, V., Ferrone, F., et al. (2019) Factors Affecting Vitamin D Deficiency in Active Inflammatory Bowel Diseases. Digestive and Liver Disease, 51, 657-662. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Massironi, S., Rossi, R.E., Cavalcoli, F.A., Della Valle, S., Fraquelli, M. and Conte, D. (2013) Nutritional Deficiencies in Inflammatory Bowel Disease: Therapeutic Approaches. Clinical Nutrition, 32, 904-910. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Winzenberg, T., Shaw, K., Fryer, J. and Jones, G. (2006) Effects of Calcium Supplementation on Bone Density in Healthy Children: Meta-Analysis of Randomised Controlled Trials. BMJ, 333, Article No. 775. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lloyd, T. (1993) Calcium Supplementation and Bone Mineral Density in Adolescent Girls. JAMA: The Journal of the American Medical Association, 270, 841-844. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Winzenberg, T.M., Shaw, K., Fryer, J. and Jones, G. (2006) Calcium Supplementation for Improving Bone Mineral Density in Children. Cochrane Database of Systematic Reviews, No. 2, CD005119.
|
|
[27]
|
Chevalley, T., Rizzoli, R., Hans, D., Ferrari, S. and Bonjour, J. (2005) Interaction between Calcium Intake and Menarcheal Age on Bone Mass Gain: An Eight-Year Follow-Up Study from Prepuberty to Postmenarche. The Journal of Clinical Endocrinology & Metabolism, 90, 44-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Arnold, A., Dennison, E., Kovacs, C.S., Mannstadt, M., Rizzoli, R., Brandi, M.L., et al. (2021) Hormonal Regulation of Biomineralization. Nature Reviews Endocrinology, 17, 261-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Orchard, T.S., Larson, J.C., Alghothani, N., Bout-Tabaku, S., Cauley, J.A., Chen, Z., et al. (2014) Magnesium Intake, Bone Mineral Density, and Fractures: Results from the Women’s Health Initiative Observational Study. The American Journal of Clinical Nutrition, 99, 926-933. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Rizzoli, R., Biver, E. and Brennan-Speranza, T.C. (2021) Nutritional Intake and Bone Health. The Lancet Diabetes & Endocrinology, 9, 606-621. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ebeling, P.R., Adler, R.A., Jones, G., Liberman, U.A., Mazziotti, G., Minisola, S., et al. (2018) Management of Endocrine Disease: Therapeutics of Vitamin D. European Journal of Endocrinology, 179, R239-R259. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Yao, P., Bennett, D., Mafham, M., Lin, X., Chen, Z., Armitage, J., et al. (2019) Vitamin D and Calcium for the Prevention of Fracture: A Systematic Review and Meta-Analysis. JAMA Network Open, 2, e1917789. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wang, J., Zhu, Q., Cao, D., Peng, Q., Zhang, X., Li, C., et al. (2022) Bone Marrow-Derived IGF-1 Orchestrates Maintenance and Regeneration of the Adult Skeleton. Proceedings of the National Academy of Sciences, 120, e2203779120. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Leppkes, M. and Neurath, M.F. (2020) Cytokines in Inflammatory Bowel Diseases—Update 2020. Pharmacological Research, 158, Article ID: 104835. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Hügle, B., Speth, F. and Haas, J. (2017) Inflammatory Bowel Disease Following Anti-Interleukin-1-Treatment in Systemic Juvenile Idiopathic Arthritis. Pediatric Rheumatology, 15, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wirtz, S., Popp, V., Kindermann, M., Gerlach, K., Weigmann, B., Fichtner-Feigl, S., et al. (2017) Chemically Induced Mouse Models of Acute and Chronic Intestinal Inflammation. Nature Protocols, 12, 1295-1309. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Guo, J., Wang, F., Hu, Y., Luo, Y., Wei, Y., Xu, K., et al. (2023) Exosome-Based Bone-Targeting Drug Delivery Alleviates Impaired Osteoblastic Bone Formation and Bone Loss in Inflammatory Bowel Diseases. Cell Reports Medicine, 4, Article ID: 100881. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Dresner-Pollak, R., Gelb, N., Rachmilewitz, D., Karmeli, F. and Weinreb, M. (2004) Interleukin 10-Deficient Mice Develop Osteopenia, Decreased Bone Formation, and Mechanical Fragility of Long Bones. Gastroenterology, 127, 792-801. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Al Saedi, A., Sharma, S., Bani Hassan, E., Chen, L., Ghasem-Zadeh, A., Hassanzadeganroudsari, M., et al. (2021) Characterization of Skeletal Phenotype and Associated Mechanisms with Chronic Intestinal Inflammation in the Winnie Mouse Model of Spontaneous Chronic Colitis. Inflammatory Bowel Diseases, 28, 259-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Metzger, C.E., Narayanan, S.A., Elizondo, J.P., Carter, A.M., Zawieja, D.C., Hogan, H.A., et al. (2019) DSS-Induced Colitis Produces Inflammation-Induced Bone Loss While Irisin Treatment Mitigates the Inflammatory State in Both Gut and Bone. Scientific Reports, 9, Article No. 15144. