离子辐照能量对石墨烯界面热输运的调控
Modulating Thermal Transport across Graphene Interface with Ion Irradiation Energy
DOI: 10.12677/ms.2024.1410158, PDF, HTML, XML,   
作者: 王 群, 区炳显, 杨永强, 刘 峥:江苏省特种设备安全监督检验研究院无锡分院,江苏 无锡;朱 楠, 赵 宇*:南京工程学院工程训练中心应用技术学院,江苏 南京
关键词: 石墨烯离子辐照界面热导晶格结构吸附作用Graphene Ion irradiation Interfacial Thermal Conductance Lattice Structure Adsorption Interaction
摘要: 作为一种二维材料,石墨烯因其超高的导热系数而被广泛研究,特别是在电子器件散热领域。然而,石墨烯界面的低热导限制了石墨烯在散热领域中应用。为了提高石墨烯界面的热传导效率,文章通过聚焦镓离子束对石墨烯进行离子辐照,研究了离子辐照能量对石墨烯界面热输运的影响。实验测量结果显示,随着离子辐照能量的增加,Al/graphene/SiO2的界面热导呈现上升的趋势,并且在30 kV能量下升高了近3倍。实验表征及理论计算结果显示,镓离子辐照破坏了石墨烯原有的晶格结构,导致离子辐照石墨烯表面上的C/O化学官能团发生了重构,提高了铝膜与离子辐照石墨烯之间界面的吸附作用,进而增加了界面上的声子透射率,最终提升了Al/graphene/SiO2的界面热导。
Abstract: As a two-dimensional material, graphene has been widely studied for its ultra-high thermal conductivity, especially in the field of electronic device cooling. However, the high thermal resistance at the graphene interface limits the application of graphene in the field of heat dissipation. In order to improve the heat conduction efficiency of graphene interface, the effects of energy of ion irradiation on the thermal transport across the graphene interface are investigated in this paper after graphene irradiated by focusing gallium ion beams. It is demonstrated that the interfacial thermal conductance of Al/graphene/SiO2 shows an upward trend with increasing energy and increases up to nearly 3 times at the energy of 30 kV. The experimental characterization and theoretical calculation results show that Ga ion irradiation destroys the original lattice structure of graphene, leading to the reconstruction of C/O chemical functional groups on the ion-irradiated graphene surface, which intensifies the adsorption strength between Al film and ion-irradiated graphene. The increased interfacial adsorption strength is beneficial to more phonons being able to transport across the interface, and finally leads to the increased thermal conductance of Al/graphene/SiO2.
文章引用:王群, 区炳显, 杨永强, 刘峥, 朱楠, 赵宇. 离子辐照能量对石墨烯界面热输运的调控[J]. 材料科学, 2024, 14(10): 1446-1454. https://doi.org/10.12677/ms.2024.1410158

1. 研究背景

石墨烯是一种由sp2杂化连接的碳原子堆积而成的六角型蜂窝状晶格结构的单原子层二维材料。由于具有优异的机械[1] [2]、电学[3]、光学[4]-[6]和热学[7] [8]性能,石墨烯在电子学和热管理等领域有着广泛的潜在应用。例如,石墨烯具有超高的面内热导率,有助于热量沿着其面内方向迅速传导,进而快速降低热点的温度,这使得它有望成为解决电子器件散热的理想热扩展材料。在这种情况下,石墨烯不可避免地会与其它材料相接触形成触点,例如金属–石墨烯触点。当石墨烯通过弱范德华作用与其它材料在触点处吸附在一起形成范德华界面时,热量沿界面(法向方向)的传输效率远低于沿石墨烯面内方向的传输效率,其应用前景将受到界面热输运效率的限制,如界面热导所描述的那样。因此,提高或者调控石墨烯界面的热输运效率,对于石墨烯在电子器件热管理中的实际应用具有重要的理论价值和实际意义。

