[1]
|
Bellucci, R. and Curatolo, M.C. (2017) A New Extended Depth of Focus Intraocular Lens Based on Spherical Aberration. Journal of Refractive Surgery, 33, 389-394. https://doi.org/10.3928/1081597x-20170329-01
|
[2]
|
Cochener, B. (2016) Clinical Outcomes of a New Extended Range of Vision Intraocular Lens: International Multicenter Concerto Study. Journal of Cataract and Refractive Surgery, 42, 1268-1275. https://doi.org/10.1016/j.jcrs.2016.06.033
|
[3]
|
Nowik, K.E., Nowik, K., Kanclerz, P. and Szaflik, J.P. (2022) Clinical Performance of Extended Depth of Focus (EDOF) Intraocular Lenses—A Retrospective Comparative Study of Mini Well Ready and Symfony. Clinical Ophthalmology, 16, 1613-1621. https://doi.org/10.2147/opth.s341698
|
[4]
|
Monaco, G., Gari, M., Di Censo, F., Poscia, A., Ruggi, G. and Scialdone, A. (2017) Visual Performance after Bilateral Implantation of 2 New Presbyopia-Correcting Intraocular Lenses: Trifocal versus Extended Range of Vision. Journal of Cataract and Refractive Surgery, 43, 737-747. https://doi.org/10.1016/j.jcrs.2017.03.037
|
[5]
|
Rampat, R. and Gatinel, D. (2021) Multifocal and Extended Depth-of-Focus Intraocular Lenses in 2020. Ophthalmology, 128, e164-e185. https://doi.org/10.1016/j.ophtha.2020.09.026
|
[6]
|
Smith, C.E., Allison, R.S., Wilkinson, F. and Wilcox, L.M. (2019) Monovision: Consequences for Depth Perception from Large Disparities. Experimental Eye Research, 183, 62-67. https://doi.org/10.1016/j.exer.2018.09.005
|
[7]
|
Montés-Micó, R., España, E., Bueno, I., Charman, W.N. and Menezo, J.L. (2004) Visual Performance with Multifocal Intraocular Lenses: Mesopic Contrast Sensitivity under Distance and Near Conditions. Ophthalmology, 111, 85-96. https://doi.org/10.1016/s0161-6420(03)00862-5
|
[8]
|
Ortiz, C., Esteve-Taboada, J.J., Belda-Salmerón, L., Monsálvez-Romín, D. and Domínguez-Vicent, A. (2016) Effect of Decentration on the Optical Quality of Two Intraocular Lenses. Optometry and Vision Science, 93, 1552-1559. https://doi.org/10.1097/opx.0000000000001004
|
[9]
|
Megiddo-Barnir, E. and Alió, J.L. (2023) Latest Development in Extended Depth-of-Focus Intraocular Lenses: An Update. Asia-Pacific Journal of Ophthalmology, 12, 58-79. https://doi.org/10.1097/apo.0000000000000590
|
[10]
|
杨丽, 兰长骏, 廖萱. 新型老视矫正型人工晶状体的研究进展与临床应用[J]. 国际眼科杂志, 2020, 20(7): 1167-1170.
