颅内动脉粥样硬化的高分辨率血管壁成像影像学特征与缺血性卒中相关性的研究进展
Research Progress on the Correlation between High-Resolution Imaging Features of Intracranial Atherosclerosis-Induced Vascular Wall Imaging and Ischaemic Stroke
DOI: 10.12677/acm.2024.14102804, PDF, HTML, XML,   
作者: 姚芝玲*:成都中医药大学医学与生命科学学院,四川 成都;向美玲, 李 勇:遂宁市中心医院放射科,四川 遂宁;谢明国#:成都中医药大学附属医院放射科,四川 成都
关键词: 动脉粥样硬化磁共振高分辨率血管壁成像斑块易损性特征Atherosclerosis High-Resolution Vascular Wall Imaging by Magnetic Resonance Vulnerable Plaque Characteristics
摘要: 颅内动脉粥样硬化是缺血性卒中(Ischemic stroke, IS)的主要原因之一,其致死率和致残率较高。颅内血管病变的发病机制通常始于血管壁,因此,早期识别斑块成分及其易损性对临床诊疗和患者预后至关重要。颅内血管传统影像学评价方法,如DSA、CTA、MRA,主要评价病变血管管腔狭窄程度,不能评价管壁情况并具有电离辐射危害或有创性。高分辨率血管壁成像(High-resolution magnetic resonance vessell wall imaging, HR-VWI)作为一项新兴的无创检查技术,可以清晰地显示颅内动脉管壁情况,精准对斑块进行定量及定性分析,进而识别斑块的易损性特征。本文旨在深入探讨HR-VWI在评估颅内动脉粥样硬化斑块影像学特征与缺血性卒中之间的相关性,为患者早期发现及诊疗提供可行性方向。
Abstract: Intracranial atherosclerosis, a major cause of ischemic stroke (IS), carries high mortality and morbidity. Early detection of plaque composition and vulnerability is crucial due to its vessel wall origin. Traditional imaging (DSA, CTA, MRA) focuses on lumen stenosis, lacking wall assessment and with radiation or invasive risks. HR-VWI (High-resolution magnetic resonance vessell wall imaging), an emerging non-invasive technique, visualizes intracranial arterial walls, precisely analyzing plaques and identifying their vulnerability. This article aims to delve into the correlation between HR-VWI in assessing intracranial atherosclerotic plaque imaging features and ischemic stroke, providing a feasible direction for early detection, diagnosis, and treatment of patients.
文章引用:姚芝玲, 向美玲, 李勇, 谢明国. 颅内动脉粥样硬化的高分辨率血管壁成像影像学特征与缺血性卒中相关性的研究进展[J]. 临床医学进展, 2024, 14(10): 1330-1336. https://doi.org/10.12677/acm.2024.14102804

1. 引言

在全球范围内,卒中发病率及致死率居高不下,其中缺血性脑卒中(Ischemic stroke, IS)是最常见类型,占卒中病例的62.4%,其中颅内动脉粥样硬化性疾病(Intracranial atherosclerotic disease, ICAD)在IS中占30%~50%,是其主要影响因素[1]。我国缺血性卒中的病因中,ICAD占比明显高于西方国家,这使得提高颅内动脉粥样硬化斑块定性定量分析精准性迫在眉睫。既往多以颅内血管的狭窄程度作为ICAS型卒中的主要诊断标准,但多项研究[2] [3]及临床表明管腔狭窄程度、血管壁病变类型(斑块成分、斑块稳定性)也对其初期诊断及预后产生了不可估量的严重后果,早期筛选出易损斑块,有利于为卒中患者制定个性化治疗策略,有助于降低患者卒中的发生率及复发率[4]