近年来,科研人员对改善石墨烯界面上的热输运进行了大量的实验测量[9]-[14]和理论研究[10] [15]-[18],取得了显著进展。例如,Hopkins等[9]研究发现,化学功能化处理的石墨烯与铝膜之间的界面热导提高了2倍,这归因于增强的金属–石墨烯键合强度。Foley等[10]研究发现,石墨烯的氧和氮功能化可以提高石墨烯界面热导,而氟功能化作用不大。Jiang等[11]通过调整石墨烯表面的氧覆盖比来调控石墨烯界面热导,并且发现,金属与石墨烯之间形成的共价键是石墨烯界面热导升高的主要因素。Han等[12]研究发现,通过氨基硅烷分子与功能化石墨烯氧化物结合引入额外热扩散通道,可以改善电子芯片的散热。Tao等[19]通过聚焦离子束处理石墨,将铝膜与石墨之间的界面热导提升了近5倍,他们认为这与石墨烯表面费米能级降低引起的界面电荷重新分布有关。

为了进一步提高并调控石墨烯界面热导,改善石墨烯界面的热传导效率,本文利用时域热反射(time-domain thermoreflectance, TDTR)方法研究离子辐照能量对Al/graphene/SiO2界面热输运的影响。石墨烯的离子辐照是通过聚焦镓离子束来实现。采用原子力显微镜(atomic force microscope, AFM)和X射线光电子能谱(X-ray photoelectron spectroscopy, XPS)技术分别对离子辐照前后石墨烯表面的粗糙度大小和官能团类型进行相应表征。此外,还采用密度泛函理论以及非平衡态格林函数方法计算Al/graphene/SiO2的声子透射率和界面热导,探究除了传统的金属–氧共价键以外其它因素对Al/graphene/SiO2界面热导的贡献。

2. 样品制备

2.1. 石墨烯的制备与转移

石墨烯是通过化学气相沉积方法在铜箔上合成,然后利用传统的湿化学方法,将铜箔上的石墨烯转移到覆盖着300 nm厚的二氧化硅表层的硅晶片。

2.2. 石墨烯的离子辐照

在2 × 104 Pa真空度下,利用聚焦镓离子束系统辐照石墨烯。镓离子束能量设置为0.5~30 kV,离子束电流约1.1 pA,辐照时间为8 μs,辐照总面积为1 × 1 mm2

2.3. 金属薄膜的沉积

使用电子束蒸镀方法在石墨烯表面沉积厚度约为70 nm的铝膜,作为TDTR测量的热反射层,随后通过AFM测量进一步验证铝膜的厚度。

3. 结果与讨论

3.1. 拉曼测量结果与分析

Figure 1. Raman spectra of (a) raw graphene and ion-irradiated graphene at different ion irradiation energies; (b) Intensity ratio of Raman D-peak to G-peak in raw graphene and ion-irradiated graphene. (c) Raman 2D peak shift and corresponding strain values in raw graphene and ion-irradiated graphene; (d) The average distance between adjacent defects in raw graphene and ion-irradiated graphene and the corresponding defect concentration

1. 不同离子辐照能量下,(a) 原始石墨烯和离子辐照石墨烯的拉曼光谱;(b) 原始石墨烯和离子辐照石墨烯中拉曼D峰与G峰的强度比。其中,插图为拉曼表征中graphene/SiO2/Si样品示意图;(c) 原始石墨烯和离子辐照石墨烯中拉曼2D峰峰移及其所对应的应变值;(d) 原始石墨烯和离子辐照石墨烯中相邻缺陷之间的平均距离和所对应的缺陷浓度

图1(a)展示了SiO2/Si基底上原始石墨烯与离子辐照石墨烯的拉曼光谱。原始石墨烯在~1340 cm1处未出现缺陷D峰,在~1585 cm1处出现一个强烈的G峰,这表明石墨烯质量良好。此外,在~2675cm1处的2D峰与~1585 cm1处的G峰的强度比(𝐼2D⁄𝐼G)接近2,表明了石墨烯的单层特性[20]。经过镓离子辐照后石墨烯,其拉曼D峰开始出现且其强度随着离子辐照能量的增大而增强,而G峰[21]的强度基本不变。随着离子辐照能量的增大,D峰与G峰的强度比(𝐼D⁄𝐼G)单调上升至0.59,如图1(b)所示。这表明离子辐照向石墨烯中引入了缺陷,并且缺陷程度随着离子辐照能量的增大而加剧。同时,2D峰的半峰宽随着峰位的移动而变宽,这与文献中的实验结果一致[22]-[24],表明石墨烯中产生了压缩应变,如图1(c)所示。在离子辐照能量为30 kV时,应变达到最大值−0.17%,这一现象可归因于离子辐照过程中石墨烯晶格中C-C键的收缩[23]图1(d)显示,离子辐照石墨烯后,石墨烯中的缺陷浓度随着离子辐照能量的增大而增加,这是由于镓离子打断了石墨烯中的C-C键,导致石墨烯中缺陷产生。

