人腺病毒感染流行病学研究进展
Advances in Epidemiological Studies of HAdV Infection
DOI: 10.12677/acm.2024.14102805, PDF, HTML, XML,    国家自然科学基金支持
作者: 黄彦浩, 魏建华, 臧 娜*:重庆医科大学附属儿童医院呼吸科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童感染与免疫罕见病重庆市重点实验室,重庆
关键词: 人腺病毒感染流行病学临床表现Human Adenovirus Infection Epidemiology Clinical Manifestation
摘要: 人腺病毒(Human adenovirus, HAdV)是一种具有传染性的病原体,可引起全身各系统疾病,主要有A-G共7个亚属,不同亚属临床表现不尽相同,流行趋势存在差异。本文基于HAdV流行特征和临床表现研究进行展开讨论,为腺病毒感染监测和预防控制提供依据。
Abstract: Human adenovirus (HAdV) is an infectious pathogen that can cause diseases of various systems in the body, mainly A-G, with a total of 7 subgenera. Different subgenera have different tissue tropism, clinical manifestations, and different epidemic trends. This article discusses the epidemiological characteristics and clinical manifestations of HAdV, and provides a basis for the surveillance and prevention and control of adenovirus infection.
文章引用:黄彦浩, 魏建华, 臧娜. 人腺病毒感染流行病学研究进展[J]. 临床医学进展, 2024, 14(10): 1337-1348. https://doi.org/10.12677/acm.2024.14102805

1. 前言

人腺病毒(Human adenovirus, HAdV)是一种常见的具有传染性的病原体,1953年首次发现,次年命名为人腺病毒。HAdV是引起呼吸道感染重要的病毒病原,主要引发发热、咳嗽、喘息等症状,严重者可因呼吸衰竭而死亡[1]。HAdV还可引起胃肠炎、肝炎、心肌炎、出血性膀胱炎、肾炎,另外,结膜炎和脑膜脑炎也可能与HAdV感染有关。HAdV血清型及基因型多样、致病机制复杂,且以各种方式不断进化,为临床制定疾病防控措施提出了极大的挑战。本文检索国内外HAdV感染研究文献,基于HAdV的分子生物学特征,对不同组织嗜性HAdV感染引起的疾病临床症状和流行特征进行综述,为监测HAdV感染和防控提供依据。

2. HAdV分子生物学特征

HAdV是一种在细胞核中复制的无包膜双链二十面体病毒,线性双链DNA分子大小为26 kb~45 kb,主要有252个壳粒,壳的直径约为7 nm~9 nm,含有13% DNA和87%蛋白质以及微量的碳水化合物,无膜或脂质。基因组的特征是其具有大小从36 bp到超过200 bp不等的倒置末端重复序列,5'端与末端蛋白相连,与HAdV复制密切相关[2]。其大部分生命周期,包括病毒基因转录、基因组复制和子代病毒粒子的形成,都发生在被感染细胞的细胞核内[3]。目前国际通用的检测方法包括病毒分离与培养、血清学检查以及核酸检测等,常见检测标本包括外周血、鼻咽分泌物、痰液、肺泡灌洗液、眼部分泌物、粪便[4]。HAdV是一种具有多种血清型的病原体,目前已知的血清型共有52种,不同的血清型不断发生重组,现已有116种基因型,分A~G七个亚属,且仍在不断更新。不同型别HAdV的组织嗜性、致病力、流行趋势等特性各不相同。全球散在分布,临床表现复杂多样[5]

3. 不同系统HAdV感染

HAdV感染最常侵犯人体呼吸道,多数患者在两周内治愈,少数患者可并发重症肺炎、呼吸衰竭等,严重可危及生命。此外,其亦可侵犯胃肠道、眼睛、中枢神经等其他重要脏器系统,引起腹泻、眼红、惊厥等表现。HAdV感染在全球范围内流行,基因型多样。

3.1. 呼吸系统

HAdV是呼吸系统的重要病原,其易导致急性呼吸道感染、肺炎、咽结膜热。

急性呼吸道感染高发于0~5岁儿童、免疫力低下、生活在封闭环境中的人群,其中以0~3岁婴幼儿为主,男性患儿略多于女性[6]-[8]。在新生儿和婴儿中,20%的HAdV呼吸道感染进展为HAdV肺炎[4],常见临床表现为持续高热、咳嗽、气促、精神反应差等[9]。临床研究表明约有1/3的HAdV肺炎会进展为重症肺炎,在6个月至2岁婴幼儿中更为常见,其病情危重,严重者可危及生命[10]。相较于儿童,成人HAdV感染病例较少,多集中分布,多发于免疫功能低下的患者,症状较轻,多呈自限性,预后较好,少见并发症风险[4]。HAdV常导致局部地区的感染暴发,暴发事件更容易发生在长期生活于封闭环境中的人群,比如军人、大学生、社区。我们检索2009~2024年全球发表在知网、万方、pubmed、web of science因呼吸道感染的HAdV暴发事件后发现,常见暴发型别为HAdV-7、HAdV-55 (如图1)。

咽结膜热(Pharyngeal conjunctival fever, PCF)是由上呼吸道感染引起的病毒性结膜炎,HAdV为其最重要的病毒病原,也常引起局部地区感染暴发,常在人口密集聚集的场所如军营、学校和游泳池等,临床上常见分型为HAdV-3、HAdV-4、HAdV-7、HAdV-14,以HAdV-3最为常见[11]。多见于学龄期儿童,无明显性别差异,无明显季节差异,多暴发于夏天[12] [13]

Figure 1. Global outbreak of acute respiratory infections with HAdV

1. 全球HAdV急性呼吸道感染暴发事件

与呼吸道感染有关的亚属主要为HAdV-B (包括3、7、14、21、55)、HAdV-C (包括1、2、5、6)、HAdV-E (4),以HAdV-B3、HAdV-B7检出率最高。近年来,HAdV-B7检出率和感染率有逐渐增高的趋势,亚洲国家中,在中国(如图1),HAdV约占急性呼吸道感染患者的5.8%~13%,主要流行血清型为HAdV-3、HAdV-7 [14]。不同地区优势型别有所差异,在我国北方,北京[15]、河北[16]、山东[17]、青海[18]等地均以HAdV-3为主要流行型别,而位于南方的湖南[6]、广东[19]、四川[20],则呈现出HAdV-7检出率高于HAdV-3的趋势。邻近中国的日本[21],也以HAdV-3为主要流行型别,HAdV-7虽在上世纪90年代检出率较高,但近年以HAdV-1、HAdV-2为主。这与同处于东南亚的韩国[22]、泰国[23]的结果保持一致。位于非洲地区的喀麦隆[24],以HAdV-B组血清型为主要型别,在肯尼亚[25],虽在13例患儿标本里检出罕见的HAdV-B16,但整体上仍能观察到HAdV-C组血清型在各个时间段均为主要型别,这与地跨亚非两州的埃及[26]的结果保持一致。美洲地区,美国一项横跨13年周期的数据显示[27],HAdV-3型为主要型别,HAdV-1、HAdV-2次之,这与阿根廷[28]、加拿大[29]的结果保持一致。除此之外,也可见到罕见型别如HAdV-12、HAdV-31、HAdV-41等。欧洲地区的意大利[30]、土耳其[31]、丹麦[9],主要流行型别同样为HAdV-1、HAdV-2、HAdV-3、HAdV-4,意大利以HAdV-2为主,土耳其以HAdV-3为主,而丹麦以HAdV-1、HAdV-4为主[24] [26] [28] [29]

