[1]
|
Kunkle, B.W., Grenier-Boley, B., Sims, R., et al. (2019) Genetic Meta-Analysis of Diagnosed Alzheimer’s Disease Identifies New Risk Loci and Implicates Aβ, Tau, Immunity and Lipid Processing. Nature Genetics, 51, 414-430.
|
[2]
|
(2023) 2023 Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia, 19, 1598-1695.
|
[3]
|
Deming, Y., Vasiljevic, E., Morrow, A., Miao, J., Van Hulle, C., Jonaitis, E., et al. (2023) Neuropathology‐Based APOE Genetic Risk Score Better Quantifies Alzheimer’s Risk. Alzheimer’s & Dementia, 19, 3406-3416. https://doi.org/10.1002/alz.12990
|
[4]
|
Chen, Y., Strickland, M.R., Soranno, A. and Holtzman, D.M. (2021) Apolipoprotein E: Structural Insights and Links to Alzheimer Disease Pathogenesis. Neuron, 109, 205-221. https://doi.org/10.1016/j.neuron.2020.10.008
|
[5]
|
Belloy, M.E., Andrews, S.J., Le Guen, Y., Cuccaro, M., Farrer, L.A., Napolioni, V., et al. (2023) APOE Genotype and Alzheimer Disease Risk across Age, Sex, and Population Ancestry. JAMA Neurology, 80, Article No. 1284. https://doi.org/10.1001/jamaneurol.2023.3599
|
[6]
|
Lee, J., Lee, H., Lee, H., Shin, M., Shin, M., Seo, J., et al. (2023) ANKS1A Regulates LDL Receptor-Related Protein 1 (LRP1)-Mediated Cerebrovascular Clearance in Brain Endothelial Cells. Nature Communications, 14, Article No. 8463. https://doi.org/10.1038/s41467-023-44319-3
|
[7]
|
Wogram, E. and Prinz, M. (2023) APOE Set the Microglia Free. Nature Immunology, 24, 1790-1791. https://doi.org/10.1038/s41590-023-01651-6
|
[8]
|
Mathys, H., Davila-Velderrain, J., Peng, Z., Gao, F., Mohammadi, S., Young, J.Z., et al. (2019) Single-Cell Transcriptomic Analysis of Alzheimer’s Disease. Nature, 570, 332-337. https://doi.org/10.1038/s41586-019-1195-2
|
[9]
|
Zhou, Y., Song, W.M., Andhey, P.S., Swain, A., Levy, T., Miller, K.R., et al. (2020) Human and Mouse Single-Nucleus Transcriptomics Reveal Trem2-Dependent and Trem2-Independent Cellular Responses in Alzheimer’s Disease. Nature Medicine, 26, 131-142. https://doi.org/10.1038/s41591-019-0695-9
|
[10]
|
Mahan, T.E., Wang, C., Bao, X., Choudhury, A., Ulrich, J.D. and Holtzman, D.M. (2022) Selective Reduction of Astrocyte ApoE3 and ApoE4 Strongly Reduces Aβ Accumulation and Plaque-Related Pathology in a Mouse Model of Amyloidosis. Molecular Neurodegeneration, 17, Article No. 13. https://doi.org/10.1186/s13024-022-00516-0
|
[11]
|
Ossenkoppele, R., Jansen, W.J., Rabinovici, G.D., et al. (2015) Prevalence of Amyloid PET Positivity in Dementia Syndromes: A Meta-Analysis. JAMA, 313, 1939-1949.