3.2. TDTR测量结果与分析

Figure 2. TDTR data of Al/graphene/SiO2/Si samples and their fitting curves under different ion irradiation energies. Among them, hollow symbols and solid lines represent TDTR measurement data and theoretical thermal model curves respectively

2. 不同离子辐照能量下,Al/graphene/SiO2/Si样品的TDTR数据及其拟合曲线。其中,空心符号和实心线条分别表示TDTR测量数据和理论热学模型曲线

Figure 3. Measurement values of interface thermal conductance of Al/graphene/SiO2 under different ion irradiation energies

3. 不同离子辐照能量下,Al/graphene/SiO2的界面热导测量值

利用TDTR测量系统对Al/graphene/SiO2/Si样品进行界面热导测量。由于石墨烯的厚度仅为~0.35 nm,在对TDTR测量数据拟合时,将石墨烯视为Al/SiO2界面的一部分,原因在于考虑两个单独界面即Al/graphene和graphene/SiO2时,将会严重降低界面热导等拟合参数的灵敏度。在不同离子辐照能量下,Al/graphene/SiO2/Si样品的TDTR数据拟合曲线,如图2所示。从图2中可以看到,不论对于原始石墨烯样品还是离子辐照石墨烯样品,TDTR测量数据与理论热学模型曲线均有很好的吻合性。

图3展示了TDTR测量得到的Al/graphene/SiO2界面热导结果。对于原始石墨烯样品,测量得到的界面热导约为27.1 MW/m2K,与文献值29.3 MW/m2K相接近[9] [11]。对于离子辐照石墨烯样品,其界面热导随着离子辐照能量的增大近似呈现上升趋势,在离子辐照能量为30 kV时达到最大值~83 MW/m2K。与石墨烯经氧等离子体处理后界面热导提高1.5倍相比,离子辐照能够使石墨烯界面热导提高3倍,这表明离子辐照是改善石墨烯界面热输运的一种更加高效的方法。通过调整离子辐照能量来控制石墨烯的离子辐照强度,可以有效调控Al/graphene/SiO2界面的热输运。

3.3. AFM测量结果与分析

为了研究石墨烯经过镓离子辐照后Al/graphene/SiO2界面热导提高的内在机理,使用AFM测量了原始石墨烯和离子辐照石墨烯的形貌和表面粗糙度。图4显示了离子辐照前后石墨烯的AFM表面形貌图。与原始石墨烯相比,在离子辐照能量为30 kV下经镓离子辐照的石墨烯,其AFM表面形貌图呈现出更加明亮的信号,这表明离子辐照增加了石墨烯的表面粗糙度。此外,在离子辐照石墨烯的表面出现了条纹结构,这与文献中报道的现象相一致[25] [26],证实了离子辐照可以诱发石墨烯产生应变。

Figure 4. (a) AFM surface topography of raw graphene; (b) AFM surface topography of ion-irradiated graphene at the energy of 30 kV

4. (a) 原始石墨烯的AFM表面形貌图;(b) 在能量30 kV下,离子辐照石墨烯的AFM表面形貌图

Table 1. RMS surface roughness Ra of raw graphene and ion-irradiated graphene under different ion irradiation energies

1. 不同离子辐照能量下,原始石墨烯和离子辐照石墨烯的均方根表面粗糙度

离子辐照能量(kV)

0

0.5

1

2

5

8

16

30

(pm)

637

658

670

678

737

771

796

860

表1列出了不同离子辐照能量下石墨烯的均方根表面粗糙度𝑅a。从表1中可以看出,随着离子辐照能量的增大,石墨烯的均方根表面粗糙度呈现增大的趋势。与原始石墨烯相比,离子辐照引起石墨烯表面粗糙度的增加量仅为35%,这导致Al/graphene/SiO2界面热导提高的上限为30%。然而,与TDTR测量得到的界面热导提高3倍相比,来自表面粗糙度增大引起的界面热导增加的幅值太小,这表明石墨烯表面粗糙度的增大并非是Al/graphene/SiO2界面热导升高的主要原因。此外,在离子辐照能量不超过2 kV时,石墨烯的表面粗糙度从637 pm增加至678 pm,而此时测量的Al/graphene/SiO2的界面热导几乎保持不变,这进一步表明离子辐照引起的石墨烯表面粗糙度增大对Al/graphene/SiO2界面热导的提高作用有限。