HAdV分型没有明确的年龄特征。研究发现,年龄越小,HAdV-C组血清型分布比例越大,HAdV-B组反之。常见血清型HAdV-3、HAdV-7的年龄分布特征与之类似,其中HAdV-3平均分布年龄稍长于HAdV-7。

HAdV呼吸道感染在世界范围内流行,不同季节呼吸道HAdV检出率有差异,总体呈现出冬春季高于夏秋季的规律。在我国北方地区,冬春季为HAdV呼吸道感染的高发季节,而南方地区的高发季节却为春夏季。来自河北[32]的研究充分显示出其冬春季多发的特点,这与北京[15]的研究结果类似,其表明HAdV感染呈全年散发的趋势,以冬季为主。而在我国南方地区,苏州[33]、湖南[6]的研究都说明夏季6-8月为当地HAdV高发季节。在日本,冬春季发病率较高[21]。位于热带的巴西里约热内卢,全年高温,其HAdV的检出主要集中在冬季和早春,并且随着平均气温的升高,HAdV检出率越低[7]。与位于热带的东南亚曼谷地区结果类似,其HAdV多发于温度较低的旱季[23]。地处北温带的土耳其,研究显示当地没有明显的季节流行趋势,呈全年散发的状态[31]。目前数据表明,HAdV呼吸道感染没有明显的季节流行规律,但多集中在冬春季节,不同地区不同时期有所变化。

气候条件也是影响病毒生长的重要因素,其包括温度、湿度、降水量、日照时间、风速、空气质量等[34]。目前,国内外针对气候对HAdV呼吸道检出率影响的报道较少。其中,可能与不同地区气候条件变化较大有关,因此,仍缺少足够的证据证明某一项气候因素与发病率之间的关系。地处亚热带季风气候的中国苏州地区,其HAdV检出率与温度、日照时间、风速之间有统计学意义,其中与温度、日照呈正相关,而与风速呈负相关[33]。来自巴西南部的结果显示其多发于温度较低的季节,这其中可能与其独特的热带草原气候有关。该地区的冬春季为本地的雨季,与旱季相比降水量差异较大,相对湿度较大。另外,大量的降水使得空气变得更干燥,为HAdV的繁殖提供了完美的条件[7]。相似气候类型的泰国曼谷,热带季风气候,其降水量更大、雨季更长,与巴西类似。同样表现出相同的规律,这进一步说明HAdV感染可能与降水量和相对湿度有关[23]

3.2. 消化系统

1) 胃肠道

HAdV是引起婴幼儿胃肠炎及腹泻的重要病原体,在低收入和中等收入国家的幼儿中具有较高的检出率及感染率[35]。在中国2009~2018年重大专项腹泻症候群病原谱监测中,HAdV检出率为9.27%,仅次于轮状病毒和诺如病毒[36]。同为发展中国家的泰国,其胃肠炎患者HAdV检出率达到7.2% [37]。而在欠发达国家埃塞俄比亚,HAdV在急性胃肠炎患者中检出率高达32% [38]。研究充分说明,HAdV引起的胃肠炎给全球造成了巨大社会负担,尤其是在发展中国家以及欠发达国家中。

HAdV引起的胃肠炎通常见于5岁以下的儿童,以0~2岁婴幼儿为高发人群,不存在明显性别差异[39]。主要表现为频繁腹泻,呈水样便或稀便,少数患者可排出粘液,常伴呕吐,可出现发热,多呈自限性,缺乏特异性。仅从临床表现很难与其他病原鉴别,不同分型临床表现差别不大,重型患者较少,可能与人群易感性有关[35]。在全球大多数国家和地区中,引起胃肠炎的主要血清型为HAdV-F组亚型的HAdV-41、HAdV-40,以HAdV-41为主,且有逐渐增加的趋势。除此之外,HAdV-C组亚型中的HAdV-1、HAdV-2、HAdV-5也是常见的致病型[39]-[41]。另外,在中国北京和印度,HAdV-A组中的HAdV-12、HAdV-31也已被证实为常见致泻的血清型[42] [43]。近年的一项研究表明,HAdV-3也可能导致腹泻的发生[44],中国福建地区更是观察到其为主要流行型别[45]。HAdV所致腹泻多为联合感染,最常见是与轮状病毒的双重感染,与轮状、诺如病毒三重感染也较为多见[46]。国内相关研究表明HAdV引起的腹泻,在不同年份检出率有所波动,在COVID-19流行的2020年达到最低水平,总体上没有显著季节性,全年散发,可能在秋冬与春夏交接季节存在流行小高峰[47]。而在山东发现其在气温较低的季节发病率较高[48]。国际上研究亦表明HAdV所致胃肠炎没有明显的季节性,在不同地区的季节性程度有很大差异。在坦桑尼亚的哈耶姆和尼泊尔的巴克塔普尔高发于4~6月,孟加拉国的达卡和秘鲁的洛雷托则在5月、11月有着多个感染高峰,且降雨量和平均温度与HAdV感染发病率之间都没有明确的关系[49]。男女之间没有明显的差异,但在中国福建地区可观察到女性患儿患病率高于男性,且存在统计学差异。

2) 肝脏

HAdV引起的急性肝炎主要见于免疫功能低下的患者,其症状通常较轻,多呈自限性,只有少数重症肝炎甚至肝衰竭的报道[50]。但最近一项暴发事件表明,在英格兰和苏格兰,感染HAdV的急性病毒性肝炎患儿,症状较重,甚至有需要肝移植的肝衰竭案例,进一步分型提示18例患儿均为HAdV-41,该血清型作为英国最常见的HAdV分型之一,主要引起胃肠道症状如腹泻、恶心、呕吐,近5年来才在感染该种血清型的病例中发现有急性肝炎表现[51] [52]。大多数HAdV肝炎患者为儿童,几乎所有病例均为免疫功能受损的患者[53]。常见诱因包括器官移植术后、重症感染[54]。美国2014年的一项研究汇总89例HAdV肝炎病例中,64%患者为儿童,其中儿童年龄的中位数为1岁,绝大多数继发于肝移植或骨髓移植术后,进一步病原学鉴定结果显示,在肝脏移植的病例中引起HAdV肝炎的病原主要为HAdV-5,在骨髓移植病例中主要为HAdV-2 [53]。亦有研究报道了在免疫功能正常的儿童和成人中检出HAdV肝炎的病例。在美国阿拉巴马州儿童团医院,发现了8例HAdV肝炎患儿,均具有正常免疫功能,对其中5例患儿的全血标本进行了血清型分析,均显示为HAdV-41。另有一例研究报道了一位35岁免疫功能正常的患者罹患HAdV肝炎的病例,但其具体血清型不明[55]。总而言之,HAdV肝炎通常继发于器官移植后免疫功能障碍的患者中,常见于儿童,但最近也有不少研究表明其同样可在免疫功能正常患者中出现,成人与儿童均可见。近年一项临床研究报道了腺相关病毒2型(adeno-associated virus 2, AAV-2)在儿童不明原因肝炎的重要作用,其表明与单独HAdV感染的肝炎相比,联合AAV-2感染的HAdV肝炎病例严重程度更重,常导致重症[56],这给临床工作者敲响了警钟,是否应该将HAdV感染作为不明原因肝炎的鉴别诊断,需要进一步探讨。

