基于网络药理学探讨斑蝥素复方抗NSCLC的分子机制研究
Study on Molecular Mechanism of Compound Cantharidin against NSCLC Based on Network Pharmacology
DOI: 10.12677/tcm.2024.1310412, PDF, HTML, XML,    科研立项经费支持
作者: 沙宗阁, 张 伟, 唐文超, 杨 欣, 杨长福:贵州中医药大学基础医学院,贵州 贵阳
关键词: 非小细胞肺癌艾迪注射液斑蝥素网络药理学Non-Small Cell Lung Cancer Eddie Injection Cantharidin Network Pharmacology
摘要: 目的:基于网络药理学分析艾迪注射液抗NSCLC关键靶点和信号通路探讨其潜在的作用机制。方法:应用TCMSP数据库及TCMID数据库分别检索艾迪注射液中四味药物斑蝥、黄芪、人参、刺五加的化学成分及其对应的靶点,检索GEO数据库中NSCLC的潜在靶点,利用Perl将药物成分、成分靶点、疾病靶点等文件融合,通过PPI网络的拓扑结构分析能够发现其中的关键蛋白及其相互关系,利用clusterProfiler程辑包[100]进行GO及KEGG富集分析。结果:通过网络药理学分析,获取艾迪注射液的化学成分有51个,将化学成分靶点与疾病靶点取交集后得到81个艾迪治疗NSCLC的靶点,证明艾迪的抗肿瘤作用是通过多成分–多靶点的途径实现的。成分–靶点网路图的拓扑分析显示槲皮素、山柰酚、7-O-甲基异微凸剑叶莎醇、异鼠李素、豆甾醇等度值较高,可能为艾迪有效成分中的关键药效物质,靶点方面PTGS2、ADRB2、ALOX5等度值较高,可能作为艾迪抗NSCLC的重要靶点。结论:本研究初步探明了艾迪注射液抗NSCLC的化学成分、靶点通路及相互作用关系。艾迪中抗NSCLC的关键成分为槲皮素、山柰酚、异鼠李素、豆甾醇等,主要是通过抗氧化、抑制EMT、调节金属离子及类固醇激素应答、促进肿瘤细胞凋亡等方式来发挥抗癌作用。
Abstract: Objective: To analyze the key targets and signaling pathways of Aidi injection against NSCLC based on network pharmacology to explore its potential mechanism of action. Methods: The TCMSP database and TCMID database were used to search the chemical constituents and their corresponding targets of the four drugs Zanthoxylum, Astragalus, Ginseng and Acanthopanax in Aidi injection, and to search the potential targets of NSCLC in the GEO database, and the files of drug constituents, constituent targets and disease targets were fused by using Perl, and the key protein and their interrelationships could be found through the topology analysis of the PPI network. Key proteins and their interrelationships were identified by topological analysis of the PPI network, and GO and KEGG enrichment analyses were carried out using the cluster Profiler program package [100]. Results: Through the network pharmacology analysis, 51 chemical components of Aidi injection were obtained, and 81 targets of Aidi for NSCLC were obtained after taking the intersection of chemical component targets and disease targets, which proved that the antitumor effect of Aidi was realized through the multi-component-multi-target pathway. The topological analysis of the component-target network diagram showed that quercetin, kaempferol, 7-O-methylisocamptothecin, isorhamnetin, and stigmasterol had higher degree values, which might be the key pharmacodynamic substances in the active ingredients of Aidi, and the targets of PTGS2, ADRB2, and ALOX5 had higher degree values, which might be the important targets of Aidi for the anti-NSCLC. Conclusion: This study preliminarily investigated the chemical composition, target pathway and interaction relationship of anti-NSCLC in Aidi injection. The key anti-NSCLC components in Aidi are quercetin, kaempferol, isorhamnetin, and stigmasterol, which mainly exert their anticancer effects through antioxidant, EMT inhibition, modulation of metal ions and steroid hormone response, and promotion of tumor cell apoptosis.
文章引用:沙宗阁, 张伟, 唐文超, 杨欣, 杨长福. 基于网络药理学探讨斑蝥素复方抗NSCLC的分子机制研究[J]. 中医学, 2024, 13(10): 2760-2773. https://doi.org/10.12677/tcm.2024.1310412

1. 引言

肺癌是一种严重威胁人类健康的疾病,预后较差,每年造成全球约160万人死亡。从组织学亚型来区分,约85%的肺癌患者所罹患的为非小细胞肺癌(non-small cell lung cancer, NSCLC),其中又以肺腺癌(Lung adenocarcinoma, LUAD)及肺鳞状细胞癌(Lung squamous cell carcinoma, LUSC)多见。目前,肺癌的治疗手段主要为手术及放、化疗,但患者往往面临错过手术时机和(或)对放、化疗不耐受等问题,即便近几年新兴的靶向治疗手段也存在弊端。如果肺癌未能及时发现,可能会持续生长和扩散。当肿瘤侵犯重要器官、大血管或发生广泛转移时,手术难度极大甚至无法进行手术。局部晚期肺癌可能因肿瘤与周围组织粘连严重,也不具备手术指征。除了肿瘤本身的因素外,患者的身体状况也可能导致错过手术时机。一些患有严重心肺疾病、肝肾功能不全等基础疾病的患者,可能无法承受手术的创伤。另外不同患者对放、化疗的耐受性存在很大差异。有些患者可能因为身体虚弱、免疫力低下等原因,对放、化疗的副作用特别敏感,无法承受治疗的强度。因此,挖掘NSCLC预后相关基因不仅对临床诊断有益,也有助于监测疗效。中医药凭借其独有的系统理论往往能在肿瘤等疑难杂症的治疗中大放异彩,中药及其复方含有多种成分,意味着它们能从多靶点、多途径发挥抗癌作用,但另一面,由于药物成分复杂,它们的作用机制、作用通路也难以用传统的实验方法来揭示和阐述,因此,药物成分众多、作用机制复杂是运用中医药的正反两面利弊。艾迪注射液是一种具有广谱抗癌效力的中药复方注射剂,由斑蝥、刺五加、黄芪、人参四味中药组成,全方具有清热解毒、消瘀散结之功效,被广泛运用于临床多种肿瘤的治疗中,然而其抗癌机制尚未被人们了解。网络药理学脱胎于系统生物学,其核心理念是从构建“成分–靶点–疾病”的互作网络来多层次、多角度地阐述药物治病的机制,这门学科的系统观念与中医的整体观念有相似的意味,因此,应用网络药理学来解释中药及其复方的作用机制是很贴合的。

