[1]
|
Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, 385-388. https://doi.org/10.1126/science.1157996
|
[2]
|
Hao, F., Fang, D. and Xu, Z. (2011) Mechanical and Thermal Transport Properties of Graphene with Defects. Applied Physics Letters, 99, Article 041901. https://doi.org/10.1063/1.3615290
|
[3]
|
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. https://doi.org/10.1126/science.1102896
|
[4]
|
Wang, F., Zhang, Y., Tian, C., Girit, C., Zettl, A., Crommie, M., et al. (2008) Gate-Variable Optical Transitions in Graphene. Science, 320, 206-209. https://doi.org/10.1126/science.1152793
|
[5]
|
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., et al. (2008) Fine Structure Constant Defines Visual Transparency of Graphene. Science, 320, 1308-1308. https://doi.org/10.1126/science.1156965
|
[6]
|
Bonaccorso, F., Sun, Z., Hasan, T. and Ferrari, A.C. (2010) Graphene Photonics and Optoelectronics. Nature Photonics, 4, 611-622. https://doi.org/10.1038/nphoton.2010.186
|
[7]
|
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., et al. (2008) Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8, 902-907. https://doi.org/10.1021/nl0731872
|
[8]
|
Cai, W., Moore, A.L., Zhu, Y., Li, X., Chen, S., Shi, L., et al. (2010) Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition. Nano Letters, 10, 1645-1651. https://doi.org/10.1021/nl9041966
|
[9]
|
Hopkins, P.E., Baraket, M., Barnat, E.V., Beechem, T.E., Kearney, S.P., Duda, J.C., et al. (2012) Manipulating Thermal Conductance at Metal-Graphene Contacts via Chemical Functionalization. Nano Letters, 12, 590-595. https://doi.org/10.1021/nl203060j
|
[10]
|
Foley, B.M., Hernández, S.C., Duda, J.C., Robinson, J.T., Walton, S.G. and Hopkins, P.E. (2015) Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces. Nano Letters, 15, 4876-4882. https://doi.org/10.1021/acs.nanolett.5b00381
|
[11]
|
Jiang, T., Zhang, X., Vishwanath, S., Mu, X., Kanzyuba, V., Sokolov, D.A., et al. (2016) Covalent Bonding Modulated Graphene-Metal Interfacial Thermal Transport. Nanoscale, 8, 10993-11001. https://doi.org/10.1039/c6nr00979d
|
[12]
|
Han, H., Zhang, Y., Wang, N., Samani, M.K., Ni, Y., Mijbil, Z.Y., et al. (2016) Functionalization Mediates Heat Transport in Graphene Nanoflakes. Nature Communications, 7, Article No. 11281. https://doi.org/10.1038/ncomms11281
|
[13]
|
Koh, Y.K., Bae, M., Cahill, D.G. and Pop, E. (2010) Heat Conduction across Monolayer and Few-Layer Graphenes. Nano Letters, 10, 4363-4368. https://doi.org/10.1021/nl101790k
|
[14]
|
Walton, S.G., Foley, B.M., Hernández, S.C., Boris, D.R., Baraket, M., Duda, J.C., et al. (2017) Plasma-Based Chemical Functionalization of Graphene to Control the Thermal Transport at Graphene-Metal Interfaces. Surface and Coatings Technology, 314, 148-154. https://doi.org/10.1016/j.surfcoat.2016.12.085
|
[15]
|
Wejrzanowski, T., Grybczuk, M., Wasiluk, M. and Kurzydlowski, K.J. (2015) Heat Transfer through Metal-Graphene Interfaces. AIP Advances, 5, Article 077142. https://doi.org/10.1063/1.4927389
|
[16]
|
Chen, L., Huang, Z. and Kumar, S. (2013) Phonon Transmission and Thermal Conductance across Graphene/Cu Interface. Applied Physics Letters, 103, Article 123110. https://doi.org/10.1063/1.4821439
|
[17]
|
Chen, L., Huang, Z. and Kumar, S. (2014) Impact of Bonding at Multi-Layer Graphene/Metal Interfaces on Thermal Boundary Conductance. RSC Advances, 4, 35852-35861. https://doi.org/10.1039/c4ra03585b
|
[18]
|
Mao, R., Kong, B.D., Gong, C., Xu, S., Jayasekera, T., Cho, K., et al. (2013) First-Principles Calculation of Thermal Transport in Metal/Graphene Systems. Physical Review B, 87, Article 165410. https://doi.org/10.1103/physrevb.87.165410
|
[19]
|
Tao, Y., Wu, C., Qi, H., Liu, C., Wu, X., Hao, M., et al. (2020) The Enhancement of Heat Conduction across the Metal/Graphite Interface Treated with a Focused Ion Beam. Nanoscale, 12, 14838-14846. https://doi.org/10.1039/c9nr09937a
|
[20]
|
Malard, L.M., Pimenta, M.A., Dresselhaus, G. and Dresselhaus, M.S. (2009) Raman Spectroscopy in Graphene. Physics Reports, 473, 51-87. https://doi.org/10.1016/j.physrep.2009.02.003
|
[21]
|
Ferrari, A.C. and Robertson, J. (2000) Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Physical Review B, 61, 14095-14107. https://doi.org/10.1103/physrevb.61.14095
|
[22]
|
Zhou, Y., Liao, Z., Wang, Y., Duesberg, G.S., Xu, J., Fu, Q., et al. (2010) Ion Irradiation Induced Structural and Electrical Transition in Graphene. The Journal of Chemical Physics, 133, Article 234703. https://doi.org/10.1063/1.3518979
|
[23]
|
Wang, Q., Mao, W., Ge, D., Zhang, Y., Shao, Y. and Ren, N. (2013) Effects of Ga Ion-Beam Irradiation on Monolayer Graphene. Applied Physics Letters, 103, Article 073501. https://doi.org/10.1063/1.4818458
|
[24]
|
Wang, Q., Shao, Y., Ge, D., Yang, Q. and Ren, N. (2015) Surface Modification of Multilayer Graphene Using Ga Ion Irradiation. Journal of Applied Physics, 117, Article 165303. https://doi.org/10.1063/1.4919071
|
[25]
|
Al-Harthi, S.H., Elzain, M., Al-Barwani, M., Kora'a, A., Hysen, T., Myint, M.T.Z., et al. (2012) Unusual Surface and Edge Morphologies, Sp2 to Sp3 Hybridized Transformation and Electronic Damage after Ar+ Ion Irradiation of Few-Layer Graphene Surfaces. Nanoscale Research Letters, 7, 1-11. https://doi.org/10.1186/1556-276x-7-466
|
[26]
|
Lu, J., Bao, Y., Su, C.L. and Loh, K.P. (2013) Properties of Strained Structures and Topological Defects in Graphene. ACS Nano, 7, 8350-8357. https://doi.org/10.1021/nn4051248
|