HAdV肝炎常见血清型为HAdV-1、HAdV-2、HAdV-5、HAdV-40、HAdV-41型,大多继发于肝移植或骨髓移植术后,而最近研究显示HAdV-41是引起不明原因肝炎最常见的血清型[57]

3.3. 眼睛

HAdV眼睛感染很常见,是病毒性结膜炎最常见的病因,传播性极强,通过眼科仪器、眼部分泌物、手对眼接触、游泳池或密切接触传播,可导致咽结膜热及流行性角膜结膜炎(epidemic keratoconjunctivitis, EKC)。

HAdV所致EKC作为唯一涉及到角膜的HAdV结膜炎,其发病急骤,主要表现为结膜充血、水肿,眼分泌物、疼痛、畏光和假膜,常在急性感染消退后持续或复发数月至数年[2] [58]。自首次在造床工人中报告上千例HAdV型所致EKC后[59],几十年间,其流行趋势不断扩散,现已分布至全球。EKC在成人中的发生率更高,较少发生于儿童,在服务人员及工人中检出率较高,没有明显的季节流行性,日本、韩国主要好发于夏季的7~8月[60] [61]

常见于HAdV-D组基因型如HAdV-8、HAdV-19、HAdV-37、HAdV-53、HAdV-54、HAdV-56、HAdV-64,以HAdV-8、HAdV-19、HAdV-37型为主。另外,HAdV-B、HAdV-E组也可引起,其临床症状更为轻微。HAdV-8作为全球最为流行的血清型,临床表现常较严重。不同地区流行型别有所区别,在欧美国家的美国、意大利和英国,HAdV-8仅占HAdV角结膜炎病例的5%,但在亚洲的中国、韩国、伊朗和沙特阿拉伯,HAdV-8均为最常见的血清型[13] [62]。近年来在日本,HAdV-8占比有逐渐降低的趋势,HAdV-3、HAdV-54比例有所增加,并观察到由HAdV-52、HAdV-54和HAdV-56引起的EKC流行,HAdV-54是2015年~2016年日本报告的EKC病例中最常检测到的基因型[63]。由于EKC高度集中的特点,其容易引起局部地区的暴发事件,有系统评价表明HAdV-8为最常见的暴发类型,其余常见暴发分型包括HAdV-4、HAdV-54,近年来在美国[64]也记录到了HAdV-53型的暴发事件。

3.4. 中枢神经系统

HAdV可侵犯中枢神经系统,病例通常局限在儿童中,绝大多数<5岁,在前瞻性研究中,均未在成人中观察到HAdV相关性中枢神经系统损伤[65] [66]。在儿童中,HAdV感染引起的中枢神经系统疾病包括热性惊厥、癫痫发作、脑炎、脑膜脑炎等,轻症通常预后良好,严重者也可致急性坏死性脑病,遗留永久性神经系统后遗症。在HAdV中枢病变患者标本中,呼吸道检出率高于脑脊液,在48例明确HAdV中枢神经系统损伤患者中,脑脊液阳性率仅有15%,而呼吸道检出率高达100% [66] [67]。我国两项回顾性分析表明在确诊HAdV呼吸道感染的儿童中,分别有1.5%、3.3%会出现中枢神系统受累表现,最常见表现为癫痫发作及意识状态改变,90%以上患者康复后无后遗症[68] [69]。巴西一项前瞻性研究对373名病毒性中枢神经系统功能障碍患儿的脑脊液进行病原学分析,HAdV检出率为1.08% [70]。脑炎、脑膜脑炎作为HAdV常见中枢神经系统疾病,所致疾病负担较重。在芬兰进行的儿科研究中,儿童脑炎病例中HAdV的检出率达5% [71],在日本,这一比率为2.8% [72]。而土耳其一项观察性研究结果显示,在186名确诊病毒性脑膜脑炎患儿的脑脊液中,HAdV检出率高达22%,仅次于肠道病毒[73],均说明HAdV在儿童神经系统病变中的重要性。在季节分布方面,巴西的数据表明HAdV脑炎/脑膜脑炎集中分布在秋冬季节,与呼吸道感染分布类似[70]。在分型方面,目前尚未有大样本研究表明在HAdV中枢神经损伤中脑脊液中分型情况,大多数研究仍集中在呼吸道标本中,常见于HAdV-1、HAdV-2、HAdV-3、HAdV-7,其中HAdV-3、HAdV-7为最常见的类型,有研究表明,HAdV-3所致症状通常较轻,而HAdV-2常与严重脑炎相关,预后不良[67] [69]。近年来也在我国发生过一起重症脑炎以致死亡的案例,在其鼻咽子、呼吸道、脑脊液中均检出HAdV-7 [74]。确诊HAdV中枢系统功能障碍的患儿中,其呼吸道的检出率高于脑脊液,因此,仅根据临床标准通常无法明确区分原发性脑炎和感染相关性脑病,而脑脊液中的病毒检测结果也不能作为中枢神经系统疾病严重程度的指标[68] [69]

3.5. 血液系统

HAdV可侵袭血液系统,导致弥散性血管内凝血(Diffuse intravascular coagulation, DIC)、噬血细胞性淋巴组织细胞增多症(hemophagocytic lymphohistiocytosis, HLH) [75]。严重HAdV感染相关HLH多联合重症肺炎出现,常继发于骨髓移植术后免疫紊乱,新近研究表明,其可联合实体肿瘤出现[76] [77]。主要症状表现为持续高热、肝脾肿大、双系或三系血细胞减少、凝血功能障碍以及骨髓中的噬白细胞现象。由于病情进展快,以致其死亡率高[78] [79]。其在婴幼儿、年长儿、成人中均有散在病例,以<2岁的婴幼儿多见[76] [80]。一项针对小儿HAdV相关HLH危险因素的研究表明,患儿发热持续时间超过12.5天且甘油三酯水平超过3.02 mmol/L的重症腺病毒肺炎更容易发生HLH [81]。最常见的HAdV相关血液系统疾病分型为HAdV-7,其症状较重,病情较复杂,更容易并发严重疾病[75] [82]

