[1]
|
Oliver, A.L. (2022) Lung Cancer: Epidemiology and Screening. Surgical Clinics of North America, 102, 335-344. https://doi.org/10.1016/j.suc.2021.12.001
|
[2]
|
Deshpand, R., Chandra, M. and Rauthan, A. (2022) Evolving Trends in Lung Cancer: Epidemiology, Diagnosis, and Management. Indian Journal of Cancer, 59, S90-S105. https://doi.org/10.4103/ijc.ijc_52_21
|
[3]
|
Houben, R.M.G.J., Esmail, H., Cobelens, F., Williams, C.M.L. and Coussens, A.K. (2022) Tuberculosis Prevalence: Beyond the Tip of the Iceberg. The Lancet Respiratory Medicine, 10, 537-539. https://doi.org/10.1016/s2213-2600(22)00184-9
|
[4]
|
Salari, N., Kanjoori, A.H., Hosseinian-Far, A., Hasheminezhad, R., Mansouri, K. and Mohammadi, M. (2023) Global Prevalence of Drug-Resistant Tuberculosis: A Systematic Review and Meta-Analysis. Infectious Diseases of Poverty, 12, Article No. 57. https://doi.org/10.1186/s40249-023-01107-x
|
[5]
|
Liu, Z., Yi, H.E. and Wei, S.U. (2023) Analysis of the Epidemiological Characteristics of Pulmonary Tuberculosis in Kashgar, Xinjiang Uygur Autonomous Region from 2011 to 2020. Journal of Tropical Diseases and Parasitology, 21, 93-97.
|
[6]
|
Zhang, Y., Wang, X., Liu, N., Wang, S., Wang, X. and Cao, M. (2023) Intervention Effect of New Tuberculosis Control Model on Tuberculosis Incidence in Xinjiang. Infection and Drug Resistance, 16, 7485-7496. https://doi.org/10.2147/idr.s441899
|
[7]
|
Wang, L., Teng, Z., Rifhat, R. and Wang, K. (2023) Modelling of a Drug Resistant Tuberculosis for the Contribution of Resistance and Relapse in Xinjiang, China. Discrete and Continuous Dynamical Systems-B, 28, 4167-4189. https://doi.org/10.3934/dcdsb.2023003
|
[8]
|
Abdeahad, H., Salehi, M., Yaghoubi, A., Aalami, A.H., Aalami, F. and Soleimanpour, S. (2021) Previous Pulmonary Tuberculosis Enhances the Risk of Lung Cancer: Systematic Reviews and Meta-Analysis. Infectious Diseases, 54, 255-268. https://doi.org/10.1080/23744235.2021.2006772
|
[9]
|
Qin, Y., Chen, Y., Chen, J., Xu, K., Xu, F. and Shi, J. (2022) The Relationship between Previous Pulmonary Tuberculosis and Risk of Lung Cancer in the Future. Infectious Agents and Cancer, 17, Article No. 20. https://doi.org/10.1186/s13027-022-00434-2
|
[10]
|
Jung, H., Kim, H.S., Kim, J.Y., Sun, J., Ahn, J.S., Ahn, M., et al. (2019) DNA Methylation Loss Promotes Immune Evasion of Tumours with High Mutation and Copy Number Load. Nature Communications, 10, Article No. 4278. https://doi.org/10.1038/s41467-019-12159-9
|
[11]
|
Alduais, Y., Zhang, H., Fan, F., Chen, J. and Chen, B. (2023) Non-Small Cell Lung Cancer (NSCLC): A Review of Risk Factors, Diagnosis, and Treatment. Medicine, 102, e32899. https://doi.org/10.1097/md.0000000000032899
|
[12]
|
Nooreldeen, R. and Bach, H. (2021) Current and Future Development in Lung Cancer Diagnosis. International Journal of Molecular Sciences, 22, Article 8661. https://doi.org/10.3390/ijms22168661
|
[13]
|
Joshi, A., Butle, A., Hait, S., Mishra, R., Trivedi, V., Thorat, R., et al. (2022) Osimertinib for Lung Cancer Cells Harboring Low-Frequency EGFR T790M Mutation. Translational Oncology, 22, Article 101461. https://doi.org/10.1016/j.tranon.2022.101461
|
[14]
|
Nakata, S., Sugio, K., Uramoto, H., Oyama, T., Hanagiri, T., Morita, M., et al. (2006) The Methylation Status and Protein Expression of CDH1, p16INK4A, and Fragile Histidine Triad in Nonsmall Cell Lung Carcinoma. Cancer, 106, 2190-2199. https://doi.org/10.1002/cncr.21870
|
[15]
|
Zhang, Y., Wang, R., Song, H., Huang, G., Yi, J., Zheng, Y., et al. (2011) Methylation of Multiple Genes as a Candidate Biomarker in Non-Small Cell Lung Cancer. Cancer Letters, 303, 21-28. https://doi.org/10.1016/j.canlet.2010.12.011
|
[16]
|
Nishihara, S., Yamaoka, T., Ishikawa, F., Higuchi, K., Hasebe, Y., Manabe, R., et al. (2022) Mechanisms of EGFR-TKI-Induced Apoptosis and Strategies Targeting Apoptosis in EGFR-Mutated Non-Small Cell Lung Cancer. Genes, 13, Article 2183. https://doi.org/10.3390/genes13122183