国内外多位专家提出的斑块的定性(易损性)指标以及定量指标诊断标准[5] [6],判断斑块定性指标主要涵盖以下五点:斑块组织成分(如斑块内出血(Intraplaque hemorrhage, IPH)、薄的或破裂的纤维帽(Thin or ruptured fibrous cap, TRFC)、富含脂质的坏死核心(Lipid rich necrotic core, LRNC)等)、斑块强化(活动性炎症)、斑块位置与分布;定量指标主要包括:斑块大小、面积、斑块负荷、管腔狭窄率、斑块重构模式及重构指数(RI)、标准化管壁指数(NWI)、偏心指数(EI)等。综上定性指标与量化指标的综合应用,能为临床实践中患者的精准诊断与个性化治疗策略的制定提供了科学依据与强有力的支持。

2. 颅内动脉粥样硬化斑块HR-VWI定性指标

2.1. 斑块组织成分

斑块内出血(IPH)在T1WI呈高信号[4];这种现象可能是由于血管内皮的破坏、微血管功能障碍等因素导致,目前尚缺少病理验证[7]。Scheffler [8]研究发现,约有42%的颈内动脉粥样硬化患者存在IPH,具有较高的特异性;Wu等[9]一项颅内联合颅外颈动脉粥样硬化的前瞻性研究中显示,颅内IPH和颅外颈动脉粥样硬化并存状态是卒中复发的一个独立的预测影像标志物;Zhu等[10]研究进一步证实了IPH在基底动脉斑块研究中作为斑块破裂风险的独立预测因子,并且Song等[11]的研究也表明41.3% (114/276)患者为IPH阳性,证实IPH与缺血性卒中有显著相关性。许士滨等[12]临床研究通过对73例患者数据统计,复发患者的IPH比例较高,进一步支持IPH作为卒中复发的指标。因此,IPH是在颅内、颅外及颅内外联合动脉粥样硬化斑块易损性的一个重要特征,未来需更多病理数据对IPH与卒中发生及复发相关性进行验证。

薄的或破裂的纤维帽(TRFC)指的是纤维帽厚度不均匀或连续性中断,导致斑块表面不规则,从而增加血栓形成的风险[13]。目前关于TRFC的研究大多集中在颈内动脉方向,Zhou等[14]发现,TRFC和斑块表面不规则是同侧急性脑梗死(ACI)的独立预测因子;并且多项研究[13] [15]同样证明TRFC会增加斑块的易损性,从而增加患者发生IS的可能性;鉴于颅内动脉纤维帽不易显影的特点以及纤维帽相较于颈动脉更薄的不利因素[16],未来需要更多研究进一步验证颅内动脉中TRFC与缺血性脑卒中的关系。

富含脂质的坏死核心(LRNC)主要由胆固醇晶体、凋亡细胞成分及钙成分组成[17]。动脉粥样硬化形成时,体内炎症反应和氧化应激促使泡沫细胞转换成不稳定斑块,发生细胞凋亡并形成LRNC [18]。LRNC作为易损斑块的一个早期显著标志,在T1WI序列上表现为等-稍高信号、CE-T1WI无强化以及血管周围成分明显强化[5]。Chen等[19]研究发现,较大的脂质核心与缺血性卒中发生显著相关,且其大小和占比决定了卒中的严重程度。Li等[20]的研究表明,斑块表面不规则及脂质坏死核心与后续血管事件显著相关,进一步证实脂质核心的占比是缺血性卒中的危险因素。

2.2. 斑块强化

斑块强化通常指斑块内新生血管的形成,新生血管的管壁不完整,导致对比剂渗出,从而在MR成像中显示为强化。HR-VWI能够识别这种强化现象,可能与血管内皮通透性增加、血管新生、活动性炎症相关[21]。Fakih等[22]的研究表明,斑块与垂体柄对比度增强比值(CR)大于0.53是责任斑块的独立预测因素,特异性为62%;张锋[23]和Sun [24]等研究进一步证实,斑块强化程度与缺血性卒中的发生发展相关;Zhang等[25]研究表明斑块强化与卒中复发有显著相关性(P < 0.05),同样可以预测卒中复发情况。虽然Lyu等[26]在大脑中动脉的研究中发现斑块强化和卒中复发无明显的相关性,但HR-VWI在检测斑块强化方面仍具有重要价值,未来还需要进一步探索相关数据。