2. 实验材料

TCMSP (Traditional Chinese Medicine Systems Pharmacology Database, http://www.tcmspw.com/tcmsp.php)数据库,TCMID (Traditional Chinese Medicine Integrated Database, http://119.3.41.228:8000/tcmid/)数据库[1],Swiss Target Prediction (http://old.swisstargetprediction.ch/)数据库[2],STRING数据库(version11.0, https://string-db.org/) [3],Chem 3D软件(version 18.0),脚本编程语言Perl, R语言(version3.6.3),RStudio (version1.2.5033),Cytoscape软件(version 3.7.2)。

3. 方法与结果

3.1 药物成分及其靶点筛选

应用TCMSP数据库及TCMID数据库分别检索艾迪注射液中四味药物斑蝥、黄芪、人参、刺五加的化学成分,并按照口服生物利用度(oral bioavailability, OB) 30%,类药性(drug like, DL) 0.18进行过滤,虽然艾迪为注射液,但或许可以从其中提取出有效成分后制备为口服剂,故也将口服利用度纳入筛选标准,另考虑到有些分子因不满足过滤条件而被剔除,但存在实验能证明其有效性,故亦将该分子纳入候选组分。利用Swiss Target Prediction及TCMSP进行靶点预测。下载各分子的MOL2结构,将其导入Chem 3D软件以生成SMILES分子式,然后将SMILES复制粘贴至Swiss Targe Prediction,以进行分子的靶点预测,物种选择人类,其他选项保持默认设置。

从TCMSP数据库保存的符合过滤条件的成分化合物共45个,其中斑蝥1个,刺五加3个,黄芪19个,人参20个,2个成分为多个药物共有。另据查阅读文献,发现斑蝥中的成分oleic acid、norcantharidin、cantharidin,刺五加中的成分ciwujianoside c1、ciwujianoside d1、ciwujiatone,虽然不符合过滤条件,但仍具有其药用价值,故一并纳入成分筛选[4]-[12]。故本次筛选共获得51个药物成分化合物(见表1)。对成分靶点进行筛选,对重复数据只保留一个,共获得靶点1428个,其中斑蝥94个,刺五加144个,黄芪681个,人参509个。

Table 1. Basic information of effective components of Aidi injection

1. 艾迪注射液有效成分基本信息

化合物名称

MOL ID

OB (%)

DL

来源

oleic acid

MOL001308

33.13

0.14

斑蝥

3-phenyl-4-azafluorene

MOL001851

32.90

0.23

斑蝥

cantharidin

MOL001858

51.23

0.10

斑蝥

norcantharidin

MOL001857

97.71

0.07

斑蝥

ciwujianoside c1

刺五加

ciwujianoside d1

刺五加

ciwujiatone

刺五加

(+)-eudesmin

MOL009047

33.39

0.63

刺五加

beta-sitosterol

MOL000358

36.91

0.75

刺五加/人参

ethyl linoleate (mandenol)

MOL001494

42

0.19

刺五加

(24E)-24-N-Propylidenecholesterol (Fucosterol)

MOL009622

43.78

0.76

刺五加

1,7-Dihydroxy-3,9-dimethoxy pterocarpene

MOL000442

39.05

0.48

黄芪

isomucronulatol-7,2'-di-O-glucosiole

MOL000439

49.28

0.62

黄芪

(3R)-3-(2-hydroxy-3,4-dimethoxyphenyl)chroman-7-ol

MOL000438

67.67

0.26

黄芪

(2S)-2-[[4-[(2-Amino-4-oxo-1H-pteridin-6-yl)methylamino]benzoyl]amino]pentanedioic acid (FA)

MOL000433

68.96

0.71

黄芪

kaempferol

MOL000422

41.88

0.24

黄芪/人参

calycosin

MOL000417

47.75

0.24

黄芪

isoflavanone

MOL000398

109.99

0.3

黄芪

formononetin

MOL000392

69.67

0.21

黄芪

bifendate

MOL000387

31.1

0.67

黄芪

(6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol

MOL000380

64.26

0.42

黄芪

9,10-dimethoxypterocarpan-3-O-β-D-glucoside

MOL000379

36.74

0.92

黄芪

7-O-methylisomucronulatol

MOL000378

74.69

0.3

黄芪

5'-hydroxyiso-muronulatol-2',5'-di-O-glucoside

MOL000374

41.72

0.69

黄芪

3,9-di-O-methylnissolin

MOL000371

53.74

0.48

黄芪

isorhamnetin

MOL000354

49.6

0.31

黄芪

hederagenin

MOL000296

36.91

0.75

黄芪

kumatakenin (Jaranol)

MOL000239

50.83

0.29

黄芪

betulinic acid (Mairin)

