直接巢式PCR结合测序检测5-HT1A基因C-1019G多态性的方法的建立
Establishment of Direct Nested PCR Combined with Sequencing for Detection of C-1019G Polymorphism in 5-HT1A Gene
DOI: 10.12677/hjbm.2024.144070, PDF, HTML, XML,    科研立项经费支持
作者: 王川均*:广东药科大学临床药学院,广东 广州;杨玉娟*:广东药科大学基础医学院,广东 广州;何震宇#, 潘 伟#:广东药科大学学生工作部,广东 广州
关键词: 5-HT1A基因C-1019G多态性直接巢式PCR测序5-HT1A Gene C-1019G Polymorphism Direct Nested PCR Sequencing
摘要: 目的:5-HT1A基因C-1019G多态性与多种神经精神疾病如抑郁症、精神分裂症、焦虑症等的发生风险、症状严重程度及治疗效果存在关联。本研究旨在建立一种直接巢式PCR结合测序检测该位点的方法。方法:以口腔上皮细胞粗处理物为材料,通过直接巢式PCR扩增包含5-HT1A基因C-1019G位点的靶片段,PCR产物经桑格测序鉴定基因型。结果:所检样本均能扩增出预期大小的PCR产物,测序峰图清晰。结论:成功建立了一种直接巢式PCR结合测序鉴定5-HT1A基因型的方法,有良好的应用前景。
Abstract: Objective: The C-1019G polymorphism of the 5-HT1A gene has been associated with the risk of occurrence, symptom severity, and treatment outcome of a variety of neuropsychiatric disorders, such as depression, schizophrenia, and anxiety disorders. The aim of this study was to establish a direct nested PCR combined with sequencing to detect this locus. Methods: The target fragment containing the C-1019G locus of the 5-HT1A gene was amplified by direct nested PCR using crude processed oral epithelial cells, and the PCR product was genotyped by Sanger sequencing. Results: PCR products of expected size were amplified from all the samples tested, and the sequencing peaks were clear. Conclusion: A direct nested PCR combined with sequencing method was successfully established to identify the genotypes of 5-HT1A gene, which has good prospects for application.
文章引用:王川均, 杨玉娟, 何震宇, 潘伟. 直接巢式PCR结合测序检测5-HT1A基因C-1019G多态性的方法的建立[J]. 生物医学, 2024, 14(4): 645-651. https://doi.org/10.12677/hjbm.2024.144070

1. 引言

5-HT即5-羟色胺(5-hydroxytryptamine),也被称为血清素,是一种重要的神经递质,广泛参与情绪调节、认知功能、疼痛感知等多种生理和病理过程,5-HT含量及功能异常可能与情绪和冲动性的调节有关[1]。5-HT通过与多种受体结合来发挥作用,这些受体包括5-HT1A、5-HT2A、5-HT3、5-HT4等多种亚型。不同亚型的受体在大脑中的分布和功能各不相同,5-HT1A受体(5-羟色胺受体1A)大量存在于与情绪和情绪有关的皮质边缘区域,在控制由中缝核支配的各种脑区的血清素能外流方面发挥着重要作用[2],它是5-HT系统中的一个关键受体[3]。5-HT系统是中枢和外周功能的重要调节器,也是许多疾病的首选目标[4]。人类5-HT1A的编码基因位于5q12.3,其在神经元中的表达受抑制因子(包括REST/NRSF, Freud-1, NUDR/Deaf-1和Hes5等)的负调控,且该基因C-1019G多态性选择性地阻断NUDR对5-HT1A自身受体的抑制,进一步表明该受体在精神方面的疾病易感性中的调节改变具有致病作用[5]