2.3. 斑块分布

颅内动脉粥样硬化斑块的分布也与缺血性卒中的发生率相关,这与颅内动脉自身特点(如管径纤细、走形迂曲、变异较多等)有关[16]。Xu等[27]研究发现,大脑中动脉(Middle Cerebral Artery, MCA)斑块多见于上侧壁,且上壁和背侧壁斑块与急性缺血性卒中相关(P = 0.001) [28]。汪贤云等[29]指出斑块位置越接近上壁,越容易累及穿支动脉开口,增加卒中风险。对于基底动脉(Basilar Artery, BA),钟丽玲等[30]发现斑块多位于腹侧壁,这可能影响脑组织的血供。Sun等[31]研究中发现基底动脉近端斑块更易发生IPH,从而引发缺血性脑卒中。因此,斑块的位置及其与穿支动脉的关系可以作为急性卒中的预测因素,为临床干预提供重要参考信息。

3. 颅内动脉粥样硬化斑块HR-VWI定量特征

3.1. 斑块所致血管狭窄程度

血管狭窄程度是最直接的评估方式。Tian等[32]的研究证明,HR-VWI与DSA在狭窄程度分级方面具有良好的一致性,显示HR-VWI在颅内血管狭窄检测显示较高的准确性和灵敏度。Wang等[33]临床回顾性分析中,约50.6%的临床事件发生于MRA显示管腔无明显狭窄的患者中,表明单纯地评估血管狭窄存在局限性,还需考虑其他不可或缺因素如血流动力学和血管收缩舒张等。

3.2. 管壁增厚方式及偏心指数

管壁病变形状对其诊断起重要作用,在颅内动脉中,粥样硬化斑块往往为特征性的偏心性管壁增厚,可用偏心指数(EI)进行评估,若EI ≥ 0.5,则为偏心性管壁增厚。但南晓勇等[34]在192例研究中表明血管狭窄程度高及向心性管壁增厚方式均为复发性卒中的独立危险因素(P < 0.05)。综上,研究结果间的差异可能源自斑块内部构造与组成的特异性,关于HR-VWI识别管腔狭窄程度及管壁增厚方式对斑块易损性特征的评估还需要进一步探讨。

3.3. 颅内血管的重构

目前观点认为[35] [36],血管壁受到长期各种刺激后斑块向外扩张,即正性重构(Positive reconstruction, PR),可减轻管腔狭窄,反之管腔向内收缩即负性重构(Negative reconstruction, NR),则加重血管腔狭窄。根据血管内超声的专家共识[37],将病变部位狭窄血管面积与参考部位面积之比定义为重构指数(Remodeling index, RI),可用RI作为斑块负荷的量化指标。目前重构的机制尚不明确,Niu等[38]研究表明,重构模式的不同可能与解剖位置的不同以及血流动力学的差异有关。Zhang等[28]在65例患者研究中发现,症状性粥样硬化斑块患者PR更常见;石增强等[39]研究进一步表明PR组较NR组其斑块负荷及斑块面积更大,可能会破坏斑块的稳定性、更易破裂,引发脑卒中。在Luo [40]对BA研究中发现,NR在症状型重度BA狭窄患者中占主导地位,并且与较低的斑块负荷有关,这可能为严重BA狭窄的评估提供参考,有症状组的RI也较低,这些表明NR预示着斑块的易损性,RI与斑块负荷之间的关联还需进一步评估。