MOL000211

55.38

0.78

黄芪

quercetin

MOL000098

46.43

0.28

黄芪

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R,5S)-5-propan-2-yloctan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

MOL000033

36.23

0.78

黄芪

diisooctyl phthalate (Diop)

MOL002879

43.59

0.39

人参

stigmasterol

MOL000449

43.83

0.76

人参

inermin

MOL003648

65.83

0.54

人参

chrysanthemaxanthin

MOL004492

38.72

0.58

人参

aposiopolamine

MOL005308

66.65

0.22

人参

celabenzine

MOL005314

101.88

0.49

人参

deoxyharringtonine

MOL005317

39.27

0.81

人参

dianthramine

MOL005318

40.45

0.2

人参

5,8,11,14-eicosatetraenoic acid (arachidonate)

MOL005320

45.57

0.2

人参

frutinone A

MOL005321

65.9

0.34

人参

ginsenoside rh2

MOL005344

36.32

0.56

人参

ginsenoside-Rh4_qt

MOL005348

31.11

0.78

人参

girinimbin

MOL005356

61.22

0.31

人参

gomisin B

MOL005357

31.99

0.83

人参

malkangunin

MOL005360

57.71

0.63

人参

panaxadiol

MOL005376

33.09

0.79

人参

suchilactone

MOL005384

57.52

0.56

人参

alexandrin_qt

MOL005399

36.91

0.75

人参

ginsenoside Rg5_qt

MOL005401

39.56

0.79

人参

fumarine

MOL000787

59.26

0.83

人参

3.2. NSCLC靶点筛选

首先,利用GEO数据库下载非小细胞肺癌相关的基因芯片,筛选芯片的条件为:1) 芯片数据来源为人类组织;2) 其中包含癌组织及正常组织,且各组数量不少于10个;3) 数据既包含肺腺癌的样品也包含肺鳞癌的样品。经过筛选,选择GSE18842数据集进行下载。然后利用R语言中的limma包提取差异表达基因(differentially expressed genes, DEGs),设定|Log2FC|1且P0.05。

对GSE18842基因芯片数据集进行分析,获得差异表达基因1847个,其中上调基因814个,下调基因1033个(见图2)。

注:图中玫红色小点代表上调的差异表达基因,绿色小点代表下调的差异表达基因。

Figure 1. Volcanic diagram of differentially expressed genes in GSE 18842 data set

1. GSE18842数据集差异表达基因的火山图

3.3. 药物靶点与疾病靶点取交集并构建互作网络

利用Perl将药物成分、成分靶点、疾病靶点等文件融合,作为输入文件导入Cytoscape构建互作网络并利用插件CytoNCA (version 2.1.6) [13]进行网络拓扑分析,有研究表明节点在网络拓扑分析时所处的地位与它在生命活动中是否发挥重要功能有相关性,因此,通过PPI网络的拓扑结构分析能够发现其中的关键蛋白及其相互关系。常用的参数为度中心性(Degree Centrality, DC)、中介中心性(Betweenness Centrality, BC)、紧密中心性(Closeness Centality, CC)、特征向量中心性(Eigenvector Centrality)等。

药物成分及疾病靶点互作网络共有130个节点,255条边,其中基因节点81个,成分节点49个(见图3表2)。拓扑分析显示度值排名前5位的药物成分分别为槲皮素、山柰酚、7-O-甲基异微凸剑叶莎

注:外围圆圈由药物成分组成,其中粉色代表斑蝥,蓝色代表刺五加,绿色代表黄芪,黄色代表人参,紫色代表多种药物,圈中文字为该成分的MOL ID。圈内矩形代表靶点基因。

Figure 2. Interaction network between drug components and disease targets

2. 药物成分与疾病靶点的互作网络

醇、异鼠李素及豆甾醇。其中槲皮素(MOL ID: MOL000098)度值最高(degree: 40),能作用于所有疾病靶点中约一半的靶点,山柰酚(MOL ID: MOL000422)度值次之(degree: 15),7-O-甲基异微凸剑叶莎醇(MOL ID: MOL 000378)度值居第三(degree: 12),然后是异鼠李素(MOL ID: MOL000354)度值11及豆甾醇(MOL ID: MOL000449)度值9。度值排名前三的基因分别是前列腺素-内过氧化物合酶2 (prostaglandin-endoperoxide synthase 2, PTGS2) (degree: 28)、肾上腺素受体2 (adrenoceptor beta 2, ADRB2) (degree: 17)及花生四烯酸5-脂氧合酶(arachidonate 5-lipoxygenase, ALOX5) (degree: 17)。