|
[12]
|
Bilousova, T., Melnik, M., Miyoshi, E., Gonzalez, B.L., Poon, W.W., Vinters, H.V., et al. (2019) Apolipoprotein E/Amyloid-β Complex Accumulates in Alzheimer Disease Cortical Synapses via Apolipoprotein E Receptors and Is Enhanced by ApoE4. The American Journal of Pathology, 189, 1621-1636. https://doi.org/10.1016/j.ajpath.2019.04.010
|
[13]
|
Sawmiller, D., Habib, A., Hou, H., Mori, T., Fan, A., Tian, J., et al. (2019) A Novel Apolipoprotein E Antagonist Functionally Blocks Apolipoprotein E Interaction with N-Terminal Amyloid Precursor Protein, Reduces β-Amyloid-Associated Pathology, and Improves Cognition. Biological Psychiatry, 86, 208-220. https://doi.org/10.1016/j.biopsych.2019.04.026
|
[14]
|
Lim, Y.Y., Kalinowski, P., Pietrzak, R.H., Laws, S.M., Burnham, S.C., Ames, D., et al. (2018) Association of β-Amyloid and Apolipoprotein E ε4 with Memory Decline in Preclinical Alzheimer Disease. JAMA Neurology, 75, 488-494. https://doi.org/10.1001/jamaneurol.2017.4325
|
[15]
|
Tzioras, M., Davies, C., Newman, A., Jackson, R. and Spires‐Jones, T. (2018) Invited Review: APOE at the Interface of Inflammation, Neurodegeneration and Pathological Protein Spread in Alzheimer’s Disease. Neuropathology and Applied Neurobiology, 45, 327-346. https://doi.org/10.1111/nan.12529
|
[16]
|
Corraliza-Gomez, M., Bermejo, T., Lilue, J., Rodriguez-Iglesias, N., Valero, J., Cozar-Castellano, I., et al. (2023) Insulin-Degrading Enzyme (IDE) as a Modulator of Microglial Phenotypes in the Context of Alzheimer’s Disease and Brain Aging. Journal of Neuroinflammation, 20, Article No. 233. https://doi.org/10.1186/s12974-023-02914-7
|
[17]
|
Kiani, L. (2023) ApoE Attracts Microglia to Amyloid-β Plaques. Nature Reviews Neurology, 19, 639-639. https://doi.org/10.1038/s41582-023-00885-0
|
[18]
|
Pohlkamp, T., Xian, X., Wong, C.H., Durakoglugil, M.S., Werthmann, G.C., Saido, T.C., et al. (2021) NHE6 Depletion Corrects ApoE4-Mediated Synaptic Impairments and Reduces Amyloid Plaque Load. eLife, 10, e72034. https://doi.org/10.7554/elife.72034
|
[19]
|
Zhao, J., Lu, W., Ren, Y., Fu, Y., Martens, Y.A., Shue, F., et al. (2021) Apolipoprotein E Regulates Lipid Metabolism and Α-Synuclein Pathology in Human iPSC-Derived Cerebral Organoids. Acta Neuropathologica, 142, 807-825. https://doi.org/10.1007/s00401-021-02361-9
|
[20]
|
Shi, Y., Manis, M., Long, J., Wang, K., Sullivan, P.M., Remolina Serrano, J., et al. (2019) Microglia Drive APOE-Dependent Neurodegeneration in a Tauopathy Mouse Model. Journal of Experimental Medicine, 216, 2546-2561. https://doi.org/10.1084/jem.20190980
|
[21]
|
Shi, Y., Yamada, K., Liddelow, S.A., Smith, S.T., Zhao, L., Luo, W., et al. (2017) ApoE4 Markedly Exacerbates Tau-Mediated Neurodegeneration in a Mouse Model of Tauopathy. Nature, 549, 523-527. https://doi.org/10.1038/nature24016
|
[22]
|
Jun, G.R., You, Y., Zhu, C., Meng, G., Chung, J., Panitch, R., et al. (2022) Protein Phosphatase 2A and Complement Component 4 Are Linked to the Protective Effect of APOE Ɛ2 for Alzheimer’s Disease. Alzheimer’s & Dementia, 18, 2042-2054. https://doi.org/10.1002/alz.12607
|
[23]
|
Gratuze, M., Jiang, H., Wang, C., Xiong, M., Bao, X. and Holtzman, D.M. (2022) APOE Antibody Inhibits Aβ‐Associated Tau Seeding and Spreading in a Mouse Model. Annals of Neurology, 91, 847-852. https://doi.org/10.1002/ana.26351
|
[24]
|