3.4. 斑块负荷

斑块负荷在冠状动脉疾病领域首先提出,斑块的负荷公式是在斑块最大层面上测量相应管壁面积与血管面积的比值[41],表明斑块的面积越大,其负荷也就越大。Cao等[42]对53例大脑中动脉病例的研究中证明,有症状组的负荷明显高于无症状组,在中重度狭窄患者中更明显,表明斑块负荷越大,卒中严重程度越重。Ran等[43]研究表明越大的斑块负荷出现脑卒中复发概率更高,Lyu等[44]对132个病例的研究同样发现,较高的斑块负荷和增强率是卒中复发的独立风险因素。综上研究指出较大的斑块负荷与显著的管腔狭窄之间存在直接关联,这种狭窄状况会明显影响血流灌注,进而加剧斑块的不稳定性,提高其破裂的风险。因此,对斑块负荷的精确评估在预防脑卒中方面显得尤为重要。

4. 颅内动脉粥样硬化斑块的影像学检查

对于缺血性脑卒中的评估,传统的医学影像学检查技术,如DSA、CTA、MRA等,主要反映的是病变血管管腔的狭窄程度,而不能反映管壁情况,且均具有一定的缺点、如电离辐射危害或创伤性[45]。HR-VWI具有分辨率高、血管壁结构清晰、无创性检查等优势,通过其特征性“黑血”技术,有效抑制了管腔内的血液信号干扰,显著增强了动脉壁与周围组织的信号对比度,这一优势使得HR-VWI能够详尽地展示血管壁状况,分析斑块成分及辨别其稳定性[46]。在血管狭窄的诊断方面,HR-VWI与DSA具有相似的诊断结构,但在早期或细小斑块检出方面,HR-VWI远超DSA;同时在炎性血管诊断疾病方面,HR-VWI也有其独特优势。经国内外专家共识[17] [47],HR-VWI在临床上已广泛运用,被认为是评价斑块特征及管壁情况的可靠检查,且与组织病理学结果有着良好的一致性[48]

PET/MRI [49]将MRI卓越的软组织对比度与使用各种放射性示踪剂可视化特定斑块特征的机会相结合,到目前为止,其斑块成像一直集中在颈动脉和冠状动脉上,18F-FDG是最常用的示踪剂,其摄取代表斑块炎症,是易损斑块的病理学标志之一,代表斑块易损性,其严重程度可通过18F-FDG的摄取水平来间接反映。McCabe等[50]和Kelly等[51]研究表明,18F-FDG摄取可独立预测卒中复发情况;在AIZAZ等[49]研究中表明PET/MRA或可成为对颈动脉粥样硬化患者集检查与治疗于一体的综合解决方案。同样,对于颅内动脉斑块的检出、判断其复发情况及治疗方面的可行度还需通过更为广泛且深入的临床试验加以全面验证,以确保其应用的科学性与可靠性。