Table 2. Relevant information of disease targets

2. 疾病靶点的相关信息

Gene symbol

Gene ID

表达水平

Gene symbol

Gene ID

表达水平

ABCB1

5243

下调

HMOX1

3162

下调

ABCC1

4363

上调

HSD11B1

3290

下调

ABCG2

9429

下调

ICAM1

3383

下调

ADH1B

125

下调

IFNGR1

3459

下调

ADORA2B

136

上调

IGFBP3

3486

上调

ADRB1

153

下调

IL1B

3553

下调

ADRB2

154

下调

IL6

3569

下调

AKR1B10

57,016

上调

IRF1

3659

下调

AKR1C1

1645

上调

KDR

3791

下调

AKR1C3

8644

上调

KIT

3815

下调

ALOX15B

247

下调

LRP8

7804

上调

ALOX5

240

下调

MAOA

4128

下调

AOX1

316

下调

MGAM

8972

下调

BCHE

590

下调

MGLL

11,343

下调

BIRC5

332

上调

MMP1

4312

上调

CA12

771

上调

MMP3

4314

上调

CA2

760

下调

MMP9

4318

上调

CA3

761

下调

NAPSA

9476

下调

CA4

762

下调

NCF1

653,361

下调

CA9

768

上调

NOX4

50,507

上调

CASP1

834

下调

NQO1

1728

上调

CAV1

857

下调

NR3C2

4306

下调

CBR1

873

上调

OLR1

4973

下调

CCL2

6347

下调

PARP1

142

上调

CCNA2

890

上调

PLA2G1B

5319

下调

CCNB1

891

上调

PLAU

5328

上调

CCR1

1230

下调

PPARG

5468

下调

CCRL2

9034

下调

PRKCQ

5588

下调

CDK1

983

上调

PTGS2

5743

下调

CHEK1

1111

上调

SELE

6401

下调

CHEK2

11,200

上调

SLC6A14

11,254

下调

COL1A1

1277

上调

SLC6A4

6532

下调

COL3A1

1281

上调

SLPI

6590

下调

CXCL2

2920

下调

SPP1

6696

上调

DHFR

1719

上调

THBD

7056

下调

EDNRB

1910

下调

TOP2A

7153

上调

FABP4

2167

下调

TP63

8626

上调

FGR

2268

下调

TYMS

7298

上调

FOS

2353

下调

TYRP1

7306

下调

FRK

2444

上调

XDH

7498

上调

HAS2

3037

下调

3.4. 靶点基因的GO及KEGG富集分析

首先利用R中org.Hs.eg.db程辑包[14]将靶点的gene id转换为EntrezID,然后利用clusterProfiler程辑包[15]进行GO及KEGG富集分析,限定物种为人源,设定阈值P < 0.05且校正P < 0.05,统计通路数据。

GO富集分析显示靶点基因主要在氧化应激、白细胞迁移、金属离子应答、酸性化合物应答、类固醇激素应答、细胞对无机物应答、活性氧应答、有机磷化物应答、机械刺激应答、金属镉离子应答、细胞趋化、类花生酸代谢、脂肪酸衍生物代谢、壳聚糖代谢、调节血管直径等生物过程中发挥功能。在细胞成分方面,这些基因主要与膜微环境构成、细胞周期依赖性蛋白激酶复合物、胶原纤维三聚体、NADPH氧化酶复合物、小泡等构成相关(见图3(a)图3(b))。

KEGG通路富集分析显示这些基因主要与TNF信号通路、IL-17信号通路、NF-kappa B信号通路、细胞衰老通路、花生四烯酸代谢通路、松弛肽信号通路、氮代谢通路、p53信号通路等通路相关(见图3(c))。

4. 讨论

本次研究对艾迪的成分进行筛选,得到51个化学成分,将化学成分靶点与疾病靶点取交集后得到81个艾迪治疗NSCLC的靶点,证明艾迪的抗肿瘤作用是通过多成分-多靶点的途径实现的。成分-靶点网路图的拓扑分析显示槲皮素、山柰酚、7-O-甲基异微凸剑叶莎醇、异鼠李素、豆甾醇等度值较高,可能为艾迪有效成分中的关键药效物质,靶点方面PTGS2、ADRB2、ALOX5等度值较高,可能作为艾迪抗NSCLC的重要靶点。

槲皮素是一种黄酮类化合物,目前已有大量关于其抗肿瘤作用的研究报道[16],Zhu等[17]报道槲皮素能通过与Aurora B激酶结合来抑制其活性,进而抑制肺癌细胞的生长,Chang等[18]报道槲皮素通过抑制Snail介导的上皮-间充质转化(EMT)来抑制A549细胞的迁移和侵袭,Klimaszewska-Wiśniewska、Zheng等[19] [20]报道槲皮素能触发BCL2/BAX介导的细胞凋亡并通过分解微丝、微管及波形蛋白丝来抑制A549细胞的迁移能力,Youn等[21]报道槲皮素能通过上调TRAILR、caspase-10、TNFR1等的表达、下调NF-κB的表达来抑制肿瘤细胞的生长。山柰酚也是一种黄酮类化合物,关于其抗癌的效用机制也有大量研究[22],Jo、Zhang等[23] [24]报道山柰酚通过抑制Akt1介导的Smad3磷酸化来阻断TGF-β1诱导的肺癌细胞的EMT和迁移,山柰酚还能通过调节EMT相关E-钙黏着蛋白和波形蛋白的表达来抑制癌细胞的迁移,Han等[25]报道山柰酚能通过上调miRNA-340来促进A549细胞的凋亡和自噬从而抑制

注:(a)、(b)为GO富集分析的气泡图,(c)为KEGG富集分析的气泡图。图中纵坐标代表GO项目或KEGG通路的名称。横坐标为gene ratio,代表富集到该项目或通路上的基因数与该项目或通路上所有基因数的比值。气泡大小代表基因数量,气泡颜色代表校正后P值。