C-1019G (rs6295)是5-HT1A基因一种功能性启动子多态性,它以特定区域的方式改变5-HT1A受体基因表达[6]。多项研究表明,C-1019G (rs6295)启动子多态性G等位基因与多种神经精神疾病如抑郁症[7]-[11]、精神分裂症[12]-[15]、焦虑症[16]-[21]、恐慌症[22] [23]等的发生风险、症状严重程度及治疗效果存在关联。5-羟色胺能系统作为中枢神经系统的重要神经递质系统,广泛参与内源性疼痛控制。其中,5-HT1A和5-HT1B受体是关键组成部分,其功能多态性可能影响疼痛敏感性。特别是5-HT1A受体的C-1019G多态性,可能改变受体功能,影响内源性疼痛控制,并与偏头痛患者的临床症状存在关联[24],表明其在偏头痛病理生理学中可能发挥重要作用。在健康的汉族人中,CG/GG基因型很难识别自己的感受并形成亲密的依恋或浪漫关系,这可能与抑郁症易感性有关[25] [26]。因此,准确、高效地检测该多态性对于疾病的早期诊断、风险评估及治疗策略的制定具有重要意义。

巢式PCR广泛应用于提高DNA扩增的特异性和灵敏度,其优点在于,即使第一轮扩增产生了非特异性片段,这些片段在第二轮扩增中被错误配对并进一步扩增的可能性极低,因此可以显著提高PCR的特异性[27]。本研究旨在建立一种基于直接巢式PCR结合测序技术检测5-HT1A基因C-1019G多态性的方法,它以粗处理的口腔上皮细胞为材料通过两轮PCR直接扩增出靶片段,然后进行sanger测序鉴定基因型。

2. 实验材料和仪器

2.1. 主要材料

2.1.1. 实验样品

样品由广东药科大学的本科生提供,均签署了知情同意书,按照本实验室的样本处理流程处理后备用。

2.1.2. 试剂

引物由北京擎科生物科技有限公司(广州)合成;聚合酶购自北京全式金生物技术有限公司;Trans DNA Marker I购自北京庄盟国际生物基因科技有限公司。

2.1.3. 仪器

BIO-RAD T100基因扩增仪购自上海伯乐生命医疗产品公司;DYY-6B型稳压稳流电泳仪和WD-9403F紫外仪购自北京市六一仪器厂;三用恒温水箱购自姚奥特仪表有限公司;北京大龙手动单道移液器购自上海高致精密仪器有限公司;艾本德Research plus单道可调量程单道移液器购自上海高致精密仪器有限公司;TGL-16B台式离心机购自上海安亭科学仪器厂。

2.2. 样品采集及处理

志愿者漱口后,用医用棉签在口腔内壁反复刮擦30~40下,边刮边不断转换棉签头的角度。用1000 μL TE浸润棉签头,涮洗以使细胞悬浮,4000 r/min离心5 min,弃去上清,得到细胞沉淀。用50 μL TE重悬细胞,样本储存于−20℃备用。

3. 实验方法

3.1. 引物设计

本研究所使用的外引物对WF、WR源自参考文献[28],并与其保持完全一致,而内引物对NF、NR在参考文献[29]的基础上加以修改。图1为引物的序列及在基因中的位置(序列编号依据GenBank登录号NG_032816.1)。

Figure 1. Schematic diagram of primers used to amplify C-1019G polymorphic locus of HT1A gene

1. 扩增5-HT1A基因C-1019G多态位点的引物示意图

3.2. PCR扩增

第一轮PCR反应体系为10 μL。其中口腔上皮细胞粗处理物0.5 μL,2 × TransDirect® PCR SuperMix (+dye) 5 μL,外引物WF、WR各0.2 μL,dd H2O 4.1 μL。

PCR反应条件为:94℃预变性8 min,94℃变性30 s,52℃退火30 s,72℃延伸15 s,35个循环,72℃再延伸5 min。

第二轮PCR反应体系为25 μL。其中,第一轮PCR产物0.5 μL,2 × EasyTaq PCRSuperMix (+dye) 12.5 μL,内引物NF、NR各0.5 μL,dd H2O 11 μL。