5. 小结与展望

HR-VWI技术作为一项新兴检查技术,在识别颅内动脉病变方面拥有其独特优势,相比传统检查,以无创性优势清晰显示颅内动脉管壁情况,准确地评估斑块的易损性,对于早期识别ICAD具有重大的临床意义,便于临床医师在颅内动脉病变的预后判断、风险预测、指导治疗决策等方面发挥更好的作用。颅外颈内动脉可通过颈动脉内膜剥脱术获得,而颅内动脉由于自身特点(如管径纤细、走形迂曲、变异较多等),颅内动脉HR-VWI在斑块成分与易损性的验证仍缺乏病理组织学的证据。因此未来的研究还应侧重于颅内血管壁成像的病理学验证,同时仍需要对颅内动脉进行更多、更大规模研究,以明确HR-VWI在ICAD的诊断检查、治疗效果及复发情况,以便探索该项技术更多的优势及可行性。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] 《中国脑卒中防治报告2021》编写组, 王陇德. 《中国脑卒中防治报告2021》概要[J]. 中国脑血管病杂志, 2023, 20(11): 783-793.
[2] 王雪莲, 王飞, 刘心成, 等. 高分辨率MRI血管壁成像评估颅内动脉粥样硬化相关缺血性卒中发病机制及治疗的研究进展[J]. 中国医学影像学杂志, 2024, 32(7): 747-752.
[3] Shi, Z., Zhao, M., Li, J., Meddings, Z., Shi, Y., Jiang, T., et al. (2021) Association of Hypertension with Both Occurrence and Outcome of Symptomatic Patients with Mild Intracranial Atherosclerotic Stenosis: A Prospective Higher Resolution magnetic Resonance Imaging Study. Journal of Magnetic Resonance Imaging, 54, 76-88.
https://doi.org/10.1002/jmri.27516
[4] 马念俄. 颅内动脉责任斑块MR血管壁成像的研究进展[J]. 实用放射学杂志, 2021, 37(10): 1724-1727.
[5] 陈丽君. 症状性颅内动脉粥样硬化斑块的高分辨磁共振血管壁成像研究分析[D]: [硕士学位论文]. 承德: 承德医学院, 2023.
[6] Saba, L., Saam, T., Jäger, H.R., Yuan, C., Hatsukami, T.S., Saloner, D., et al. (2019) Imaging Biomarkers of Vulnerable Carotid Plaques for Stroke Risk Prediction and Their Potential Clinical Implications. The Lancet Neurology, 18, 559-572.
https://doi.org/10.1016/s1474-4422(19)30035-3
[7] Wu, F., Ma, Q., Song, H., Guo, X., Diniz, M.A., Song, S.S., et al. (2018) Differential Features of Culprit Intracranial Atherosclerotic Lesions: A Whole-Brain Vessel Wall Imaging Study in Patients with Acute Ischemic Stroke. Journal of the American Heart Association, 7, Article 9705.
https://doi.org/10.1161/jaha.118.009705
[8] Scheffler, M., Pellaton, A., Boto, J., Barnaure, I., Delattre, B.M., Remuinan, J., et al. (2020) Hemorrhagic Plaques in Mild Carotid Stenosis: The Risk of Stroke. Canadian Journal of Neurological Sciences, 48, 218-225.
https://doi.org/10.1017/cjn.2020.177
[9] Wu, G., Zhu, C., Wang, H., Fu, D., Lu, X., Cao, C., et al. (2023) Co-Existing Intracranial and Extracranial Carotid Atherosclerosis Predicts Large-Artery Atherosclerosis Stroke Recurrence: A Single-Center Prospective Study Utilizing Combined Head-and-Neck Vessel Wall Imaging. European Radiology, 33, 6970-6980.
https://doi.org/10.1007/s00330-023-09654-5
[10] Zhu, C., Tian, X., Degnan, A.J., Shi, Z., Zhang, X., Chen, L., et al. (2018) Clinical Significance of Intraplaque Hemorrhage in Low and High-Grade Basilar Artery Stenosis on High-Resolution MRI. American Journal of Neuroradiology, 39, 1286-1292.
https://doi.org/10.3174/ajnr.a5676
[11] Song, X.W., Wei, C.M., Xu, W.D., et al. (2020) Prevalence and Predictors of Intraplaque Hemorrhage in Stroke Patients with Intracranial Atherosclerosis. Chinese Medical Journal, 100, 2622-2627.
[12] 许士滨, 宋培记, 时传迎, 等. 基底动脉斑块内出血是复发性脑桥梗死的危险因素[J]. 实用放射学杂志, 2023, 39(2): 183-186.
[13] 徐含波, 余苗, 孟闫凯, 等. CTA源图像上颈动脉周围脂肪定量与斑块MRI易损特征的相关性研究[J]. 中国医学计算机成像杂志, 2024, 30(1): 27-32.