Figure 3. Bubble diagram of enrichment analysis of disease targets

3. 疾病靶点的富集分析气泡图

肿瘤细胞增殖,还有学者研究表明山柰酚是一种放射增敏剂[26],其机制可能是通过抑制AKT/PI3K和ERK通路,增强了射线对肿瘤细胞的杀伤力度。异鼠李素也是一种黄酮类化合物,与槲皮素有相似的结构,Ruan [27]报道异鼠李素可以通过线粒体依赖途径诱导A549细胞凋亡,明显抑制A549细胞的增殖及集落形成,此外,异鼠李素还能诱导A549细胞中自噬体和轻链3-II蛋白的形成,朱等[28]报道异鼠李素能下调Bcl-2基因的表达,上调P53、Bax、caspase-3等抑癌基因的表达,以此抑制癌细胞DNA合成,最终达到抑制癌细胞增殖、生长的目的,Zhu等[29]报道异鼠李素能下调VEGF及MMP-2的表达,上调内皮抑素的表达,从而发挥抑制肿瘤的侵袭和进展,Luo等[30]报道异鼠李素通过抑制A549细胞中Akt/ERK介导的EMT来抑制肿瘤细胞的迁移和侵袭。豆甾醇是植物甾醇的一种,是指植物中的类胆固醇物质[31],Kim等报道[32]豆甾醇能上调肝癌HepG2细胞促凋亡基因P53及Bax的表达,下调抗凋亡基因Bcl-2的表达以此来促进肿瘤细胞凋亡,Ghosh等[33]报道豆甾醇作用于艾氏腹水癌小鼠时能减小肿瘤体积,延长小鼠寿命,其机制可能是通过神经酰胺引起的细胞凋亡来介导的,Kangsamaksin [34]报道豆甾醇能通过下调肿瘤坏死因子-α来抑制胆管癌小鼠肿瘤的血管生成及瘤体的生长。暂未检索到关于7-O-甲基异微凸剑叶莎醇的药效实验报道,关于这一化合物的作用机理有待后续实验证实。

针对靶点的GO富集分析显示靶点基因主要在氧化应激、白细胞迁移、金属离子应答、类固醇激素应答、膜微环境构成、细胞周期依赖性蛋白激酶复合物形成、NADPH氧化酶复合物形成等生物过程中发挥功能。已有学者研究证明氧化应激在包括癌症在内的许多疾病的发病机理中起着重要作用,活性氧(Reactive oxygen species, ROS)是氧正常代谢的天然副产物,并在细胞内起重要作用,在正常情况下,细胞内能通过特定的酶促途径或通过抗氧化剂在ROS的形成与消除之间保持稳态,但如果这种平衡被干扰,就会发生氧化应激[35],一般来说,ROS浓度超过5%便对细胞有毒性,过量的ROS会引发对细胞DNA及线粒体DNA的氧化损伤,导致细胞变性,ROS不仅影响癌细胞的分化和生长还会刺激良性肿瘤恶变为恶性肿瘤[36],曾有学者报道异鼠李素具有良好的抗氧化作用,能抑制ROS介导的HOF-1α的积累,以此抑制肿瘤细胞的转移[37]。白细胞迁移与机体炎症密切相关,而学者们已经发现炎症与癌症拥有类似的发展机制,此外,在肿瘤微环境中炎症细胞及炎症因子的长期存在或许会加速肿瘤细胞的生长且抑制其凋亡[38],Tavares-Murta等[39]报道在宫颈癌患者中,晚期患者若中性粒细胞增多则复发和转移的频率会升高,中性粒细胞增多可能是肿瘤发生侵袭的检测指标由于金属药物具有常规碳基药物不具备的独特性能,金属化合物在治疗癌症的药物中占有一席之地,如顺铂已发展为治疗实体癌最常用和最有效的药物之一,还有学者证明铜复合物具有抑制宫颈癌细胞增殖的活性,此外,有学者报道,肿瘤会干扰铁转运蛋白、铁蛋白受体的表达,从而导致癌细胞铁稳态的失调,因此,机体对金属离子的应答将会影响金属类药物的疗效[40] [41]。类固醇激素包括糖皮质激素、盐皮质激素、雄激素、雌激素及孕激素,有学者报道类固醇激素与生殖系统以外许多器官的生物功能有关,如肺中就拥有雌激素及孕激素受体,这些激素能促进细胞增殖和分化、参与调节肺血管的生长和发育,通过抑制炎症细胞的活化和炎症因子的产生,从而减少肺组织的损伤[42] [43]

通路富集则显示靶点基因主要富集到TNF信号通路、IL-17信号通路、NF-kappa B信号通路、p53信号通路等通路。肿瘤坏死因子(Tumor Necrosis Factor, TNF)是除了是一种促炎因子还具有其他的许多功能,其家族成员在细胞增殖、分化、凋亡、免疫应答调节和炎症诱导等多种生理病理过程中发挥重要作用[44] [45] [46],有学者研究表明TNF-α和IL-6不仅可以促进肺癌细胞的增殖,还可以通过诱导EMT促进肺癌的转移[47],TNF-α还能通过NF-kappa B依赖性途径诱导CSN2表达以此促进EMT在肿瘤细胞中的发生,NF-kappa B作为一种细胞存活信号参与了癌变过程中的多个步骤,包括细胞存活、细胞黏附、炎症等,NF-kappa B还能通过上调细胞周期蛋白进而影响细胞周期进程,NF-kappa B还能与RNF-α、IL-1β等相互作用而刺激癌细胞增殖,在抑制细胞凋亡方面,NF-kappa B也起着关键作用,其主要是通过诱导抗凋亡蛋白Bcl-XL、XIAP、A20、TRAF-2等的表达,拮抗p53来实现抑制凋亡作用,此外,NF-kappa B还能下调磷酸酶和PTEN的表达以激活Akt从而促进细胞存活和增殖,有学者观察到在肺癌患者的肿瘤样本中,NF-kappa B有较高的表达水平,NF-kappa B的高表达与患者的TNM分期及不良预后密切相关[48] [49]。p53是癌症中最常突变的肿瘤抑制因子[50],内源性p53的表达在各种类型的癌症中都是沉默的,p53被激活后能通过DNA修复或推进细胞死亡进程来阻止癌症进展[51],Hao等[52]发现p53抑制剂TC2N可以通过诱导Cdk5降解或破坏Cdk5与p53之间的相互作用来抑制p53信号通路,而此时则会导致肿瘤细胞增殖和凋亡减少从而促进癌症的发展。