PCR反应条件为:94℃预变性2 min,94℃变性30 s,58℃退火30 s,72℃延伸6 s,27个循环,72℃再延伸5 min。

3.3. PCR产物鉴定

用胶染法制备含溴化乙锭(EB)的2%琼脂糖凝胶,取5 μL第二轮PCR产物于180 V电泳25 min,用紫外透射仪观察结果,并拍照保存。

3.4. PCR产物的序列测定

将上述第二轮扩增成功的PCR产物委托北京擎科生物科技有限公司测序,测序引物为前述的引物NR。

4. 实验结果

4.1. PCR产物的电泳鉴定

图2的1~5号分别为5个不同样品的PCR产物电泳条带,条带单一,与预期产物片段大小(182 bp)相符,表明PCR取得成功。

Figure 2. Agarose gel electrophoresis of nested PCR products. M: DNA molecular weight marker Trans DNA Marker I 1~5: PCR products from different samples

2. 巢式PCR产物琼脂糖凝胶电泳图。M:DNA分子量标记Trans DNA Marker I 1~5:不同样本的PCR产物

4.2. 基因测序结果

5-HT1A基因C-1019G多态位点附近的序列为…aaaaSgaaga… (S为C或G),图3的测序峰图不仅能清晰地显示这些序列,而且能准确地判断三种基因型。

Figure 3. Sequencing peaks of C-1019G polymorphic locus of HT1A gene

3. 5-HT1A基因C-1019G多态位点的测序峰图

5. 讨论

本研究利用直接巢式PCR结合测序检测5-HT1A基因C-1019G多态性,具有以下特点:

1) 虽然目前针对该位点有常规PCR结合测序的检测方法[28],但是常规PCR需要提纯基因组DNA,而本研究只需用口腔上皮细胞作为初始材料进行直接巢式PCR,对模板的要求低,大大节约了提纯基因组DNA所花的时间成本和经济成本。

2) 本研究所使用的外引物对源自文献,可以节省设计和验证引物的时间及其研究成本,避免不必要的重复工作。在使用外引物对进行第一轮扩增的基础上,采用内引物对进行第二轮扩增能保证扩增反应的特异性,避免非特异性扩增。

尽管巢式PCR理论上能增加扩增的特异性,但是也需要进行条件优化,否则也有可能产生杂带,本研究极大地压缩了第二轮PCR的延伸时间,低至6 s,并且把循环数降至27个,以保证目标带附近没有杂带影响后续的测序反应。即巢式PCR能为测序反应提供足够量的高特异性靶片段。

有研究[30]指出,在恋爱关系里,具有CG/GG基因型的个体比具有CC基因型的个体更难识别自己的感受,该研究还显示,携带CG/GG基因型的个体似乎比具有CC基因型的个体更不愿意与他人建立亲密关系[26]。一些研究指出,相较于CC型,CG/GG基因型的个体在社会及家庭的影响下,出现抑郁症等精神疾病的风险较高。具体来说,Kishi等[31]人的研究显示,通过对大量患者的扩展荟萃分析,发现CG/GG基因型与重度抑郁症和双相情感障碍的易感性显著相关,风险增加约20%。同样,Lemonde等人[32]也报道,CG/GG基因型中5-羟色胺1A受体基因抑制功能受损,导致重度抑郁症和自杀行为风险上升,风险比率约为1.5。本研究检测了100例样品,CC型(野生型纯合子)占50%,GC型(杂合子)占38%,而GG型(突变型纯合子)占9%,即GC型 + GG型占比47%,这一部分个体的情感和精神状态是否受基因型的影响和影响程度如何,值得进一步探究。

6. 结论

本研究建立一种直接巢式PCR结合测序检测5-HT1A基因C-1019G多态性的方法,该方法的建立将为5-HT1A基因多态性的研究提供一种高效、准确的检测手段,有助于深入理解该多态性与神经精神疾病之间的关系,为疾病的早期诊断、风险评估及治疗策略的制定提供科学依据。同时,该方法的成功应用也将为其他基因多态性的检测提供有益的参考和借鉴。