|
[11]
|
Kanclerz, P., Toto, F., Grzybowski, A. and Alio, J.L. (2020) Extended Depth-of-Field Intraocular Lenses: An Update. Asia-Pacific Journal of Ophthalmology, 9, 194-202. https://doi.org/10.1097/apo.0000000000000296
|
[12]
|
Savini, G., Schiano-Lomoriello, D., Balducci, N. and Barboni, P. (2018) Visual Performance of a New Extended Depth-of-Focus Intraocular Lens Compared to a Distance-Dominant Diffractive Multifocal Intraocular Lens. Journal of Refractive Surgery, 34, 228-235. https://doi.org/10.3928/1081597x-20180125-01
|
[13]
|
Böhm, M., Petermann, K., Hemkeppler, E. and Kohnen, T. (2019) Defocus Curves of 4 Presbyopia-Correcting IOL Designs: Diffractive Panfocal, Diffractive Trifocal, Segmental Refractive, and Extended-Depth-of-Focus. Journal of Cataract and Refractive Surgery, 45, 1625-1636. https://doi.org/10.1016/j.jcrs.2019.07.014
|
[14]
|
Yi, F., Robert Iskander, D. and Collins, M. (2011) Depth of Focus and Visual Acuity with Primary and Secondary Spherical Aberration. Vision Research, 51, 1648-1658. https://doi.org/10.1016/j.visres.2011.05.006
|
[15]
|
Lai, Y., Yeh, S. and Cheng, H. (2015) Distribution of Corneal and Ocular Spherical Aberrations in Eyes with Cataract in the Taiwanese Population. Taiwan Journal of Ophthalmology, 5, 72-75. https://doi.org/10.1016/j.tjo.2015.03.003
|
[16]
|
Nicula, C.A., Rednik, A.M., Nicula, A.P., Bulboacă, A.E., Nicula, D. and Horvath, K.U. (2022) Long Term Visual Outcomes in Cataract Surgery with Bilateral Implantation of the Extended Depth of Focus Intraocular Lens—Mini Well Ready Type. Romanian Journal of Ophthalmology, 66, 317-325. https://doi.org/10.22336/rjo.2022.58
|
[17]
|
Auffarth, G.U., Moraru, O., Munteanu, M., Tognetto, D., Bordin, P., Belucci, R., et al. (2020) European, Multicenter, Prospective, Non-Comparative Clinical Evaluation of an Extended Depth of Focus Intraocular Lens. Journal of Refractive Surgery, 36, 426-434. https://doi.org/10.3928/1081597x-20200603-01
|
[18]
|
Campbell, F.W. (1954) A Method for Measuring the Depth of Field of the Human Eye. The Journal of Physiology, 125, 11 p.
|
[19]
|
Ang, R.E.T., Araneta, M.M.Q. and Cruz, E.M. (2022) Review of Surgical Devices Using Small Aperture Optics. Taiwan Journal of Ophthalmology, 12, 282-294. https://doi.org/10.4103/tjo.tjo_45_21
|
[20]
|
Sánchez-González, J., Sánchez-González, M.C., De-Hita-Cantalejo, C. and Ballesteros-Sánchez, A. (2022) Small Aperture IC-8 Extended-Depth-of-Focus Intraocular Lens in Cataract Surgery: A Systematic Review. Journal of Clinical Medicine, 11, Article 4654. https://doi.org/10.3390/jcm11164654
|
[21]
|
Srinivasan, S., Khoo, L.W. and Koshy, Z. (2019) Posterior Segment Visualization in Eyes with Small-Aperture Intraocular Lens. Journal of Refractive Surgery, 35, 538-542. https://doi.org/10.3928/1081597x-20190710-01
|
[22]
|