对靶点进行蛋白互作分析、拓扑分析及核心区块筛选得到ICAM1、TOP2A及FOS三个基因,它们位于靶点基因PPI网络的核心,表明它们能以最高的效率和最广的范围影响其他基因。同时,考虑与药物成分影响度值最高的三个基因PTGS2、ADRB2及ALOX5,将这6个基因共同视为艾迪抗非小细胞肺癌的关键基因。

5. 结论

综上所述,艾迪中抗NSCLC的关键成分为槲皮素、山柰酚、异鼠李素、豆甾醇等,它们主要是通过抗氧化、抑制EMT、调节金属离子及类固醇激素应答、促进肿瘤细胞凋亡等方式来发挥抗癌作用,抗癌的关键基因有ICAM1、TOP2A、FOS、PTGS2、ADRB2及ALOX5,PPI网络还显示这些关键基因与预后相关基因间存在直接或间接的相互作用,证明艾迪或许能通过作用于关键基因从而影响患者的生存时间及状态,富集分析显示靶点基因涉及到TNF信号通路、IL-17信号通路、NF-kappa B信号通路等多条与肿瘤相关的通路等多条通路。由于此次研究是基于数据挖掘展开的,因此需要进一步的生物学实验来进行验证。

基金项目

贵州省中医药管理局中医药、民族医药科学技术研究课题(QZYY-2022-009)。

参考文献

[1] Zhao, J., Yang, J., Tian, S. and Zhang, W. (2019) A Survey of Web Resources and Tools for the Study of TCM Network Pharmacology. Quantitative Biology, 7, 17-29.
https://doi.org/10.1007/s40484-019-0167-8
[2] Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O. and Zoete, V. (2014) Swiss Target Prediction: A Web Server for Target Prediction of Bioactive Small Molecules. Nucleic Acids Research, 42, W32-W38.
https://doi.org/10.1093/nar/gku293
[3] Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., et al. (2016) The STRING Database in 2017: Quality-Controlled Protein-Protein Association Networks, Made Broadly Accessible. Nucleic Acids Research, 45, D362-D368.
https://doi.org/10.1093/nar/gkw937
[4] 安中原, 王正, 赵越. 斑蝥素及其衍生物的抗肿瘤研究进展[J]. 亚太传统医药, 2009, 5(1): 128-130.
[5] Rauh, R., Kahl, S., Boechzelt, H., Bauer, R., Kaina, B. and Efferth, T. (2007) Molecular Biology of Cantharidin in Cancer Cells. Chinese Medicine, 2, Article No. 8.
https://doi.org/10.1186/1749-8546-2-8
[6] Hsia, T., Yu, C., Hsiao, Y., Wu, S., Bau, D., Lu, H., et al. (2016) Cantharidin Impairs Cell Migration and Invasion of Human Lung Cancer NCI-H460 Cells via UPA and MAPK Signaling Pathways. Anticancer Research, 36, 5989-5998.
https://doi.org/10.21873/anticanres.11187
[7] Liu, Y., Li, L., Xu, L., Dai, E. and Chen, W. (2018) Cantharidin Suppresses Cell Growth and Migration, and Activates Autophagy in Human Non-Small Cell Lung Cancer Cells. Oncology Letters, 15, 6527-6532.
https://doi.org/10.3892/ol.2018.8141
[8] Luan, J., Duan, H., Liu, Q., Yagasaki, K. and Zhang, G. (2010) Inhibitory Effects of Norcantharidin against Human Lung Cancer Cell Growth and Migration. Cytotechnology, 62, 349-355.
https://doi.org/10.1007/s10616-009-9250-8
[9] Xie, J., Zhang, Y., Hu, X., Lv, R., Xiao, D., Jiang, L., et al. (2015) Norcantharidin Inhibits Wnt Signal Pathway via Promoter Demethylation of WIF-1 in Human Non-Small Cell Lung Cancer. Medical Oncology, 32, Article No. 145.
https://doi.org/10.1007/s12032-015-0592-0
[10] Lee, Y., Lee, L., Yang, C., Lin, A.M., Huang, Y., Hsu, C., et al. (2012) Norcantharidin Suppresses Cell Growth and Migration with Enhanced Anticancer Activity of Gefitinib and Cisplatin in Human Non-Small Cell Lung Cancer Cells. Oncology Reports, 29, 237-243.
https://doi.org/10.3892/or.2012.2118
[11] 高彦宇, 李文慧, 寇楠, 等. 刺五加化学成分和药理作用研究进展[J]. 中医药信息, 2019, 36(2): 113-116.
[12] Huang, L.Z., Zhao, H.F., Huang, B.K., et al. (2011) Acanthopanax Senticosus: Review of Botany, Chemistry and Pharmacology. Die Pharmazie: An International Journal of Pharmaceutical Sciences, 66, 83-97.
[13] Tang, Y., Li, M., Wang, J., Pan, Y. and Wu, F. (2015) CytoNCA: A Cytoscape Plugin for Centrality Analysis and Evaluation of Protein Interaction Networks. Biosystems, 127, 67-72.
https://doi.org/10.1016/j.biosystems.2014.11.005
[14] Carlson, M. (2019) Genome Wide Annotation for Human. R Package Version 3.10.0.
[15] Yu, G., Wang, L., Han, Y. and He, Q. (2012) ClusterProfiler: An R Package for Comparing Biological Themes among Gene Clusters. OMICS: A Journal of Integrative Biology, 16, 284-287.
https://doi.org/10.1089/omi.2011.0118
[16] 王艳芳, 王新华, 朱宇同. 槲皮素药理作用研究进展[J]. 天然产物研究与开发, 2003, 15(2): 171-173.
[17] Zhu, X.Y., Ma, P.J., Peng, D., et al. (2016) Quercetin Suppresses Lung Cancer Growth by Targeting Aurora B Kinase. Cancer Medicine, 5, 3156-3165.
https://doi.org/10.1002/cam4.891