基金项目

1) 2021年教育部人文社会科学研究专项任务项目(高校辅导员研究),项目批准号:21JDSZ3043;

2) 广东药科大学2023年度本科教学质量与教学改革工程项目;

3) 广东药科大学基础医学院2023年度教育教学质量提升工程项目。

NOTES

*共同第一作者。

#通讯作者。

参考文献

[1] Albert, P. and Fiori, L. (2014) Transcriptional Dys-Regulation in Anxiety and Major Depression: 5-HT1A Gene Promoter Architecture as a Therapeutic Opportunity. Current Pharmaceutical Design, 20, 3738-3750.
https://doi.org/10.2174/13816128113196660740
[2] Ou, X., Jafar-Nejad, H., Storring, J.M., Meng, J., Lemonde, S. and Albert, P.R. (2000) Novel Dual Repressor Elements for Neuronal Cell-Specific Transcription of the Rat 5-HT1A Receptor Gene. Journal of Biological Chemistry, 275, 8161-8168.
https://doi.org/10.1074/jbc.275.11.8161
[3] Pernhorst, K., van Loo, K.M.J., von Lehe, M., Priebe, L., Cichon, S., Herms, S., et al. (2013) Rs6295 Promoter Variants of the Serotonin Type 1A Receptor Are Differentially Activated by C-Jun in Vitro and Correlate to Transcript Levels in Human Epileptic Brain Tissue. Brain Research, 1499, 136-144.
https://doi.org/10.1016/j.brainres.2012.12.045
[4] de Deurwaerdère, P. and Di Giovanni, G. (2020) Serotonin in Health and Disease. International Journal of Molecular Sciences, 21, Article 3500.
https://doi.org/10.3390/ijms21103500
[5] Albert, P.R. and Lemonde, S. (2004) 5-HT1A Receptors, Gene Repression, and Depression: Guilt by Association. The Neuroscientist, 10, 575-593.
https://doi.org/10.1177/1073858404267382
[6] Albert, P.R., Le François, B. and Vahid-Ansari, F. (2019) Genetic, Epigenetic and Posttranscriptional Mechanisms for Treatment of Major Depression: The 5-HT1A Receptor Gene as a Paradigm. Journal of Psychiatry and Neuroscience, 44, 164-176.
https://doi.org/10.1503/jpn.180209
[7] Serretti, A., Artioli, P., Lorenzi, C., Pirovano, A., Tubazio, V. and Zanardi, R. (2004) The C (–1019) G Polymorphism of the 5-HT1A Gene Promoter and Antidepressant Response in Mood Disorders: Preliminary Findings. The International Journal of Neuropsychopharmacology, 7, 453-460.
https://doi.org/10.1017/s1461145704004687
[8] Lanctôt, K.L., Rapoport, M.J., Chan, F., Rajaram, R.D., Strauss, J., Sicard, T., et al. (2010) Genetic Predictors of Response to Treatment with Citalopram in Depression Secondary to Traumatic Brain Injury. Brain Injury, 24, 959-969.
https://doi.org/10.3109/02699051003789229
[9] Yu, Y.W., Tsai, S., Liou, Y., Hong, C. and Chen, T. (2006) Association Study of Two Serotonin 1A Receptor Gene Polymorphisms and Fluoxetine Treatment Response in Chinese Major Depressive Disorders. European Neuropsychopharmacology, 16, 498-503.
https://doi.org/10.1016/j.euroneuro.2005.12.004
[10] Obermanns, J., Meiser, H., Hoberg, S., Vesterager, C.S., Schulz, F., Juckel, G., et al. (2023) Genetic Variation of the 5-HT1A rs6295, 5-HT2A rs6311, and CNR1 rs1049353 and an Altered Endocannabinoid System in Depressed Patients. Brain and Behavior, 13, e3323.
https://doi.org/10.1002/brb3.3323