Grabner, G., Ang, R.E. and Vilupuru, S. (2015) The Small-Aperture IC-8 Intraocular Lens: A New Concept for Added Depth of Focus in Cataract Patients. American Journal of Ophthalmology, 160, 1176-1184.e1. https://doi.org/10.1016/j.ajo.2015.08.017
|
[23]
|
Hooshmand, J., Allen, P., Huynh, T., Chan, C., Singh, R., Moshegov, C., et al. (2019) Small Aperture IC-8 Intraocular Lens in Cataract Patients: Achieving Extended Depth of Focus through Small Aperture Optics. Eye, 33, 1096-1103. https://doi.org/10.1038/s41433-019-0363-9
|
[24]
|
Ang, R.E. (2018) Small-Aperture Intraocular Lens Tolerance to Induced Astigmatism. Clinical Ophthalmology, 12, 1659-1664. https://doi.org/10.2147/opth.s172557
|
[25]
|
Dick, H.B. (2019) Small-Aperture Strategies for the Correction of Presbyopia. Current Opinion in Ophthalmology, 30, 236-242. https://doi.org/10.1097/icu.0000000000000576
|
[26]
|
Franco, F., Branchetti, M., Vicchio, L., Serino, F., Piergentili, M., Spagnuolo, V., et al. (2022) Implantation of a Small Aperture Intraocular Lens in Eyes with Irregular Corneas and Higher Order Aberrations. Journal of Ophthalmic and Vision Research, 17, 317-323. https://doi.org/10.18502/jovr.v17i3.11568
|
[27]
|
Agarwal, P. and Navon, S.E. (2019) Persistent Troublesome Floaters Necessitating the Explantation of XtraFocus Pinhole IOL (Morcher). BMJ Case Reports, 12, e229057. https://doi.org/10.1136/bcr-2018-229057
|
[28]
|
Agarwal, P., Navon, S.E., Subudhi, P. and Mithal, N. (2019) Persistently Poor Vision in Dim Illumination after Implantation of XtraFocus Small-Aperture IOL (Morcher). BMJ Case Reports, 12, e232473. https://doi.org/10.1136/bcr-2019-232473
|
[29]
|
Pedrotti, E., Bruni, E., Bonacci, E., Badalamenti, R., Mastropasqua, R. and Marchini, G. (2016) Comparative Analysis of the Clinical Outcomes with a Monofocal and an Extended Range of Vision Intraocular Lens. Journal of Refractive Surgery, 32, 436-442. https://doi.org/10.3928/1081597x-20160428-06
|
[30]
|
Lubiński, W., Podborączyńska-Jodko, K., Kirkiewicz, M., Mularczyk, M. and Post, M. (2020) Comparison of Visual Outcomes after Implantation of AtLisa Tri 839 MP and Symfony Intraocular Lenses. International Ophthalmology, 40, 2553-2562. https://doi.org/10.1007/s10792-020-01435-z
|
[31]
|
Kohnen, T., Böhm, M., Hemkeppler, E., Schönbrunn, S., DeLorenzo, N., Petermann, K., et al. (2019) Visual Performance of an Extended Depth of Focus Intraocular Lens for Treatment Selection. Eye, 33, 1556-1563. https://doi.org/10.1038/s41433-019-0443-x
|
[32]
|
Takahashi, M., Yamashiro, C., Yoshimoto, T., Kobayashi, Y., Higashijima, F., Kobayashi, M., et al. (2020) Influence of Extended Depth of Focus Intraocular Lenses on Visual Field Sensitivity. PLOS ONE, 15, e0237728. https://doi.org/10.1371/journal.pone.0237728
|
[33]
|
可殊瑞. 三种人工晶状体植入术后动态视力DVA及视功能的评估及对比[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2022.