[18] Chang, J., Lai, S., Chen, W., Hung, W., Chow, J., Hsiao, M., et al. (2017) Quercetin Suppresses the Metastatic Ability of Lung Cancer through Inhibiting Snail-Dependent Akt Activation and Snail-Independent ADAM9 Expression Pathways. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1864, 1746-1758.
https://doi.org/10.1016/j.bbamcr.2017.06.017
[19] Klimaszewska-Wiśniewska, A., Hałas-Wiśniewska, M., Izdebska, M., Gagat, M., Grzanka, A. and Grzanka, D. (2017) Antiproliferative and Antimetastatic Action of Quercetin on A549 Non-Small Cell Lung Cancer Cells through Its Effect on the Cytoskeleton. Acta Histochemica, 119, 99-112.
https://doi.org/10.1016/j.acthis.2016.11.003
[20] Zheng, S. (2011) Anticancer Effect and Apoptosis Induction by Quercetin in the Human Lung Cancer Cell Line A-549. Molecular Medicine Reports, 5, 822-826.
https://doi.org/10.3892/mmr.2011.726
[21] Youn, H., Jeong, J., Jeong, Y.S., Kim, E. and Um, S. (2013) Quercetin Potentiates Apoptosis by Inhibiting Nuclear Factor-κB Signaling in H460 Lung Cancer Cells. Biological and Pharmaceutical Bulletin, 36, 944-951.
https://doi.org/10.1248/bpb.b12-01004
[22] 陈育华, 周克元, 袁汉尧. 山奈酚药效的研究进展[J]. 广东医学, 2010, 31(8): 1064-1066.
[23] Jo, E., Park, S.J., Choi, Y.S., Jeon, W. and Kim, B. (2015) Kaempferol Suppresses Transforming Growth Factor-Β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179. Neoplasia, 17, 525-537.
https://doi.org/10.1016/j.neo.2015.06.004
[24] Hang, M., Zhao, F., Chen, S., Sun, Q. and Zhang, C. (2015) Kaempferol Modulates the Metastasis of Human Non-Small Cell Lung Cancer Cells by Inhibiting Epithelial-Mesenchymal Transition. Bangladesh Journal of Pharmacology, 10, 267-270.
https://doi.org/10.3329/bjp.v10i2.21739
[25] Han, X., Liu, C., Gao, N., Zhao, J. and Xu, J. (2018) RETRACTED: Kaempferol Suppresses Proliferation but Increases Apoptosis and Autophagy by Up-Regulating Microrna-340 in Human Lung Cancer Cells. Biomedicine & Pharmacotherapy, 108, 809-816.
https://doi.org/10.1016/j.biopha.2018.09.087
[26] Kuo, W., Tsai, Y., Wu, H., Ho, Y., Chen, Y., Yao, C., et al. (2015) Radiosensitization of Non-Small Cell Lung Cancer by Kaempferol. Oncology Reports, 34, 2351-2356.
https://doi.org/10.3892/or.2015.4204
[27] Ruan, Y., Hu, K. and Chen, H. (2015) Autophagy Inhibition Enhances Isorhamnetin-Induced Mitochondria-Dependent Apoptosis in Non-Small Cell Lung Cancer Cells. Molecular Medicine Reports, 12, 5796-5806.
https://doi.org/10.3892/mmr.2015.4148
[28] 朱玲, 王正荣, 周黎明, 等. 异鼠李素对肺癌的作用机制及其抗肿瘤机制的初步探讨[J]. 航天医院与医学工程, 2005, 18(5): 381-383.
[29] Zhu, Y.C., Sun, L.N., Zhang, H.J., et al. (2017) Effects of Isorhamnetin on Protein Expression of VEGF, MMP-2 and Endostatin in LEWIS Lung Cancer Mouse. International Journal of Clinical and Experimental Medicine, 10, 11488-11495.
[30] Luo, W., Liu, Q., Jiang, N., Li, M. and Shi, L. (2019) Isorhamnetin Inhibited Migration and Invasion via Suppression of Akt/ERK-Mediated Epithelial-To-Mesenchymal Transition (EMT) in A549 Human Non-Small-Cell Lung Cancer Cells. Bioscience Reports, 39, BSR20190159.
https://doi.org/10.1042/bsr20190159
[31] Ostlund, R.E. (2002) Phytosterols Inhumannutrition. Annual Review of Nutrition, 22, 533-549.
https://doi.org/10.1146/annurev.nutr.22.020702.075220
[32] Kim, Y., Li, X., Kang, K., Ryu, B. and Kim, S.K. (2014) Stigmasterol Isolated from Marine Microalgae Navicula Incerta Induces Apoptosis in Human Hepatoma HepG2 Cells. BMB Reports, 47, 433-438.
https://doi.org/10.5483/bmbrep.2014.47.8.153
[33] Ghosh, T., Maity, T.K. and Singh, J. (2011) Evaluation of Antitumor Activity of Stigmasterol, a Constituent Isolated from Bacopa Monnieri Linn Aerial Parts against Ehrlich Ascites Carcinoma in Mice. Oriental Pharmacy & Experimental Medicine, 11, 41-49.
https://doi.org/10.1007/s13596-011-0001-y
[34] Kangsamaksin, T., Chaithongyot, S., Wootthichairangsan, C., Hanchaina, R., Tangshewinsirikul, C. and Svasti, J. (2017) Lupeol and Stigmasterol Suppress Tumor Angiogenesis and Inhibit Cholangiocarcinoma Growth in Mice via Downregulation of Tumor Necrosis Factor-α. PLOS ONE, 12, e0189628.