3.6. 心血管系统

HAdV所致常见循环系统疾病如心肌炎、扩张性心肌病(dilated cardiomyopathy, DCM)。心肌炎是指以心肌的局限性或弥漫性的炎性病变为主要表现的疾病,扩心病是长期心肌炎的结果。目前,报道证实在DCM和慢性心肌炎患者血清标本中,柯萨奇病毒和HAdV受体显著增高,其受体表达水平在确定对病毒感染的易感性以及心肌炎和DCM的发展中起重要作用[83]-[85]。美国的一项研究报道指出HAdV为心肌炎以及扩心病最主要的病毒病原[86]。HAdV所致心肌炎多见于年轻患者,常合并重症肺炎出现,HAdV-7、HAdV-21为其常见血清型[86] [87]。另有散在病例报道了HAdV心肌炎的危重死亡病例,其分型分别为HAdV-3、HAdV-5 [88] [89]。文献报道引起DCM的HAdV分型较少,一项来自古巴2018年的研究显示首次在DCM患者中检出HAdV-8 [90]

3.7. 泌尿系统

HAdV泌尿系统感染常继发于器官移植后免疫抑制的男性患者,成人更为多见。常见疾病包括出血性膀胱炎、急性肾炎。出血性膀胱炎主要表现为发热、排尿困难、尿急、尿频和肉眼血尿,通常呈自限性[91]。出血性膀胱炎常见基因型为HAdV-7、HAdV-11、HAdV-34、HAdV-35 [92]。若进一步加重,可进展为急性肾损伤,表现为腺病毒性肾炎(Adenovirus nephritis, ADVN)。目前临床对于ADVN的报道较少,基本上仅限于散在病例报告。一项研究报道了11例ADVN患者,多为成人,发病时间中位数为肾移植后的31个月。ADVN主要症状包括发热、血尿、排尿困难,多项研究表明,ADVN的出现可能会增加肾移植术后急性排斥的风险,导致移植失败[93] [94]。但近年来日本曾报道过一起ADVN患者,通过CT提示肾内占位病变为坏死性肾小管间质性肾炎,但其发病局限,主要表现为发热,并无急性肾损伤或尿路感染症状[95]。基因型以HAdV-11、HAdV-35、HAdV-37多见,也以HAdV-11为主[96] [97]

4. 小结与展望

人腺病毒作为国内外常见病毒病原体之一,其致病机制复杂,有一定的传染性,通过不同组织系统危害人类身体健康。腺病毒血清型多样,致病范围广,且仍在不断重组更新,不同分型其临床表现及严重程度不尽相同。因此,研究腺病毒流行病学对于疾病的防控和监测有着重要的意义。一方面,综合本文说明,腺病毒感染没有明确的季节流行趋势,但其是一类高集中、易爆发的病原体,通过对其客观感染环境的研究,可进一步揭示其传播特征,提前发现新兴爆发的踪迹,从而为疾病的防控提供有效的预警机制。另一方面,腺病毒感染有明确的年龄流行趋势,通过对罹患宿主基本信息及生命体征的持续监测,可及时反馈病毒易感人群的特征,从而为临床诊疗提供实践依据。目前临床上对于该病原的治疗仍停留在对症支持、免疫调节、预防并发症等,缺乏特异性抗病毒药物及疫苗。因此,仍需要通过大量临床研究来探测该病原致病流行趋势,发现传播规律,在其基础上建立预测模型,为今后预测病毒的流行与发展提供理论依据。并根据进一步的认识,积极推动病毒靶向药的研发与实践,为临床感染的诊治提供依据。