|
[34]
|
Ganesh, S., Brar, S., Pawar, A. and Relekar, K.J. (2018) Visual and Refractive Outcomes Following Bilateral Implantation of Extended Range of Vision Intraocular Lens with Micromonovision. Journal of Ophthalmology, 2018, Article ID: 7321794. https://doi.org/10.1155/2018/7321794
|
[35]
|
Potvin, R. and Gundersen, K.G. (2016) Comparison of Visual Outcomes and Subjective Visual Quality after Bilateral Implantation of a Diffractive Trifocal Intraocular Lens and Blended Implantation of Apodized Diffractive Bifocal Intraocular Lenses. Clinical Ophthalmology, 10, 805-811. https://doi.org/10.2147/opth.s107162
|
[36]
|
Gillmann, K. and Mermoud, A. (2019) Visual Performance, Subjective Satisfaction and Quality of Life Effect of a New Refractive Intraocular Lens with Central Extended Depth of Focus. Klinische Monatsblätter für Augenheilkunde, 236, 384-390. https://doi.org/10.1055/a-0799-9700
|
[37]
|
Rabinovich, M., Ceresara, G., Aramburu del Boz, A., Al Khatib, D., Crespe, M. and Bovet, J. (2022) Visual Outcomes after Implantation of Lucidis EDOF IOL. Journal of Ophthalmology, 2022, Article ID: 5100861. https://doi.org/10.1155/2022/5100861
|
[38]
|
Ozturkmen, C., Kesim, C., Karadeniz, P.G. and Sahin, A. (2021) Visual Acuity, Defocus Curve and Patient Satisfaction of a New Hybrid EDOF-Multifocal Diffractive Intraocular Lens. European Journal of Ophthalmology, 32, 2988-2993. https://doi.org/10.1177/11206721211057338
|
[39]
|
Shin, D.E., Lee, H., Kim, T. and Koh, K. (2022) Comparison of Visual Results and Optical Quality of Two Presbyopia-Correcting Intraocular Lenses: TECNIS Symfony versus TECNIS Synergy. European Journal of Ophthalmology, 32, 3461-3469. https://doi.org/10.1177/11206721221093024
|
[40]
|
Tognetto, D., Cecchini, P., Giglio, R. and Turco, G. (2020) Surface Profiles of New-Generation IOLs with Improved Intermediate Vision. Journal of Cataract and Refractive Surgery, 46, 902-906. https://doi.org/10.1097/j.jcrs.0000000000000215
|
[41]
|
Singh, G., Sidhharthan, K.S., Reddy, J.K., Sundaram, V. and Thulasidas, M. (2024) Comparison of Visual Outcomes in Patients Implanted with Tecnis Eyhance ICB00 and 1-Piece ZCB00 Monofocal Intraocular Lenses. Indian Journal of Ophthalmology, 72, 181-184. https://doi.org/10.4103/ijo.ijo_681_23
|
[42]
|
Łabuz, G., Son, H., Naujokaitis, T., Yildirim, T.M., Khoramnia, R. and Auffarth, G.U. (2021) Laboratory Investigation of Preclinical Visual-Quality Metrics and Halo-Size in Enhanced Monofocal Intraocular Lenses. Ophthalmology and Therapy, 10, 1093-1104. https://doi.org/10.1007/s40123-021-00411-9
|
[43]
|
Mencucci, R., Cennamo, M., Venturi, D., Vignapiano, R. and Favuzza, E. (2020) Visual Outcome, Optical Quality, and Patient Satisfaction with a New Monofocal IOL, Enhanced for Intermediate Vision: Preliminary Results. Journal of Cataract and Refractive Surgery, 46, 378-387. https://doi.org/10.1097/j.jcrs.0000000000000061
|
[44]
|
Hovanesian, J.A., Jones, M. and Allen, Q. (2022) The Vivity Extended Range of Vision IOL vs the PanOptix Trifocal, ReStor 2.5 Active Focus and ReStor 3.0 Multifocal Lenses: A Comparison of Patient Satisfaction, Visual Disturbances, and Spectacle Independence. Clinical Ophthalmology, 16, 145-152. https://doi.org/10.2147/opth.s347382
|
[45]
|
Arrigo, A., Gambaro, G., Fasce, F., Aragona, E., Figini, I. and Bandello, F. (2021) Extended Depth-of-Focus (EDOF) AcrySof® IQ Vivity® Intraocular Lens Implant: A Real-Life Experience. Graefe’s Archive for Clinical and Experimental Ophthalmology, 259, 2717-2722. https://doi.org/10.1007/s00417-021-05245-6