Wadhwani, A.R., Affaneh, A., Van Gulden, S. and Kessler, J.A. (2019) Neuronal Apolipoprotein E4 Increases Cell Death and Phosphorylated Tau Release in Alzheimer Disease. Annals of Neurology, 85, 726-739. https://doi.org/10.1002/ana.25455
|
[25]
|
Caruso, A., Motolese, M., Iacovelli, L., Caraci, F., Copani, A., Nicoletti, F., et al. (2006) Inhibition of the Canonical Wnt Signaling Pathway by Apolipoprotein E4 in PC12 Cells. Journal of Neurochemistry, 98, 364-371. https://doi.org/10.1111/j.1471-4159.2006.03867.x
|
[26]
|
Kao, Y., Ho, P., Tu, Y., Jou, I. and Tsai, K. (2020) Lipids and Alzheimer’s Disease. International Journal of Molecular Sciences, 21, Article No. 1505. https://doi.org/10.3390/ijms21041505
|
[27]
|
Lanfranco, M.F., Ng, C.A. and Rebeck, G.W. (2020) APOE Lipidation as a Therapeutic Target in Alzheimer’s Disease. International Journal of Molecular Sciences, 21, Article No. 6336. https://doi.org/10.3390/ijms21176336
|
[28]
|
Raulin, A., Doss, S.V., Trottier, Z.A., Ikezu, T.C., Bu, G. and Liu, C. (2022) ApoE in Alzheimer’s Disease: Pathophysiology and Therapeutic Strategies. Molecular Neurodegeneration, 17, Article No. 72. https://doi.org/10.1186/s13024-022-00574-4
|
[29]
|
Yang, L.G., March, Z.M., Stephenson, R.A. and Narayan, P.S. (2023) Apolipoprotein E in Lipid Metabolism and Neurodegenerative Disease. Trends in Endocrinology & Metabolism, 34, 430-445. https://doi.org/10.1016/j.tem.2023.05.002
|
[30]
|
Huang, Y. and Mahley, R.W. (2014) Apolipoprotein E: Structure and Function in Lipid Metabolism, Neurobiology, and Alzheimer’s Diseases. Neurobiology of Disease, 72, 3-12. https://doi.org/10.1016/j.nbd.2014.08.025
|
[31]
|
Sienski, G., Narayan, P., Bonner, J.M., Kory, N., Boland, S., Arczewska, A.A., et al. (2021) ApoE4 Disrupts Intracellular Lipid Homeostasis in Human iPSC-Derived Glia. Science Translational Medicine, 13, eaaz4564. https://doi.org/10.1126/scitranslmed.aaz4564
|
[32]
|
Wong, M.Y., Lewis, M., Doherty, J.J., Shi, Y., Cashikar, A.G., Amelianchik, A., et al. (2020) 25-Hydroxycholesterol Amplifies Microglial Il-1β Production in an APOE Isoform-Dependent Manner. Journal of Neuroinflammation, 17, Article No. 192. https://doi.org/10.1186/s12974-020-01869-3
|
[33]
|
Giannisis, A., Patra, K., Edlund, A.K., Nieto, L.A., Benedicto-Gras, J., Moussaud, S., et al. (2022) Brain Integrity Is Altered by Hepatic APOE ε4 in Humanized-Liver Mice. Molecular Psychiatry, 27, 3533-3543. https://doi.org/10.1038/s41380-022-01548-0
|
[34]
|
Parhizkar, S. and Holtzman, D.M. (2022) APOE Mediated Neuroinflammation and Neurodegeneration in Alzheimer’s Disease. Seminars in Immunology, 59, Article ID: 101594. https://doi.org/10.1016/j.smim.2022.101594
|
[35]
|
Tao, Q., Ang, T.F.A., DeCarli, C., Auerbach, S.H., Devine, S., Stein, T.D., et al. (2018) Association of Chronic Low-Grade Inflammation with Risk of Alzheimer Disease in ApoE4 Carriers. JAMA Network Open, 1, e183597. https://doi.org/10.1001/jamanetworkopen.2018.3597
|
[36]
|
Liu, Y., Wang, P., Jin, G., Shi, P., Zhao, Y., Guo, J., et al. (2023) The Novel Function of Bexarotene for Neurological Diseases. Ageing Research Reviews, 90, Article ID: 102021. https://doi.org/10.1016/j.arr.2023.102021
|
[37]
|
Hoy, S.M. (2023) Lecanemab: First Approval. Drugs, 83, 359-365. https://doi.org/10.1007/s40265-023-01851-2
|
[38]
|