3.4. XPS测量结果与分析

离子辐照除了引起表面粗糙度的改变外,还会诱导石墨烯表面发生化学修饰。为了探究化学修饰是否会导致石墨烯界面热导的显著提高,利用XPS技术,分别对原始石墨烯和离子辐照石墨烯表面的化学官能团进行了相应表征。为了分析XPS测量数据并且确定石墨烯表面上的C/O官能团类型,C1s光谱被反卷积为以284.7 eV、285.7 eV、287.1 eV和289.2 eV为中心的四个峰,如图5所示,分别对应于C-C、C-O、C = O和O-C = O键。基于图5中石墨烯表面C1s的拟合结果,分别计算了C-C、C-O、C = O和O-C = O键的峰面积比即浓度百分比,结果如表2所示。

Figure 5. XPS fitting results of C1s on raw graphene and ion-irradiated graphene surface

5. 原始石墨烯和离子辐照石墨烯表面C1s的XPS拟合结果

Table 2. Types, binding energy and concentration percentage of C/O functional groups on graphene surface before and after ion irradiation

2. 离子辐照前后石墨烯表面C/O官能团的类型、结合能和浓度百分比

C/O官能团

O-C = O

C = O

C-O

C-C

结合能(eV)

289.2

287.1

285.7

284.7

离子辐照前浓度百分比(%)

8.08

0

17.66

74.26

离子辐照前浓度百分比(%)

6.58

6.17

27.49

59.76

图5所示,在能量30 kV下离子辐照后的石墨烯,其表面可以观察到C = O键的形成且C = O键的浓度百分比为6.17%。石墨烯中C-C键的浓度百分比由74.26%减少到59.76%,表明离子辐照后石墨烯中的C-C键发生了断裂。这种晶格结构的破坏导致缺陷在石墨烯中形成,这与图1(b)中的拉曼测量结果相一致。与此同时,石墨烯中C-O键的浓度百分比略有增加,达到27.49%,这表明断裂的C-C键能够自发地向C-O键或者C = O键重构。原因在于,当镓离子辐照石墨烯时,镓离子打断了石墨烯中的C-C键,产生了大量不饱和悬挂碳键,这些不饱和悬挂碳键很容易与环境中的H2O分子和O2分子吸附并结合,形成C-O键和C = O键。因此,通过XPS拟合结果可以推断出,离子辐照引起碳原子与H2O/O2分子之间发生了键的重构,导致Al/graphene表面的结合类型发生了改变。

3.5. 模拟计算结果与讨论

为了评估石墨烯表面上C/O键的重构在石墨烯界面热输运中的作用,采用密度泛函理论和非平衡态格林函数方法分别计算了Al/graphene/SiO2的结合能以及界面热导,计算结果如图6所示。伴随着辐照石墨烯表面C = O键的形成,在300 K时,Al/graphene/SiO2的界面热导从25.5 MW/m2K增大到66.6 MW/m2K,如图6(a)所示。图6(b)图6(c)分别展示了原始石墨烯、离子辐照石墨烯与铝原子接触后的电荷密度差。从图中可以看出,大量电子从相邻铝原子的表面聚集到离子辐照石墨烯表面C = O键上氧原子的空轨道上,这表明氧原子与铝原子之间形成了耦合。此外,除了形成氧–金属共价键之外,在整个离子辐照石墨烯表面上还出现了大量电子的转移,这意味着铝与离子辐照石墨烯之间的界面吸附作用也相应增强。

Figure 6. (a) The atomic structure and results of raw graphene and ion-irradiated graphene in density functional theory and non-equilibrium Green’s function calculation; (b) Difference in charge density of raw graphene; (c) Difference in charge density of ion-irradiated graphene

6. (a) 密度泛函理论以及非平衡态格林函数计算中原始石墨烯和离子辐照石墨烯的原子结构及计算结果。(b) 原始石墨烯的电荷密度差。(c) 离子辐照石墨烯的电荷密度差