基金项目

国家自然科学基金面上项目(No. 32071123)。

NOTES

*通讯作者。

参考文献

[1] 陈霞, 刘文恩, 蒋红梅, 等. 1691例呼吸道感染患者病原学流行病学调查[J]. 实用预防医学, 2018, 25(8): 975-977.
[2] Rajaiya, J., Saha, A., Ismail, A.M., Zhou, X., Su, T. and Chodosh, J. (2021) Adenovirus and the Cornea: More than Meets the Eye. Viruses, 13, Article 293.
https://doi.org/10.3390/v13020293
[3] Shieh, W. (2022) Human Adenovirus Infections in Pediatric Population—An Update on Clinico-Pathologic Correlation. Biomedical Journal, 45, 38-49.
https://doi.org/10.1016/j.bj.2021.08.009
[4] Kajon, A. and Lynch, J. (2016) Adenovirus: Epidemiology, Global Spread of Novel Serotypes, and Advances in Treatment and Prevention. Seminars in Respiratory and Critical Care Medicine, 37, 586-602.
https://doi.org/10.1055/s-0036-1584923
[5] Fox, J.P., Hall, C.E. and Cooney, M.K. (1977) The Seattle Virus Watch: VII. Observations of Adenovirus Infections. American Journal of Epidemiology, 105, 362-386.
https://doi.org/10.1093/oxfordjournals.aje.a112394
[6] Xie, L., Zhang, B., Xiao, N., Zhang, F., Zhao, X., Liu, Q., et al. (2018) Epidemiology of Human Adenovirus Infection in Children Hospitalized with Lower Respiratory Tract Infections in Hunan, China. Journal of Medical Virology, 91, 392-400.
https://doi.org/10.1002/jmv.25333
[7] Pscheidt, V.M., Gregianini, T.S., Martins, L.G. and da Veiga, A.B.G. (2020) Epidemiology of Human Adenovirus Associated with Respiratory Infection in Southern Brazil. Reviews in Medical Virology, 31, e2189.
https://doi.org/10.1002/rmv.2189
[8] Akello, J.O., Kamgang, R., Barbani, M.T., Suter-Riniker, F., Leib, S.L. and Ramette, A. (2020) Epidemiology of Human Adenoviruses: A 20-Year Retrospective Observational Study in Hospitalized Patients in Bern, Switzerland. Clinical Epidemiology, 12, 353-366.
https://doi.org/10.2147/clep.s246352
[9] Barnadas, C., Schmidt, D.J., Fischer, T.K. and Fonager, J. (2018) Molecular Epidemiology of Human Adenovirus Infections in Denmark, 2011-2016. Journal of Clinical Virology, 104, 16-22.
https://doi.org/10.1016/j.jcv.2018.04.012
[10] Laveglia, V., Gorina, N. and Cassanello, P. (2017) Adenovirus Infection: Beware of Plasma Procalcitonin Levels in Children. Archives of Disease in Childhood, 103, 622-623.
https://doi.org/10.1136/archdischild-2017-314307
[11] Omari, A.A. and Mian, S.I. (2018) Adenoviral Keratitis: A Review of the Epidemiology, Pathophysiology, Clinical Features, Diagnosis, and Management. Current Opinion in Ophthalmology, 29, 365-372.
https://doi.org/10.1097/icu.0000000000000485
[12] Li, J., Lu, X., Sun, Y., Lin, C., Li, F., Yang, Y., et al. (2018) A Swimming Pool-Associated Outbreak of Pharyngoconjunctival Fever Caused by Human Adenovirus Type 4 in Beijing, China. International Journal of Infectious Diseases, 75, 89-91.
https://doi.org/10.1016/j.ijid.2018.08.009
[13] Jonas, R.A., Ung, L., Rajaiya, J. and Chodosh, J. (2020) Mystery Eye: Human Adenovirus and the Enigma of Epidemic Keratoconjunctivitis. Progress in Retinal and Eye Research, 76, Article 100826.
https://doi.org/10.1016/j.preteyeres.2019.100826
[14] Mao, N., Zhu, Z., Zhang, Y. and Xu, W. (2022) Current Status of Human Adenovirus Infection in China. World Journal of Pediatrics, 18, 533-537.
https://doi.org/10.1007/s12519-022-00568-8
[15] Huang, Y., Wang, C., Ma, F., Guo, Q., Yao, L., Chen, A., et al. (2021) Human Adenoviruses in Paediatric Patients with Respiratory Tract Infections in Beijing, China. Virology Journal, 18, Article No. 191.
https://doi.org/10.1186/s12985-021-01661-6
[16] 赵梦川, 郭巍巍, 刘腾, 等. 2018-2020年河北省某儿童医院呼吸道感染住院患儿中人腺病毒2、3和7型流行特征分析[J]. 中华预防医学杂志, 2023, 57(1): 35-42.
[17] 何玉洁, 刘倜, 吴巨龙, 等. 2011-2017年济南市呼吸道腺病毒流行特征及其基因分型[J]. 现代预防医学, 2020, 47(14): 2623-2627.
[18] Yu, J., Zhao, S. and Rao, H. (2020) Molecular Characterization of Human Respiratory Adenoviruses Infection in Xining City, China in 2018. Virologica Sinica, 36, 545-549.
https://doi.org/10.1007/s12250-020-00282-7
[19] Chen, Y., Lin, T., Wang, C., Liang, W., Lian, G., Zanin, M., et al. (2022) Human Adenovirus (HAdV) Infection in Children with Acute Respiratory Tract Infections in Guangzhou, China, 2010-2021: A Molecular Epidemiology Study. World Journal of Pediatrics, 18, 545-552.
https://doi.org/10.1007/s12519-022-00590-w
[20] 饶睿, 李松, 魏琼, 等. 2016-2020年乐山市某院急性呼吸道腺病毒感染儿童的分子流行特征[J]. 中华医院感染学杂志, 2021, 31(23): 3657-3661.
[21] Hiroi, S., Morikawa, S., Nakata, K. and Kase, T. (2017) Surveillance of Adenovirus Respiratory Infections in Children from Osaka, Japan. Japanese Journal of Infectious Diseases, 70, 666-668.
https://doi.org/10.7883/yoken.jjid.2017.032
[22] Lee, J., Choi, E.H. and Lee, H.J. (2010) Comprehensive Serotyping and Epidemiology of Human Adenovirus Isolated from the Respiratory Tract of Korean Children over 17 Consecutive Years (1991-2007). Journal of Medical Virology, 82, 624-631.
https://doi.org/10.1002/jmv.21701
[23] Sriwanna, P., Chieochansin, T., Vuthitanachot, C., Vuthitanachot, V., Theamboonlers, A. and Poovorawan, Y. (2013) Molecular Characterization of Human Adenovirus Infection in Thailand, 2009-2012. Virology Journal, 10, Article No. 193.
https://doi.org/10.1186/1743-422x-10-193
[24] Kenmoe, S., Vernet, M., Le Goff, J., Penlap, V.B., Vabret, A. and Njouom, R. (2018) Molecular Characterization of Human Adenovirus Associated with Acute Respiratory Infections in Cameroon from 2011 to 2014. Virology Journal, 15, Article No. 153.
https://doi.org/10.1186/s12985-018-1064-x
[25] Wu, X., Lu, X., Schneider, E., Ahmed, J.A., Njenga, M.K., Breiman, R.F., et al. (2018) Reassessment of High Prevalence Human Adenovirus Detections among Residents of Two Refugee Centers in Kenya under Surveillance for Acute Respiratory Infections. Journal of Medical Virology, 91, 385-391.
https://doi.org/10.1002/jmv.25320
[26] Demian, P.N., Horton, K.C., Kajon, A., Siam, R., Hasanin, A.M.N., Elgohary Sheta, A., et al. (2014) Molecular Identification of Adenoviruses Associated with Respiratory Infection in Egypt from 2003 to 2010. BMC Infectious Diseases, 14, Article No. 50.
https://doi.org/10.1186/1471-2334-14-50