https://doi.org/10.1371/journal.pone.0189628
[35] Lawless, M.W., O’Byrne, K.J. and Gray, S.G. (2009) Oxidative Stress Induced Lung Cancer and COPD: Opportunities for Epigenetic Therapy. Journal of Cellular and Molecular Medicine, 13, 2800-2821.
https://doi.org/10.1111/j.1582-4934.2009.00845.x
[36] Valavanidis, A., Vlachogianni, T., Fiotakis, K. and Loridas, S. (2013) Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms. International Journal of Environmental Research and Public Health, 10, 3886-3907.
https://doi.org/10.3390/ijerph10093886
[37] Seo, S., Seo, K., Ki, S.H. and Shin, S.M. (2016) Isorhamnetin Inhibits Reactive Oxygen Species-Dependent Hypoxia Inducible Factor (HIF)-1α Accumulation. Biological & Pharmaceutical Bulletin, 39, 1830-1838.
https://doi.org/10.1248/bpb.b16-00414
[38] Korniluk, A., Koper, O., Kemona, H. and Dymicka-Piekarska, V. (2016) From Inflammation to Cancer. Irish Journal of Medical Science (1971-), 186, 57-62.
https://doi.org/10.1007/s11845-016-1464-0
[39] Tavares-Murta, B.M., Mendonça, M.A.O., Duarte, N.L., da Silva, J.A., Mutão, T.S., Garcia, C.B., et al. (2010) Systemic Leukocyte Alterations Are Associated with Invasive Uterine Cervical Cancer. International Journal of Gynecological Cancer, 20, 1154-1159.
https://doi.org/10.1111/igc.0b013e3181ef8deb
[40] Baile, D.D., Kolhe, N.S., Deotarse, P.P., et al. (2015) Metal Ion Complex-Potential Anticancer Drug—A Review. International Journal of Pharm Research & Review, 4, 59-66.
[41] Merlot, A.M., Kalinowski, D.S. and Richardson, D.R. (2013) Novel Chelators for Cancer Treatment: Where Are We Now? Antioxidants & Redox Signaling, 18, 973-1006.
https://doi.org/10.1089/ars.2012.4540
[42] Siegfried, J.M. and Stabile, L.P. (2014) Estrogenic Steroid Hormones in Lung Cancer. Seminars in Oncology, 41, 5-16.
https://doi.org/10.1053/j.seminoncol.2013.12.009
[43] Gonzalez-Arenas, A. and Agramonte-Hevia, J. (2012) Sex Steroid Hormone Effects in Normal and Pathologic Conditions in Lung Physiology. Mini-Reviews in Medicinal Chemistry, 12, 1055-1062.
https://doi.org/10.2174/138955712802762194
[44] Thoh, M., Kumar, P., Nagarajaram, H.A. and Manna, S.K. (2010) Azadirachtin Interacts with the Tumor Necrosis Factor (TNF) Binding Domain of Its Receptors and Inhibits TNF-Induced Biological Responses. Journal of Biological Chemistry, 285, 5888-13556.
https://doi.org/10.1074/jbc.m109.065847
[45] Bradley, J. (2007) TNF‐Mediated Inflammatory Disease. The Journal of Pathology, 214, 149-160.
https://doi.org/10.1002/path.2287
[46] McCoy, M.K. and Tansey, M.G. (2008) TNF Signaling Inhibition in the CNS: Implications for Normal Brain Function and Neurodegenerative Disease. Journal of Neuroinflammation, 5, Article No. 45.
https://doi.org/10.1186/1742-2094-5-45
[47] Shang, G., Liu, L. and Qin, Y. (2017) IL-6 and TNF-Α Promote Metastasis of Lung Cancer by Inducing Epithelial-Mesenchymal Transition. Oncology Letters, 13, 4657-4660.
https://doi.org/10.3892/ol.2017.6048
[48] Chen, W. (2011) NF-κB in Lung Cancer, a Carcinogenesis Mediator and a Prevention and Therapy Target. Frontiers in Bioscience, 16, 1172-1185.
https://doi.org/10.2741/3782
[49] Wu, Y. and Zhou, B.P. (2010) TNF-α/NF-κB/Snail Pathway in Cancer Cell Migration and Invasion. British Journal of Cancer, 102, 639-644.
https://doi.org/10.1038/sj.bjc.6605530
[50] Gibbons, D.L., Byers, L.A. and Kurie, J.M. (2014) Smoking, P53 Mutation, and Lung Cancer. Molecular Cancer Research, 12, 3-13.
https://doi.org/10.1158/1541-7786.mcr-13-0539
[51] Stegh, A.H. (2012) Targeting the P53 Signaling Pathway in Cancer Therapy—The Promises, Challenges and Perils. Expert Opinion on Therapeutic Targets, 16, 67-83.
https://doi.org/10.1517/14728222.2011.643299
[52] Hao, X., Han, F., Zhang, N., Chen, H., Jiang, X., Yin, L., et al. (2018) TC2N, a Novel Oncogene, Accelerates Tumor Progression by Suppressing P53 Signaling Pathway in Lung Cancer. Cell Death & Differentiation, 26, 1235-1250.
https://doi.org/10.1038/s41418-018-0202-8