[11] Galfalvy, H., Shea, E., de Vegvar, J., Pantazatos, S., Huang, Y., Burke, A.K., et al. (2023) Brain Serotonin 1A Receptor Binding: Relationship to Peripheral Blood DNA Methylation, Recent Life Stress and Childhood Adversity in Unmedicated Major Depression. The British Journal of Psychiatry, 223, 415-421.
https://doi.org/10.1192/bjp.2023.13
[12] Kim, Y. and Yoon, H. (2011) Effect of Serotonin-Related Gene Polymorphisms on Pathogenesis and Treatment Response in Korean Schizophrenic Patients. Behavior Genetics, 41, 709-715.
https://doi.org/10.1007/s10519-011-9460-7
[13] Mössner, R., Schuhmacher, A., Kühn, K., Cvetanovska, G., Rujescu, D., Zill, P., et al. (2009) Functional Serotonin 1A Receptor Variant Influences Treatment Response to Atypical Antipsychotics in Schizophrenia. Pharmacogenetics and Genomics, 19, 91-94.
https://doi.org/10.1097/fpc.0b013e328311a917
[14] Gu, H., Liu, C., Liu, C., Chen, M., Zhang, Q., Zhai, J., et al. (2012) The Combined Effects of the 5-HTTLPR and HTR1A rs6295 Polymorphisms Modulate Decision Making in Schizophrenia Patients. Genes, Brain and Behavior, 12, 133-139.
https://doi.org/10.1111/j.1601-183x.2012.00866.x
[15] Qin, Y., Zhao, J., Yang, Y., Liu, Y., Xiang, H., Tong, J., et al. (2024) Association of HTR1A Gene Polymorphisms with Efficacy and Plasma Concentrations of Atypical Antipsychotics in the Treatment of Male Patients with Schizophrenia. Neuropsychiatric Disease and Treatment, 20, 185-193.
https://doi.org/10.2147/ndt.s449096
[16] Alizadeh, N., Nosrat, N., Jahani, Z., Ahmadiani, A., Asadi, S. and Shams, J. (2018) Association of htr1a Gene Polymorphisms with Obsessive-Compulsive Disorder and Its Treatment Response: The Influence of Sex and Clinical Characteristics. International Journal of Neuroscience, 129, 264-272.
https://doi.org/10.1080/00207454.2018.1526799
[17] Schenkel, L.C., Bragatti, J.A., Becker, J.A., Torres, C.M., Martin, K.C., de Souza, A.C., et al. (2012) Serotonin Gene Polymorphisms and Psychiatry Comorbidities in Temporal Lobe Epilepsy. Epilepsy Research, 99, 260-266.
https://doi.org/10.1016/j.eplepsyres.2011.12.005
[18] Huang, J.-H., Chang, H.-A., Fang, W.-H., Ho, P.-S., Liu, Y.-P., Wan, F.-J., et al. (2018) Serotonin Receptor 1A Promoter Polymorphism, rs6295, Modulates Human Anxiety Levels via Altering Parasympathetic Nervous Activity. Acta Psychiatrica Scandinavica, 137, 263-272.
https://doi.org/10.1111/acps.12853
[19] Lindholm, H., Morrison, I., Krettek, A., Malm, D., Novembre, G. and Handlin, L. (2020) Genetic Risk-Factors for Anxiety in Healthy Individuals: Polymorphisms in Genes Important for the HPA Axis. BMC Medical Genetics, 21, Article No. 184.
https://doi.org/10.1186/s12881-020-01123-w
[20] Grzesiak, M., Beszłej, J.A., Waszczuk, E., Szechiński, M., Szewczuk-Bogusławska, M., Frydecka, D., et al. (2017) Serotonin-Related Gene Variants in Patients with Irritable Bowel Syndrome and Depressive or Anxiety Disorders. Gastroenterology Research and Practice, 2017, 1-9.