[27] Binder, A.M., Biggs, H.M., Haynes, A.K., Chommanard, C., Lu, X., Erdman, D.D., et al. (2017) Human Adenovirus Surveillance—United States, 2003-2016. Morbidity and Mortality Weekly Report, 66, 1039-1042.
https://doi.org/10.15585/mmwr.mm6639a2
[28] Marcone, D.N., Culasso, A.C.A., Reyes, N., Kajon, A., Viale, D., Campos, R.H., et al. (2021) Genotypes and Phylogenetic Analysis of Adenovirus in Children with Respiratory Infection in Buenos Aires, Argentina (2000-2018). PLOS ONE, 16, e0248191.
https://doi.org/10.1371/journal.pone.0248191
[29] Abbas, K.Z., Lombos, E., Duvvuri, V.R., Olsha, R., Higgins, R.R. and Gubbay, J.B. (2013) Temporal Changes in Respiratory Adenovirus Serotypes Circulating in the Greater Toronto Area, Ontario, during December 2008 to April 2010. Virology Journal, 10, Article No. 15.
https://doi.org/10.1186/1743-422x-10-15
[30] Esposito, S., Zampiero, A., Bianchini, S., Mori, A., Scala, A., Tagliabue, C., et al. (2016) Epidemiology and Clinical Characteristics of Respiratory Infections Due to Adenovirus in Children Living in Milan, Italy, during 2013 and 2014. PLOS ONE, 11, e0152375.
https://doi.org/10.1371/journal.pone.0152375
[31] Bastug, A., Altas, A.B., Koc, B.T., Bayrakdar, F., Korukluoglu, G., Bodur, H., et al. (2020) Molecular Characterization of Human Adenoviruses Associated with Respiratory Infection in Turkey. APMIS, 129, 23-31.
https://doi.org/10.1111/apm.13088
[32] 侯伟, 张丽君, 张曼, 等. 河北省南部地区住院患儿腺病毒呼吸道感染流行病学调查[J]. 临床荟萃, 2022, 37(10): 916-920.
[33] 陈正荣, 季伟, 王宇清, 等. 2006-2010年苏州地区住院儿童急性呼吸道腺病毒感染与气候因素的相关性研究[J]. 临床儿科杂志, 2012, 30(6): 539-541.
[34] Xu, B., Wang, J., Li, Z., Xu, C., Liao, Y., Hu, M., et al. (2021) Seasonal Association between Viral Causes of Hospitalised Acute Lower Respiratory Infections and Meteorological Factors in China: A Retrospective Study. The Lancet Planetary Health, 5, e154-e163.
https://doi.org/10.1016/s2542-5196(20)30297-7
[35] Lee, B., Damon, C.F. and Platts-Mills, J.A. (2020) Pediatric Acute Gastroenteritis Associated with Adenovirus 40/41 in Low-Income and Middle-Income Countries. Current Opinion in Infectious Diseases, 33, 398-403.
https://doi.org/10.1097/qco.0000000000000663
[36] Wang, L., Zhou, S., Wang, X., Lu, Q., Shi, L., Ren, X., et al. (2021) Etiological, Epidemiological, and Clinical Features of Acute Diarrhea in China. Nature Communications, 12, Article No. 2464.
https://doi.org/10.1038/s41467-021-22551-z
[37] Kumthip, K., Khamrin, P., Ushijima, H. and Maneekarn, N. (2019) Enteric and Non-Enteric Adenoviruses Associated with Acute Gastroenteritis in Pediatric Patients in Thailand, 2011 to 2017. PLOS ONE, 14, e0220263.
https://doi.org/10.1371/journal.pone.0220263
[38] Gelaw, A., Pietsch, C. and Liebert, U.G. (2019) Genetic Diversity of Human Adenovirus and Human Astrovirus in Children with Acute Gastroenteritis in Northwest Ethiopia. Archives of Virology, 164, 2985-2993.
https://doi.org/10.1007/s00705-019-04421-8
[39] Primo, D., Pacheco, G.T., Timenetsky, M.C.S.T. and Luchs, A. (2018) Surveillance and Molecular Characterization of Human Adenovirus in Patients with Acute Gastroenteritis in the Era of Rotavirus Vaccine, Brazil, 2012-2017. Journal of Clinical Virology, 109, 35-40.
https://doi.org/10.1016/j.jcv.2018.10.010
[40] Tang, X., Hu, Y., Zhong, X. and Xu, H. (2022) Molecular Epidemiology of Human Adenovirus, Astrovirus, and Sapovirus among Outpatient Children with Acute Diarrhea in Chongqing, China, 2017-2019. Frontiers in Pediatrics, 10, Article 826600.
https://doi.org/10.3389/fped.2022.826600
[41] Lu, L., Jia, R., Zhong, H., Duan, S., Xu, M., Su, L., et al. (2023) Surveillance and Epidemiological Characterization of Human Adenovirus Infections among Outpatient Children with Acute Gastroenteritis during the COVID-19 Epidemic in Shanghai, China. Virology Journal, 20, Article No. 133.
https://doi.org/10.1186/s12985-023-02105-z
[42] Chandra, P., Lo, M., Mitra, S., Banerjee, A., Saha, P., Okamoto, K., et al. (2021) Genetic Characterization and Phylogenetic Variations of Human Adenovirus-f Strains Circulating in Eastern India during 2017-2020. Journal of Medical Virology, 93, 6180-6190.
https://doi.org/10.1002/jmv.27136
[43] 焦洋, 孙灵利, 高艳, 等. 北京市朝阳区2011-2017年5岁以下腹泻患儿星状病毒感染的分子流行病学特征[J]. 中国病毒病杂志, 2019, 9(2): 139-143.
[44] Qiu, F., Shen, X., Li, G., Zhao, L., Chen, C., Duan, S., et al. (2018) Adenovirus Associated with Acute Diarrhea: A Case-Control Study. BMC Infectious Diseases, 18, Article No. 450.
https://doi.org/10.1186/s12879-018-3340-1
[45] Wu, B.S., Huang, Z.M., Weng, Y.W., et al. (2019) Prevalence and Genotypes of Rotavirus A and Human Adenovirus among Hospitalized Children with Acute Gastroenteritis in Fujian, China, 2009-2017. Biomedical and Environmental Sciences, 32, 210-214.
[46] Tahmasebi, R., Luchs, A., Tardy, K., Hefford, P.M., Tinker, R.J., Eilami, O., et al. (2020) Viral Gastroenteritis in Tocantins, Brazil: Characterizing the Diversity of Human Adenovirus F through Next-Generation Sequencing and Bioinformatics. Journal of General Virology, 101, 1280-1288.
https://doi.org/10.1099/jgv.0.001500
[47] Wang, G., Zhao, R., Tang, X., Ren, L., Zhang, Y., Ding, H., et al. (2022) Age-Specific Spectrum of Etiological Pathogens for Viral Diarrhea among Children in Twelve Consecutive Winter-Spring Seasons (2009-2021) in China. Journal of Medical Virology, 94, 3840-3846.
https://doi.org/10.1002/jmv.27790
[48] Huang, D., Wang, Z., Zhang, G. and Sai, L. (2021) Molecular and Epidemiological Characterization of Human Adenoviruses Infection among Children with Acute Diarrhea in Shandong Province, China. Virology Journal, 18, Article No. 195.
https://doi.org/10.1186/s12985-021-01666-1
[49] Guga, G., Elwood, S., Kimathi, C., Kang, G., Kosek, M.N., Lima, A.A.M., et al. (2022) Burden, Clinical Characteristics, Risk Factors, and Seasonality of Adenovirus 40/41 Diarrhea in Children in Eight Low-Resource Settings. Open Forum Infectious Diseases, 9, ofac241.
https://doi.org/10.1093/ofid/ofac241
[50] Ozbay Hoşnut, F., Canan, O., Ozçay, F. and Bilezikçi, B. (2008) Adenovirus Infection as Possible Cause of Acute Liver Failure in a Healthy Child: A CASE Report. Turkish Journal of Gastroenterology, 19, 281-283.