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Stanisławowski, M., Wiśniewski, P., Guzek, M., Wierzbicki, P.M., Adrych, K., Smoczyński, M., et al. (2014) Influence of Receptor Activator of Nuclear Factor Kappa B Ligand, Osteoprotegerin and Interleukin-33 on Bone Metabolism in Patients with Long-Standing Ulcerative Colitis. Journal of Crohn’s and Colitis, 8, 802-810. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Spohn, S.N. and Mawe, G.M. (2017) Non-Conventional Features of Peripheral Serotonin Signalling—The Gut and Beyond. Nature Reviews Gastroenterology & Hepatology, 14, 412-420. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Yadav, V.K., Oury, F., Suda, N., Liu, Z., Gao, X., Confavreux, C., et al. (2009) A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure. Cell, 138, 976-989. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Gong, Y., Slee, R.B., Fukai, N., Rawadi, G., Roman-Roman, S., Reginato, A.M., et al. (2001) LDL Receptor-Related Protein 5 (LRP5) Affects Bone Accrual and Eye Development. Cell, 107, 513-523. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Yadav, V.K., Ryu, J., Suda, N., Tanaka, K.F., Gingrich, J.A., Schütz, G., et al. (2008) Lrp5 Controls Bone Formation by Inhibiting Serotonin Synthesis in the Duodenum. Cell, 135, 825-837. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Erspamer, V. and Asero, B. (1952) Identification of Enteramine, the Specific Hormone of the Enterochromaffin Cell System, as 5-Hydroxytryptamine. Nature, 169, 800-801. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Kode, A., Mosialou, I., Silva, B.C., Rached, M., Zhou, B., Wang, J., et al. (2012) FOXO1 Orchestrates the Bone-Suppressing Function of Gut-Derived Serotonin. Journal of Clinical Investigation, 122, 3490-3503. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Lavoie, B., Roberts, J.A., Haag, M.M., Spohn, S.N., Margolis, K.G., Sharkey, K.A., et al. (2019) Gut-Derived Serotonin Contributes to Bone Deficits in Colitis. Pharmacological Research, 140, 75-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Chen, Z., Luo, J., Li, J., Kim, G., Stewart, A., Urban, J.F., et al. (2021) Interleukin-33 Promotes Serotonin Release from Enterochromaffin Cells for Intestinal Homeostasis. Immunity, 54, 151-163.e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Chabbi-Achengli, Y., Coudert, A.E., Callebert, J., Geoffroy, V., Côté, F., Collet, C., et al. (2012) Decreased Osteoclastogenesis in Serotonin-Deficient Mice. Proceedings of the National Academy of Sciences, 109, 2567-2572. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Grüner, N., Ortlepp, A.L. and Mattner, J. (2023) Pivotal Role of Intestinal Microbiota and Intraluminal Metabolites for the Maintenance of Gut-bone Physiology. International Journal of Molecular Sciences, 24, Article No. 5161. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Sternes, P.R., Brett, L., Phipps, J., Ciccia, F., Kenna, T., de Guzman, E., et al. (2022) Distinctive Gut Microbiomes of Ankylosing Spondylitis and Inflammatory Bowel Disease Patients Suggest Differing Roles in Pathogenesis and Correlate with Disease Activity. Arthritis Research & Therapy, 24, Article No. 163. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Sjögren, K., Engdahl, C., Henning, P., Lerner, U.H., Tremaroli, V., Lagerquist, M.K., et al. (2012) The Gut Microbiota Regulates Bone Mass in Mice. Journal of Bone and Mineral Research, 27, 1357-1367. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Yan, J., Herzog, J.W., Tsang, K., Brennan, C.A., Bower, M.A., Garrett, W.S., et al. (2016) Gut Microbiota Induce IGF-1 and Promote Bone Formation and Growth. Proceedings of the National Academy of Sciences, 113, E7554-E7563. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Liang, B., Burley, G., Lin, S. and Shi, Y. (2022) Osteoporosis Pathogenesis and Treatment: Existing and Emerging Avenues. Cellular & Molecular Biology Letters, 27, Article No. 72. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Song, S., Guo, Y., Yang, Y. and Fu, D. (2022) Advances in Pathogenesis and Therapeutic Strategies for Osteoporosis. Pharmacology & Therapeutics, 237, Article ID: 108168. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Yadav, V.K., Balaji, S., Suresh, P.S., Liu, X.S., Lu, X., Li, Z., et al. (2010) Pharmacological Inhibition of Gut-Derived Serotonin Synthesis Is a Potential Bone Anabolic Treatment for Osteoporosis. Nature Medicine, 16, 308-312. [Google Scholar] [CrossRef] [PubMed]
|