[14] Zhou, D., Li, J., Liu, D., et al. (2019) Irregular Surface of Carotid Atherosclerotic Plaque is Associated with Ischemic Stroke: A Magnetic Resonance Imaging Study. Journal of Geriatric Cardiology, 16, 872-879.
[15] Yu, M., Meng, Y., Zhang, H., Wang, W., Qiu, S., Wang, B., et al. (2022) Associations between Pericarotid Fat Density and Image-Based Risk Characteristics of Carotid Plaque. European Journal of Radiology, 153, Article 110364.
https://doi.org/10.1016/j.ejrad.2022.110364
[16] Bala, F., Cimflova, P., Singh, N., Zhang, J., Kappelhof, M., Kim, B.J., et al. (2023) Impact of Vessel Tortuosity and Radiological Thrombus Characteristics on the Choice of First-Line Thrombectomy Strategy: Results from the ESCAPE-NA1 Trial. European Stroke Journal, 8, 675-683.
https://doi.org/10.1177/23969873231183766
[17] 中华医学会放射学分会MR学组. 颅内MR血管壁成像技术与应用中国专家共识[J]. 中华放射学杂志, 2019, 53(12): 1045-1059.
[18] Benson, J.C., Saba, L., Bathla, G., Brinjikji, W., Nardi, V. and Lanzino, G. (2023) MR Imaging of Carotid Artery Atherosclerosis: Updated Evidence on High-Risk Plaque Features and Emerging Trends. American Journal of Neuroradiology, 44, 880-888.
https://doi.org/10.3174/ajnr.a7921
[19] Chen, L., Liu, Q., Shi, Z., Tian, X., Peng, W. and Lu, J. (2018) Interstudy Reproducibility of Dark Blood High-Resolution MRI in Evaluating Basilar Atherosclerotic Plaque at 3 Tesla. Diagnostic and Interventional Radiology, 24, 237-242.
https://doi.org/10.5152/dir.2018.17373
[20] Li, J., Li, D., Yang, D., Hang, H., Wu, Y., Yao, R., et al. (2020) Irregularity of Carotid Plaque Surface Predicts Subsequent Vascular Event: A MRI Study. Journal of Magnetic Resonance Imaging, 52, 185-194.
https://doi.org/10.1002/jmri.27038
[21] 王红茹, 高阳, 吴琼. 高分辨率磁共振血管壁成像在颅内动脉粥样硬化斑块上的研究进展[J]. 磁共振成像, 2021, 12(9): 95-97+102.
[22] Fakih, R., Roa, J.A., Bathla, G., Olalde, H., Varon, A., Ortega-Gutierrez, S., et al. (2020) Detection and Quantification of Symptomatic Atherosclerotic Plaques with High-Resolution Imaging in Cryptogenic Stroke. Stroke, 51, 3623-3631.
https://doi.org/10.1161/strokeaha.120.031167
[23] 张锋, 徐英进, 边静, 等. 颅内动脉狭窄斑块高分辨MRI影像学特征及其危险因素分析[J]. 实用放射学杂志, 2019, 35(9): 1395-1398.
[24] Sun, B., Wang, L., Li, X., Zhang, J., Zhang, J., Tian, J., et al. (2024) Delayed Enhancement of Intracranial Atherosclerotic Plaque Can Better Differentiate Culprit Lesions: A Multiphase Contrast-Enhanced Vessel Wall MRI Study. American Journal of Neuroradiology, 45, 262-270.
https://doi.org/10.3174/ajnr.a8132
[25] Zhang, X., Chen, L., Li, S., Shi, Z., Tian, X., Peng, W., et al. (2020) Enhancement Characteristics of Middle Cerebral Arterial Atherosclerotic Plaques over Time and Their Correlation with Stroke Recurrence. Journal of Magnetic Resonance Imaging, 53, 953-962.
https://doi.org/10.1002/jmri.27351
[26] Lyu, J., Ma, N., Tian, C., Xu, F., Shao, H., Zhou, X., et al. (2019) Perfusion and Plaque Evaluation to Predict Recurrent Stroke in Symptomatic Middle Cerebral Artery Stenosis. Stroke and Vascular Neurology, 4, 129-134.