[51] Lurz, E., Lenz, D., Bufler, P., Fichtner, A., Henning, S., Jankofsky, M., et al. (2022) The Recent Outbreak of Acute Severe Hepatitis in Children of Unknown Origin—What Is Known So Far. Journal of Hepatology, 77, 1214-1215.
https://doi.org/10.1016/j.jhep.2022.05.039
[52] Gu, J., Su, Q., Zuo, T. and Chen, Y. (2020) Adenovirus Diseases: A Systematic Review and Meta-Analysis of 228 Case Reports. Infection, 49, 1-13.
https://doi.org/10.1007/s15010-020-01484-7
[53] Ronan, B.A., Agrwal, N., Carey, E.J., De Petris, G., Kusne, S., Seville, M.T., et al. (2013) Fulminant Hepatitis Due to Human Adenovirus. Infection, 42, 105-111.
https://doi.org/10.1007/s15010-013-0527-7
[54] 单姗, 贾继东. 腺病毒感染与儿童不明原因严重急性肝炎的关系[J]. 中华肝脏病杂志, 2022, 30(5): 470-472.
[55] Khalifa, A., Andreias, L. and Velpari, S. (2022) Adenovirus Hepatitis in Immunocompetent Adults. Journal of Investigative Medicine High Impact Case Reports, 10.
https://doi.org/10.1177/23247096221079192
[56] Servellita, V., Sotomayor Gonzalez, A., Lamson, D.M., Foresythe, A., Huh, H.J., Bazinet, A.L., et al. (2023) Adeno-associated Virus Type 2 in US Children with Acute Severe Hepatitis. Nature, 617, 574-580.
https://doi.org/10.1038/s41586-023-05949-1
[57] Kambhampati, A.K., Burke, R.M., Dietz, S., Sheppard, M., Almendares, O., Baker, J.M., et al. (2022) Trends in Acute Hepatitis of Unspecified Etiology and Adenovirus Stool Testing Results in Children—United States, 2017-2022. Morbidity and Mortality Weekly Report, 71, 797-802.
https://doi.org/10.15585/mmwr.mm7124e1
[58] Azari, A.A. and Barney, N.P. (2013) Conjunctivitis: A Systematic Review of Diagnosis and Treatment. JAMA, 310, 1721-1730.
https://doi.org/10.1001/jama.2013.280318
[59] Vivell, O. (1957) Zur Aetiologie der epidemischen Keratokonjunktivitis. DMW-Deutsche Medizinische Wochenschrift, 82, 114-114.
https://doi.org/10.1055/s-0028-1114648
[60] Omatsu, Y., Miyazaki, D., Shimizu, Y., Matsuura, K., Sasaki, S., Inoue, Y., et al. (2021) Efficacy of Compartmentalization in Controlling an Adenovirus Type 54 Keratoconjunctivitis Outbreak on Oki Island, Japan. Japanese Journal of Ophthalmology, 65, 423-431.
https://doi.org/10.1007/s10384-021-00826-8
[61] Seo, J., Lee, S.K., Hong, I.H., Choi, S.H., Lee, J.Y., Kim, H., et al. (2022) Molecular Epidemiology of Adenoviral Keratoconjunctivitis in Korea. Annals of Laboratory Medicine, 42, 683-687.
https://doi.org/10.3343/alm.2022.42.6.683
[62] Tanaka, K., Itoh, N., Saitoh-Inagawa, W., Uchio, E., Takeuchi, S., Aoki, K., et al. (2000) Genetic Characterization of Adenovirus Strains Isolated from Patients with Acute Conjunctivitis in the City of São Paulo, Brazil. Journal of Medical Virology, 61, 143-149.
https://doi.org/10.1002/(sici)1096-9071(200005)61:1<143::aid-jmv23>3.0.co;2-z
[63] Tsukahara-Kawamura, T., Hanaoka, N., Konagaya, M., Uchio, E. and Fujimoto, T. (2020) Characteristic of Slow Growth in Cell Culture of Adenovirus Type 54 Causing Nationwide Outbreak Epidemic Keratoconjunctivitis in Japan. Japanese Journal of Ophthalmology, 64, 312-320.
https://doi.org/10.1007/s10384-020-00727-2
[64] OYong, K., Killerby, M., Pan, C., Huynh, T., Green, N.M., Wadford, D.A., et al. (2018) Outbreak of Epidemic Keratoconjunctivitis Caused by Human Adenovirus Type D53 in an Eye Care Clinic—Los Angeles County, 2017. Morbidity and Mortality Weekly Report, 67, 1347-1349.
https://doi.org/10.15585/mmwr.mm6748a4
[65] Granerod, J., Cunningham, R., Zuckerman, M., Mutton, K., Davies, N.W.S., Walsh, A.L., et al. (2010) Causality in Acute Encephalitis: Defining Aetiologies. Epidemiology and Infection, 138, 783-800.
https://doi.org/10.1017/s0950268810000725
[66] Parisi, S.G., Basso, M., Del Vecchio, C., Andreis, S., Franchin, E., Dal Bello, F., et al. (2016) Viral Infections of the Central Nervous System in Elderly Patients: A Retrospective Study. International Journal of Infectious Diseases, 44, 8-10.
https://doi.org/10.1016/j.ijid.2016.01.012
[67] Schwartz, K.L., Richardson, S.E., MacGregor, D., Mahant, S., Raghuram, K. and Bitnun, A. (2019) Adenovirus-Associated Central Nervous System Disease in Children. The Journal of Pediatrics, 205, 130-137.
https://doi.org/10.1016/j.jpeds.2018.09.036
[68] Zhang, X., Tan, C., Yao, Z., Jiang, L. and Hong, S. (2020) Adenovirus Infection-Associated Central Nervous System Disease in Children. Pediatric Infectious Disease Journal, 40, 205-208.
https://doi.org/10.1097/inf.0000000000003000
[69] Huang, Y., Huang, S., Chen, S., Huang, Y., Huang, C., Tsao, K., et al. (2013) Adenovirus Infection Associated with Central Nervous System Dysfunction in Children. Journal of Clinical Virology, 57, 300-304.
https://doi.org/10.1016/j.jcv.2013.03.017
[70] Vidal, L.R., de Almeida, S.M., Cavalli, B.M., Dieckmann, T.G., Raboni, S.M., Salvador, G.L.O., et al. (2019) Human Adenovirus Meningoencephalitis: A 3-Years’ Overview. Journal of NeuroVirology, 25, 589-596.
https://doi.org/10.1007/s13365-019-00758-7
[71] Koskiniemi, M., Korppi, M., Mustonen, K., Rantala, H., Muttilainen, M., Herrgård, E., et al. (1997) Epidemiology of Encephalitis in Children. A Prospective Multicentre Study. European Journal of Pediatrics, 156, 541-545.
https://doi.org/10.1007/s004310050658
[72] Goto, S., Nosaka, N., Yorifuji, T., et al. (2018) Epidemiology of Pediatric Acute Encephalitis/Encephalopathy in Japan. Acta Medica Okayama, 72, 351-357.
[73] Törün, S.H., Kaba, Ö., Yakut, N., Kadayıfçı, E.K., Kara, M., Yanartaş, M.S., et al. (2021) Multicenter Prospective Surveillance Study of Viral Agents Causing Meningoencephalitis. Scientific Reports, 11, Article No. 7216.
https://doi.org/10.1038/s41598-021-86687-0
[74] Zhao, H., Liu, Y., Feng, Z., Feng, Q., Li, K., Gao, H., et al. (2022) A Fatal Case of Viral Sepsis and Encephalitis in a Child Caused by Human Adenovirus Type 7 Infection. Virology Journal, 19, Article No. 154.
https://doi.org/10.1186/s12985-022-01886-z