|
[46]
|
Nowrouzi, A., Alió del Barrio, J.L. and Alió, J.L. (2022) Impact of Intraocular Lens Decentration on the near Vision Performance of a Wavefront-Correcting Extended Depth of Focus IOL. Journal of Refractive Surgery Case Reports, 2, e29-e31. https://doi.org/10.3928/jrscr-20220413-01
|
[47]
|
Liu, J., Dong, Y. and Wang, Y. (2019) Efficacy and Safety of Extended Depth of Focus Intraocular Lenses in Cataract Surgery: A Systematic Review and Meta-Analysis. BMC Ophthalmology, 19, Article No. 198. https://doi.org/10.1186/s12886-019-1204-0
|
[48]
|
Guo, Y., Wang, Y., Hao, R., Jiang, X., Liu, Z. and Li, X. (2021) Comparison of Patient Outcomes Following Implantation of Trifocal and Extended Depth of Focus Intraocular Lenses: A Systematic Review and Meta-Analysis. Journal of Ophthalmology, 2021, Article ID: 1115076. https://doi.org/10.1155/2021/1115076
|
[49]
|
Tarib, I., Kasier, I., Herbers, C., Hagen, P., Breyer, D., Kaymak, H., et al. (2019) Comparison of Visual Outcomes and Patient Satisfaction after Bilateral Implantation of an EDOF IOL and a Mix-and-Match Approach. Journal of Refractive Surgery, 35, 408-416. https://doi.org/10.3928/1081597x-20190417-02
|
[50]
|
Sandoval, H.P., Lane, S., Slade, S.G., Donnenfeld, E.D., Potvin, R. and Solomon, K.D. (2020) Defocus Curve and Patient Satisfaction with a New Extended Depth of Focus Toric Intraocular Lens Targeted for Binocular Emmetropia or Slight Myopia in the Non-Dominant Eye. Clinical Ophthalmology, 14, 1791-1798. https://doi.org/10.2147/opth.s247333
|
[51]
|
Mencucci, R., Favuzza, E., Caporossi, O., Savastano, A. and Rizzo, S. (2018) Comparative Analysis of Visual Outcomes, Reading Skills, Contrast Sensitivity, and Patient Satisfaction with Two Models of Trifocal Diffractive Intraocular Lenses and an Extended Range of Vision Intraocular Lens. Graefe’s Archive for Clinical and Experimental Ophthalmology, 256, 1913-1922. https://doi.org/10.1007/s00417-018-4052-3
|
[52]
|
Gil, M.A., Varón, C., Cardona, G. and Buil, J.A. (2019) Visual Acuity and Defocus Curves with Six Multifocal Intraocular Lenses. International Ophthalmology, 40, 393-401. https://doi.org/10.1007/s10792-019-01196-4
|
[53]
|
Xu, J., Zheng, T. and Lu, Y. (2020) Comparative Analysis of Visual Performance and Astigmatism Tolerance with Monofocal, Bifocal, and Extended Depth-of-Focus Intraocular Lenses Targeting Slight Myopia. Journal of Ophthalmology, 2020, Article ID: 9283021. https://doi.org/10.1155/2020/9283021
|
[54]
|
Wang, X., Liu, S., Chen, Y., Gong, J., Wu, N. and Yao, Y. (2024) Extended Depth of Focus IOL in Eyes with Different Axial Myopia and Targeted Refraction. BMC Ophthalmology, 24, Article No. 183. https://doi.org/10.1186/s12886-024-03442-5
|
[55]
|
Mori, Y., Shimizu, K., Minami, K., Kamiya, K., Shoji, N. and Miyata, K. (2016) Relationship of Corneal Asphericity to Intraocular Lens Power Calculations after Myopic Laser in Situ Keratomileusis. Journal of Cataract and Refractive Surgery, 42, 703-709. https://doi.org/10.1016/j.jcrs.2016.01.050
|
[56]
|
Lwowski, C., Pawlowicz, K., Hinzelmann, L., Adas, M. and Kohnen, T. (2020) Prediction Accuracy of IOL Calculation Formulas Using the ASCRS Online Calculator for a Diffractive Extended Depth-of-Focus IOL after Myopic Laser in Situ Keratomileusis. Journal of Cataract and Refractive Surgery, 46, 1240-1246. https://doi.org/10.1097/j.jcrs.0000000000000238
|