为了量化吸附作用,使用密度泛函理论分别计算得到了铝与原始石墨烯、铝与离子辐照石墨烯之间的结合能,如表3所示。离子辐照前,铝与石墨烯之间的结合能为2.34 eV/nm2;离子辐照后,铝与石墨烯之间的结合能为4.70 eV/nm2,这说明随着石墨烯表面C = O键的形成,铝与石墨烯之间的结合能增加了2.36 eV/nm2。然而,氧原子与相邻铝原子之间的结合能为0.27 eV/nm2,仅占增加的整体结合能的11%。因此,与铝–氧共价键相比,铝与离子辐照石墨烯之间的界面吸附作用对Al/graphene/SiO2界面热导的贡献更大一些。此外,由于离子辐照石墨烯中C = O键的浓度较低(~6.17%),铝原子与氧原子之间不太可能形成大量的共价键,对Al/graphene/SiO2界面热导的大幅提高贡献有限。因此,铝与离子辐照石墨烯之间界面吸附作用的增强对石墨烯界面热输运起着主导作用。

Table 3. Binding energy of aluminum with raw graphene, ion-irradiated graphene and oxygen

3. 铝与原始石墨烯、离子辐照石墨烯、氧的结合能

类型

铝–原始石墨烯

铝–离子辐照石墨烯

铝–氧

结合能(eV/nm2)

2.34

4.70

0.27

4. 结论

本文使用TDTR方法研究了离子辐照能量对石墨烯界面热导的影响。TDTR测量结果显示,离子辐照石墨烯后,Al/graphene/SiO2界面热导最大可提高3倍,并且通过精确控制离子辐照的能量可以提高并调控石墨烯界面上的热传导效率。实验测量和理论计算结果表明离子辐照后石墨烯表面形成了C = O键,导致铝膜与石墨烯之间的界面吸附作用大幅提高。与铝–氧共价键相比,铝膜与辐照石墨烯之间的界面吸附作用对Al/graphene/SiO2界面热导的贡献更大一些,在Al/graphene/SiO2界面上的热输运中占据主导地位。