Liao, F., Hori, Y., Hudry, E., Bauer, A.Q., Jiang, H., Mahan, T.E., et al. (2014) Anti-APOE Antibody Given after Plaque Onset Decreases Aβ Accumulation and Improves Brain Function in a Mouse Model of Aβ Amyloidosis. The Journal of Neuroscience, 34, 7281-7292. https://doi.org/10.1523/jneurosci.0646-14.2014
|
[39]
|
Agosta, F., Vossel, K.A., Miller, B.L., Migliaccio, R., Bonasera, S.J., Filippi, M., et al. (2009) Apolipoprotein E ε4 Is Associated with Disease-Specific Effects on Brain Atrophy in Alzheimer’s Disease and Frontotemporal Dementia. Proceedings of the National Academy of Sciences, 106, 2018-2022. https://doi.org/10.1073/pnas.0812697106
|
[40]
|
Zhou, J., Wang, Y., Huang, G., Yang, M., Zhu, Y., Jin, C., et al. (2023) Lilrb3 Is a Putative Cell Surface Receptor of ApoE4. Cell Research, 33, 116-130. https://doi.org/10.1038/s41422-022-00759-y
|
[41]
|
Hardy, J.A. and Higgins, G.A. (1992) Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science, 256, 184-185. https://doi.org/10.1126/science.1566067
|
[42]
|
Li, Y.J., Hauser, M.A., Scott, W.K., Martin, E.R., Booze, M.W., Qin, X.J., et al. (2004) Apolipoprotein E Controls the Risk and Age at Onset of Parkinson Disease. Neurology, 62, 2005-2009. https://doi.org/10.1212/01.wnl.0000128089.53030.ac
|
[43]
|
Huang, X., Chen, P.C. and Poole, C. (2004) Apoe-ε2 Allele Associated with Higher Prevalence of Sporadic Parkinson Disease. Neurology, 62, 2198-2202. https://doi.org/10.1212/01.wnl.0000130159.28215.6a
|
[44]
|
Liampas, I., Kyriakoulopoulou, P., Siokas, V., Tsiamaki, E., Stamati, P., Kefalopoulou, Z., et al. (2024) Apolipoprotein E Gene in Α-Synucleinopathies: A Narrative Review. International Journal of Molecular Sciences, 25, Article No. 1795. https://doi.org/10.3390/ijms25031795
|
[45]
|
O’Brien, J.T. and Thomas, A. (2015) Vascular Dementia. The Lancet, 386, 1698-1706. https://doi.org/10.1016/s0140-6736(15)00463-8
|
[46]
|
Yin, Y., Li, J., Wang, J., Li, B., Pi, Y., Yang, Q., et al. (2012) Association between Apolipoprotein E Gene Polymorphism and the Risk of Vascular Dementia: A Meta-Analysis. Neuroscience Letters, 514, 6-11. https://doi.org/10.1016/j.neulet.2012.02.031
|
[47]
|
Kawamata, J., Tanaka, S., Shimohama, S., Ueda, K. and Kimura, J. (1994) Apolipoprotein E Polymorphism in Japanese Patients with Alzheimer’s Disease or Vascular Dementia. Journal of Neurology, Neurosurgery & Psychiatry, 57, 1414-1416. https://doi.org/10.1136/jnnp.57.11.1414
|
[48]
|
Das, S., Kaul, S., Jyothy, A. and Munshi, A. (2016) Association of APOE (E2, E3 and E4) Gene Variants and Lipid Levels in Ischemic Stroke, Its Subtypes and Hemorrhagic Stroke in a South Indian Population. Neuroscience Letters, 628, 136-141. https://doi.org/10.1016/j.neulet.2016.06.032
|
[49]
|
Wei, L.K., Au, A., Menon, S., Griffiths, L.R., Kooi, C.W., Irene, L., et al. (2017) Polymorphisms of MTHFR, eNOS, ACE, AGT, ApoE, PON1, PDE4D, and Ischemic Stroke: Meta-Analysis. Journal of Stroke and Cerebrovascular Diseases, 26, 2482-2493. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.05.048
|
[50]
|
Zéphir, H. (2018) Progress in Understanding the Pathophysiology of Multiple Sclerosis. Revue Neurologique, 174, 358-363. https://doi.org/10.1016/j.neurol.2018.03.006
|
[51]
|
Shi, J., Tu, J., Gale, S.D., Baxter, L., Vollmer, T.L., Campagnolo, D.I., et al. (2011) APOE ε4 Is Associated with Exacerbation of Cognitive Decline in Patients with Multiple Sclerosis. Cognitive and Behavioral Neurology, 24, 128-133. https://doi.org/10.1097/wnn.0b013e31823380b5
|