https://doi.org/10.1155/2017/4290430
[21] Boroń, A., Suchanecka, A., Chmielowiec, K., Chmielowiec, J., Lachowicz, M., Strońska-Pluta, A., et al. (2024) Association Study of Serotonin 1A Receptor Gene, Personality, and Anxiety in Women with Alcohol Use Disorder. International Journal of Molecular Sciences, 25, Article 6563.
https://doi.org/10.3390/ijms25126563
[22] Zou, Z., Huang, Y., Wang, J., Min, W. and Zhou, B. (2020) The Association between Serotonin-Related Gene Polymorphisms and Susceptibility and Early Sertraline Response in Patients with Panic Disorder. BMC Psychiatry, 20, Article No. 388.
https://doi.org/10.1186/s12888-020-02790-y
[23] Straube, B., Reif, A., Richter, J., Lueken, U., Weber, H., Arolt, V., et al. (2014) The Functional −1019C/G HTR1A Polymorphism and Mechanisms of Fear. Translational Psychiatry, 4, e490.
https://doi.org/10.1038/tp.2014.130
[24] Marziniak, M., Mössner, R., Kienzler, C., Riederer, P., Lesch, K.-P. and Sommer, C. (2007) Functional Polymorphisms of the 5-HT1A and 5-HT1B Receptor Are Associated with Clinical Symptoms in Migraineurs. Journal of Neural Transmission, 114, 1227-1232.
https://doi.org/10.1007/s00702-007-0713-9
[25] Liu, J., Gong, P. and Zhou, X. (2014) The Association between Romantic Relationship Status and 5-HT1A Gene in Young Adults. Scientific Reports, 4, Article No. 7049.
https://doi.org/10.1038/srep07049
[26] Gong, P., Liu, J., Li, S. and Zhou, X. (2014) Serotonin Receptor Gene (5-HT1A) Modulates Alexithymic Characteristics and Attachment Orientation. Psychoneuroendocrinology, 50, 274-279.
https://doi.org/10.1016/j.psyneuen.2014.09.001
[27] Ates, O., Karakus, N., Sezer, S. and Bozkurt, N. (2013) Genetic Association of 5-HT1A and 5-HT1B Gene Polymorphisms with Migraine in a Turkish Population. Journal of the Neurological Sciences, 326, 64-67.
https://doi.org/10.1016/j.jns.2013.01.013
[28] 武颖. 5-HT传导通路基因多态性与重性抑郁症的关联性研究[D]: [硕士学位论文]. 太原: 山西医科大学, 2008.
[29] 朱宇章, 张英, 马欢, 谢守付, 姜文研, 孙光为, 刘盈. HTR1A基因-1019C/G多态性与重性抑郁障碍及氟西汀疗效的关联研究[J]. 中国医科大学学报, 2010(6): 467-469+473.
[30] Bell, J. (1989) The Polymerase Chain Reaction. Immunology Today, 10, 351-355.
https://doi.org/10.1016/0167-5699(89)90193-x
[31] Kishi, T., Yoshimura, R., Fukuo, Y., Okochi, T., Matsunaga, S., Umene-Nakano, W., et al. (2012) The Serotonin 1A Receptor Gene Confer Susceptibility to Mood Disorders: Results from an Extended Meta-Analysis of Patients with Major Depression and Bipolar Disorder. European Archives of Psychiatry and Clinical Neuroscience, 263, 105-118.
https://doi.org/10.1007/s00406-012-0337-4
[32] Lemonde, S., Turecki, G., Bakish, D., Du, L., Hrdina, P.D., Bown, C.D., et al. (2003) Impaired Repression at a 5-Hydroxytryptamine 1A Receptor Gene Polymorphism Associated with Major Depression and Suicide. The Journal of Neuroscience, 23, 8788-8799.
https://doi.org/10.1523/jneurosci.23-25-08788.2003