https://doi.org/10.1136/svn-2018-000228
[27] Lu, S.S., Ge, S., Su, C.Q., Xie, J., Shi, H.B. and Hong, X.N. (2018) Plaque Distribution and Characteristics in Low-Grade Middle Cerebral Artery Stenosis and Its Clinical Relevance: A 3-Dimensional High-Resolution Magnetic Resonance Imaging Study. Journal of Stroke and Cerebrovascular Diseases, 27, 2243-2249.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.04.010
[28] Zhang, D., Wang, M., Wu, L., Zhao, Y., Wang, S., Yin, X., et al. (2022) Assessing the Characteristics and Diagnostic Value of Plaques for Patients with Acute Stroke Using High-Resolution Magnetic Resonance Imaging. Quantitative Imaging in Medicine and Surgery, 12, 1529-1538.
https://doi.org/10.21037/qims-21-531
[29] 汪贤云, 李小虎, 钱银锋, 等. 应用高分辨率MRI探讨大脑中动脉斑块与脑卒中类型的关系[J]. 实用放射学杂志, 2021, 37(3): 356-359+364.
[30] 钟丽玲, 徐棣豪, 宋建勋. 基于血管壁磁共振成像的颅内动脉粥样硬化斑块分布[J]. 国际脑血管病杂志, 2019, 27(7): 537-542.
[31] Sun, J., Liu, G., Zhang, D., Wu, Z., Liu, J. and Wang, W. (2021) The Longitudinal Distribution and Stability of Curved Basilar Artery Plaque: A Study Based on HR-MRI. Journal of Atherosclerosis and Thrombosis, 28, 1333-1339.
https://doi.org/10.5551/jat.62448
[32] Tian, X., Tian, B., Shi, Z., Wu, X., Peng, W., Zhang, X., et al. (2020) Assessment of Intracranial Atherosclerotic Plaques Using 3d Black-Blood MRI: Comparison with 3d Time-of-Flight MRA and DSA. Journal of Magnetic Resonance Imaging, 53, 469-478.
https://doi.org/10.1002/jmri.27341
[33] Wang, Y., Liu, X., Wu, X., Degnan, A.J., Malhotra, A. and Zhu, C. (2019) Culprit Intracranial Plaque without Substantial Stenosis in Acute Ischemic Stroke on Vessel Wall MRI: A Systematic Review. Atherosclerosis, 287, 112-121.
https://doi.org/10.1016/j.atherosclerosis.2019.06.907
[34] 南晓勇, 鲁冬青, 南晓娟, 等. 缺血性脑卒中再发磁共振血管壁成像特征及其危险因素分析[J]. 临床军医杂志, 2023, 51(12): 1277-1280.
[35] Won, S.Y., Cha, J., Choi, H.S., Kim, Y.D., Nam, H.S., Heo, J.H., et al. (2022) High-Resolution Intracranial Vessel Wall MRI Findings among Different Middle Cerebral Artery Territory Infarction Types. Korean Journal of Radiology, 23, 333-342.
https://doi.org/10.3348/kjr.2021.0615
[36] Lin, G., Song, J., Fu, N., Huang, X. and Lu, H. (2020) Quantitative and Qualitative Analysis of Atherosclerotic Stenosis in the Middle Cerebral Artery Using High-Resolution Magnetic Resonance Imaging. Canadian Association of Radiologists Journal, 72, 783-788.
https://doi.org/10.1177/0846537120961312
[37] 血管内超声在冠状动脉疾病中应用的中国专家共识专家组. 血管内超声在冠状动脉疾病中应用的中国专家共识(2018) [J]. 中华心血管病杂志, 2018, 46(5): 344-351.
[38] Niu, P., Yu, Y., Zhou, H., Liu, Y., Luo, Y., Guo, Z., et al. (2016) Vessel Wall Differences between Middle Cerebral Artery and Basilar Artery Plaques on Magnetic Resonance Imaging. Scientific Reports, 6, Article 38534.
https://doi.org/10.1038/srep38534
[39] 石增强, 贾琳, 贾文霄, 等. HRMR-VWI对椎-基底动脉粥样硬化血管壁改变与急性脑梗死的关系研究[J]. 磁共振成像, 2019, 10(10): 743-747.