项目支持

本文研究受江苏省特检院院内科技计划项目资助(项目编号:KJ (YJ) 2023004)。

NOTES

*通讯作者。

参考文献

[1] Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, 385-388.
https://doi.org/10.1126/science.1157996
[2] Hao, F., Fang, D. and Xu, Z. (2011) Mechanical and Thermal Transport Properties of Graphene with Defects. Applied Physics Letters, 99, Article 041901.
https://doi.org/10.1063/1.3615290
[3] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
https://doi.org/10.1126/science.1102896
[4] Wang, F., Zhang, Y., Tian, C., Girit, C., Zettl, A., Crommie, M., et al. (2008) Gate-Variable Optical Transitions in Graphene. Science, 320, 206-209.
https://doi.org/10.1126/science.1152793
[5] Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., et al. (2008) Fine Structure Constant Defines Visual Transparency of Graphene. Science, 320, 1308-1308.
https://doi.org/10.1126/science.1156965
[6] Bonaccorso, F., Sun, Z., Hasan, T. and Ferrari, A.C. (2010) Graphene Photonics and Optoelectronics. Nature Photonics, 4, 611-622.
https://doi.org/10.1038/nphoton.2010.186
[7] Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., et al. (2008) Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8, 902-907.
https://doi.org/10.1021/nl0731872
[8] Cai, W., Moore, A.L., Zhu, Y., Li, X., Chen, S., Shi, L., et al. (2010) Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition. Nano Letters, 10, 1645-1651.
https://doi.org/10.1021/nl9041966
[9] Hopkins, P.E., Baraket, M., Barnat, E.V., Beechem, T.E., Kearney, S.P., Duda, J.C., et al. (2012) Manipulating Thermal Conductance at Metal-Graphene Contacts via Chemical Functionalization. Nano Letters, 12, 590-595.
https://doi.org/10.1021/nl203060j
[10] Foley, B.M., Hernández, S.C., Duda, J.C., Robinson, J.T., Walton, S.G. and Hopkins, P.E. (2015) Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces. Nano Letters, 15, 4876-4882.
https://doi.org/10.1021/acs.nanolett.5b00381
[11] Jiang, T., Zhang, X., Vishwanath, S., Mu, X., Kanzyuba, V., Sokolov, D.A., et al. (2016) Covalent Bonding Modulated Graphene-Metal Interfacial Thermal Transport. Nanoscale, 8, 10993-11001.
https://doi.org/10.1039/c6nr00979d
[12] Han, H., Zhang, Y., Wang, N., Samani, M.K., Ni, Y., Mijbil, Z.Y., et al. (2016) Functionalization Mediates Heat Transport in Graphene Nanoflakes. Nature Communications, 7, Article No. 11281.
https://doi.org/10.1038/ncomms11281
[13] Koh, Y.K., Bae, M., Cahill, D.G. and Pop, E. (2010) Heat Conduction across Monolayer and Few-Layer Graphenes. Nano Letters, 10, 4363-4368.
https://doi.org/10.1021/nl101790k
[14] Walton, S.G., Foley, B.M., Hernández, S.C., Boris, D.R., Baraket, M., Duda, J.C., et al. (2017) Plasma-Based Chemical Functionalization of Graphene to Control the Thermal Transport at Graphene-Metal Interfaces. Surface and Coatings Technology, 314, 148-154.
https://doi.org/10.1016/j.surfcoat.2016.12.085
[15] Wejrzanowski, T., Grybczuk, M., Wasiluk, M. and Kurzydlowski, K.J. (2015) Heat Transfer through Metal-Graphene Interfaces. AIP Advances, 5, Article 077142.
https://doi.org/10.1063/1.4927389
[16] Chen, L., Huang, Z. and Kumar, S. (2013) Phonon Transmission and Thermal Conductance across Graphene/Cu Interface. Applied Physics Letters, 103, Article 123110.
https://doi.org/10.1063/1.4821439
[17] Chen, L., Huang, Z. and Kumar, S. (2014) Impact of Bonding at Multi-Layer Graphene/Metal Interfaces on Thermal Boundary Conductance. RSC Advances, 4, 35852-35861.
https://doi.org/10.1039/c4ra03585b
[18] Mao, R., Kong, B.D., Gong, C., Xu, S., Jayasekera, T., Cho, K., et al. (2013) First-Principles Calculation of Thermal Transport in Metal/Graphene Systems. Physical Review B, 87, Article 165410.
https://doi.org/10.1103/physrevb.87.165410
[19] Tao, Y., Wu, C., Qi, H., Liu, C., Wu, X., Hao, M., et al. (2020) The Enhancement of Heat Conduction across the Metal/Graphite Interface Treated with a Focused Ion Beam. Nanoscale, 12, 14838-14846.
https://doi.org/10.1039/c9nr09937a
[20] Malard, L.M., Pimenta, M.A., Dresselhaus, G. and Dresselhaus, M.S. (2009) Raman Spectroscopy in Graphene. Physics Reports, 473, 51-87.
https://doi.org/10.1016/j.physrep.2009.02.003
[21] Ferrari, A.C. and Robertson, J. (2000) Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Physical Review B, 61, 14095-14107.
https://doi.org/10.1103/physrevb.61.14095
[22] Zhou, Y., Liao, Z., Wang, Y., Duesberg, G.S., Xu, J., Fu, Q., et al. (2010) Ion Irradiation Induced Structural and Electrical Transition in Graphene. The Journal of Chemical Physics, 133, Article 234703.
https://doi.org/10.1063/1.3518979
[23] Wang, Q., Mao, W., Ge, D., Zhang, Y., Shao, Y. and Ren, N. (2013) Effects of Ga Ion-Beam Irradiation on Monolayer Graphene. Applied Physics Letters, 103, Article 073501.
https://doi.org/10.1063/1.4818458
[24] Wang, Q., Shao, Y., Ge, D., Yang, Q. and Ren, N. (2015) Surface Modification of Multilayer Graphene Using Ga Ion Irradiation. Journal of Applied Physics, 117, Article 165303.
https://doi.org/10.1063/1.4919071
[25] Al-Harthi, S.H., Elzain, M., Al-Barwani, M., Kora'a, A., Hysen, T., Myint, M.T.Z., et al. (2012) Unusual Surface and Edge Morphologies, Sp2 to Sp3 Hybridized Transformation and Electronic Damage after Ar+ Ion Irradiation of Few-Layer Graphene Surfaces. Nanoscale Research Letters, 7, 1-11.
https://doi.org/10.1186/1556-276x-7-466
[26] Lu, J., Bao, Y., Su, C.L. and Loh, K.P. (2013) Properties of Strained Structures and Topological Defects in Graphene. ACS Nano, 7, 8350-8357.
https://doi.org/10.1021/nn4051248