[75] Otto, W.R., Behrens, E.M., Teachey, D.T., Lamson, D.M., Barrett, D.M., Bassiri, H., et al. (2020) Human Adenovirus 7-Associated Hemophagocytic Lymphohistiocytosis-Like Illness: Clinical and Virological Characteristics in a Cluster of Five Pediatric Cases. Clinical Infectious Diseases, 73, e1532-e1538.
https://doi.org/10.1093/cid/ciaa1277
[76] Mellon, G., Henry, B., Aoun, O., Boutolleau, D., Laparra, A., Mayaux, J., et al. (2016) Adenovirus Related Lymphohistiocytic Hemophagocytosis: Case Report and Literature Review. Journal of Clinical Virology, 78, 53-56.
https://doi.org/10.1016/j.jcv.2016.03.011
[77] Iyama, S., Matsunaga, T., Fujimi, A., et al. (2005) Successful Treatment with Oral Ribavirin of Adenovirus-Associated Hemophagocytic Syndrome in a Stem Cell Transplantation Recipient. Rinsho Ketsueki, 46, 363-367.
[78] Janka, G.E. (2012) Familial and Acquired Hemophagocytic Lymphohistiocytosis. Annual Review of Medicine, 63, 233-246.
https://doi.org/10.1146/annurev-med-041610-134208
[79] Griffin, G., Shenoi, S. and Hughes, G.C. (2020) Hemophagocytic Lymphohistiocytosis: An Update on Pathogenesis, Diagnosis, and Therapy. Best Practice & Research Clinical Rheumatology, 34, Article 101515.
https://doi.org/10.1016/j.berh.2020.101515
[80] Censoplano, N., Gorga, S., Waldeck, K., Stillwell, T., Rabah-Hammad, R. and Flori, H. (2018) Neonatal Adenovirus Infection Complicated by Hemophagocytic Lymphohistiocytosis Syndrome. Pediatrics, 141, S475-S480.
https://doi.org/10.1542/peds.2017-2061
[81] Zhang, H., Xiao, M., Yan, F., Zhang, M. and Zhang, Y. (2021) Risk Factors for the Development of Hemophagocytic Lymphohistiocytosis in Children with Severe Adenovirus Pneumonia: A Single-Center Retrospective Study. Frontiers in Pediatrics, 9, Article 654002.
https://doi.org/10.3389/fped.2021.654002
[82] Chen, J., Chen, X., Tan, X.R., Liu, D.H., Li, X.F., Zhang, X.X. (2020) Adenovirus Pneumonia with Hemophagocytic Lymphohistiocytosis in Children: A Clinical Analysis of 7 Children. Chinese Journal of Contemporary Pediatrics, 22, 749-754.
[83] Andréoletti, L., Lévêque, N., Boulagnon, C., Brasselet, C. and Fornes, P. (2009) Viral Causes of Human Myocarditis. Archives of Cardiovascular Diseases, 102, 559-568.
https://doi.org/10.1016/j.acvd.2009.04.010
[84] Gupalo, E.M., Buryachkovskaya, L.I., Chumachenko, P.V., Mironova, N.A., Narusov, O.Y., Tereschenko, S.N., et al. (2022) Implication of Inflammation on Coxsackie Virus and Adenovirus Receptor Expression on Cardiomyocytes and the Role of Platelets in Patients with Dilated Cardiomyopathy. Cardiovascular Pathology, 60, Article 107452.
https://doi.org/10.1016/j.carpath.2022.107452
[85] Noutsias, M., Fechner, H., de Jonge, H., Wang, X., Dekkers, D., Houtsmuller, A.B., et al. (2001) Human Coxsackie-Adenovirus Receptor Is Colocalized with Integrins αvβ3 and αvβ5 on the Cardiomyocyte Sarcolemma and Upregulated in Dilated Cardiomyopathy: Implications for Cardiotropic Viral Infections. Circulation, 104, 275-280.
https://doi.org/10.1161/01.cir.104.3.275
[86] Chany, C., Lépine, P., Lelong, M., Le-Tan-Vinh, Satgé, P. and Virat, J. (1958) Severe and Fatal Pneumonia in Infants and Young Children Associated with Adenovirus Infections. American Journal of Epidemiology, 67, 367-378.
https://doi.org/10.1093/oxfordjournals.aje.a119941
[87] Henson, D. (1971) Myocarditis and Pneumonitis with Type 21 Adenovirus Infection: Association with Fatal Myocarditis and Pneumonitis. American Journal of Diseases of Children, 121, 334-336.
https://doi.org/10.1001/archpedi.1971.02100150108015
[88] Treacy, A., Carr, M.J., Dunford, L., Palacios, G., Cannon, G.A., O’Grady, A., et al. (2010) First Report of Sudden Death Due to Myocarditis Caused by Adenovirus Serotype 3. Journal of Clinical Microbiology, 48, 642-645.
https://doi.org/10.1128/jcm.00815-09
[89] Savón, C., Acosta, B., Valdés, O., Goyenechea, A., Gonzalez, G., Piñón, A., et al. (2008) A Myocarditis Outbreak with Fatal Cases Associated with Adenovirus Subgenera C among Children from Havana City in 2005. Journal of Clinical Virology, 43, 152-157.
https://doi.org/10.1016/j.jcv.2008.05.012
[90] Hosseini, S.M.J., Mirhosseini, S.M., Taghian, M., Salehi, M., Farahani, M.M., Bakhtiari, F., et al. (2018) First Evidence of the Presence of Adenovirus Type 8 in Myocardium of Patients with Severe Idiopathic Dilated Cardiomyopathy. Archives of Virology, 163, 2895-2897.
https://doi.org/10.1007/s00705-018-3942-3
[91] Keswani, M. and Moudgil, A. (2007) Adenovirus-Associated Hemorrhagic Cystitis in a Pediatric Renal Transplant Recipient. Pediatric Transplantation, 11, 568-571.
https://doi.org/10.1111/j.1399-3046.2007.00736.x
[92] Ison, M.G. and Green, M. (2009) Adenovirus in Solid Organ Transplant Recipients. American Journal of Transplantation, 9, S161-S165.
https://doi.org/10.1111/j.1600-6143.2009.02907.x
[93] Lilley, C.M., Borys, E. and Picken, M.M. (2023) Adenovirus-Associated Acute Interstitial Nephritis with Graft Survival and Novel Follow-up Biopsy Findings Including Karyomegaly: A Case Series. Cureus, 15, e38452.
https://doi.org/10.7759/cureus.38452
[94] Jagannathan, G., Weins, A., Daniel, E., Crew, R.J., Swanson, S.J., Markowitz, G.S., et al. (2023) The Pathologic Spectrum of Adenovirus Nephritis in the Kidney Allograft. Kidney International, 103, 378-390.
https://doi.org/10.1016/j.kint.2022.10.025
[95] Watanabe, M., Kaneko, S., Usui, J., Takahashi, K., Kawanishi, K., Takahashi-Kobayashi, M., et al. (2020) Literature Review of Allograft Adenovirus Nephritis and a Case Presenting as Mass Lesions in a Transplanted Kidney without Symptoms of Urinary Tract Infection or Acute Kidney Injury. Transplant Infectious Disease, 23, e13468.
https://doi.org/10.1111/tid.13468
[96] Asim, M., Chong-Lopez, A. and Nickeleit, V. (2003) Adenovirus Infection of a Renal Allograft. American Journal of Kidney Diseases, 41, 696-701.
https://doi.org/10.1053/ajkd.2003.50133
[97] Florescu, M.C., Miles, C.D. and Florescu, D.F. (2013) What Do We Know about Adenovirus in Renal Transplantation? Nephrology Dialysis Transplantation, 28, 2003-2010.
https://doi.org/10.1093/ndt/gft036