[40] Luo, J., Bai, X., Tian, Q., Li, L., Wang, T., Xu, R., et al. (2023) Patterns and Implications of Artery Remodeling Based on High-Resolution Vessel Wall Imaging in Symptomatic Severe Basilar Artery Stenosis. Quantitative Imaging in Medicine and Surgery, 13, 2098-2108.
https://doi.org/10.21037/qims-22-771
[41] 崔丽贺. 基于多模态MRI技术对颈动脉粥样硬化斑块特征评价应用研究[D]: [硕士学位论文]. 沈阳: 中国医科大学, 2023.
[42] Cao, Y., Sun, Y., Zhou, B., Zhao, H., Zhu, Y., Xu, J., et al. (2017) Atherosclerotic Plaque Burden of Middle Cerebral Artery and Extracranial Carotid Artery Characterized by MRI in Patients with Acute Ischemic Stroke in China: Association and Clinical Relevance. Neurological Research, 39, 344-350.
https://doi.org/10.1080/01616412.2017.1281196
[43] Ran, Y., Wang, Y., Zhu, M., Wu, X., Malhotra, A., Lei, X., et al. (2020) Higher Plaque Burden of Middle Cerebral Artery Is Associated with Recurrent Ischemic Stroke. Stroke, 51, 659-662.
https://doi.org/10.1161/strokeaha.119.028405
[44] Lv, Y., Ma, X., Zhao, W., Ju, J., Yan, P., Li, S., et al. (2023) Association of Plaque Characteristics with Long-Term Stroke Recurrence in Patients with Intracranial Atherosclerotic Disease: A 3D High-Resolution MRI-Based Cohort Study. European Radiology, 34, 3022-3031.
https://doi.org/10.1007/s00330-023-10278-y
[45] Nissen, S.E. (2020) Vulnerable Plaque and Einstein’s Definition of Insanity. Journal of the American College of Cardiology, 75, 1383-1385.
https://doi.org/10.1016/j.jacc.2020.01.043
[46] 杨国辉, 梁玉泉, 陈燕, 等. 高分辨血管壁MRI在颅内动脉疾病中的诊断价值[J]. 医学影像学杂志, 2021, 31(3): 379-381+386.
[47] Mandell, D.M., Mossa-Basha, M., Qiao, Y., Hess, C.P., Hui, F., Matouk, C., et al. (2016) Intracranial Vessel Wall MRI: Principles and Expert Consensus Recommendations of the American Society of Neuroradiology. American Journal of Neuroradiology, 38, 218-229.
https://doi.org/10.3174/ajnr.a4893
[48] Turan, T.N., Rumboldt, Z., Granholm, A., Columbo, L., Welsh, C.T., Lopes-Virella, M.F., et al. (2014) Intracranial Atherosclerosis: Correlation between in Vivo 3T High Resolution MRI and Pathology. Atherosclerosis, 237, 460-463.
https://doi.org/10.1016/j.atherosclerosis.2014.10.007
[49] Aizaz, M., Moonen, R.P.M., van der Pol, J.A.J., Prieto, C., Botnar, R.M. and Kooi, M.E. (2020) PET/MRI of Atherosclerosis. Cardiovascular Diagnosis and Therapy, 10, 1120-1139.
https://doi.org/10.21037/cdt.2020.02.09
[50] McCabe, J.J., Camps-Renom, P., Giannotti, N., McNulty, J.P., Coveney, S., Murphy, S., et al. (2021) Carotid Plaque Inflammation Imaged by PET and Prediction of Recurrent Stroke at 5 Years. Neurology, 97, e2282-e2291.
https://doi.org/10.1212/wnl.0000000000012909
[51] Kelly, P.J., Camps-Renom, P., Giannotti, N., Martí-Fàbregas, J., Murphy, S., McNulty, J., et al. (2019) Carotid Plaque Inflammation Imaged by 18 F-Fluorodeoxyglucose Positron Emission Tomography and Risk of Early Recurrent Stroke. Stroke, 50, 1766-1773.
https://doi.org/10.1161/strokeaha.119.025422