|
[17]
|
Kashima, Y., Shibahara, D., Suzuki, A., Muto, K., Kobayashi, I.S., Plotnick, D., et al. (2021) Single-Cell Analyses Reveal Diverse Mechanisms of Resistance to EGFR Tyrosine Kinase Inhibitors in Lung Cancer. Cancer Research, 81, 4835-4848. https://doi.org/10.1158/0008-5472.can-20-2811
|
[18]
|
Talukdar, S., Emdad, L., Das, S.K. and Fisher, P.B. (2020) EGFR: An Essential Receptor Tyrosine Kinase-Regulator of Cancer Stem Cells. Advances in Cancer Research, 147, 161-188. https://doi.org/10.1016/bs.acr.2020.04.003
|
[19]
|
Leonetti, A., Sharma, S., Minari, R., Perego, P., Giovannetti, E. and Tiseo, M. (2019) Resistance Mechanisms to Osimertinib in EGFR-Mutated Non-Small Cell Lung Cancer. British Journal of Cancer, 121, 725-737. https://doi.org/10.1038/s41416-019-0573-8
|
[20]
|
Ma, L., Diao, B., Huang, Z., Wang, B., Yu, J. and Meng, X. (2021) The Efficacy and Possible Mechanisms of Immune Checkpoint Inhibitors in Treating Non-Small Cell Lung Cancer Patients with Epidermal Growth Factor Receptor Mutation. Cancer Communications, 41, 1314-1330. https://doi.org/10.1002/cac2.12229
|
[21]
|
Castellanos, E., Feld, E. and Horn, L. (2017) Driven by Mutations: The Predictive Value of Mutation Subtype in EGFR-Mutated Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 12, 612-623. https://doi.org/10.1016/j.jtho.2016.12.014
|
[22]
|
Wu, J., Yu, C., Chang, Y., Yang, C., Shih, J. and Yang, P. (2011) Effectiveness of Tyrosine Kinase Inhibitors on “Uncommon” Epidermal Growth Factor Receptor Mutations of Unknown Clinical Significance in Non-Small Cell Lung Cancer. Clinical Cancer Research, 17, 3812-3821. https://doi.org/10.1158/1078-0432.ccr-10-3408
|
[23]
|
Huang, Y., Kong, Y., Wei, Z. and Ye, X. (2022) Image-Guided Thermal Ablation for Patients with Epidermal Growth Factor Receptor-Mutant Nonsmall Cell Lung Cancer. Asia-Pacific Journal of Clinical Oncology, 19, 427-433. https://doi.org/10.1111/ajco.13875
|
[24]
|
Paez, J.G., Jänne, P.A., Lee, J.C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004) EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy. Science, 304, 1497-1500. https://doi.org/10.1126/science.1099314
|
[25]
|
Herrera Ortiz, A.F., Garland, M.E. and Almarie, B. (2022) Clinical and Radiological Characteristics to Differentiate between EGFR Exon 21 and Exon 19 Mutations in Patients with Lung Adenocarcinoma: A Systematic Literature Review and Meta-Analysis. Cureus, 14, e25446. https://doi.org/10.7759/cureus.25446
|
[26]
|
He, J., Huang, Z., Han, L., Gong, Y. and Xie, C. (2021) Mechanisms and Management of 3rd-Generation EGFR-TKI Resistance in Advanced Non-Small Cell Lung Cancer (Review). International Journal of Oncology, 59, Article No. 90. https://doi.org/10.3892/ijo.2021.5270
|
[27]
|
Harrison, P.T., Vyse, S. and Huang, P.H. (2020) Rare Epidermal Growth Factor Receptor (EGFR) Mutations in Non-Small Cell Lung Cancer. Seminars in Cancer Biology, 61, 167-179. https://doi.org/10.1016/j.semcancer.2019.09.015
|
[28]
|
Bobak, C.A., Abhimanyu, Natarajan, H., Gandhi, T., Grimm, S.L., Nishiguchi, T., et al. (2022) Increased DNA Methylation, Cellular Senescence and Premature Epigenetic Aging in Guinea Pigs and Humans with Tuberculosis. Aging, 14, 2174-2193. https://doi.org/10.18632/aging.203936
|
[29]
|
Kwon, M.H., Lee, G.E., Kwon, S.J., Choi, E., Na, M.J., Cho, H.M., et al. (2008) Identification of DNA Methylation Markers for NSCLC Using Hpall-Mspl Methylation Microarray. Tuberculosis and Respiratory Diseases, 65, 495-503. https://doi.org/10.4046/trd.2008.65.6.495
|
[30]
|
Sharma, G., Sowpati, D.T., Singh, P., Khan, M.Z., Ganji, R., Upadhyay, S., et al. (2016) Genome-Wide Non-CpG Methylation of the Host Genome during M. tuberculosis Infection. Scientific Reports, 6, Article No. 25006. https://doi.org/10.1038/srep25006
|
[31]
|
DeJesus, M.A., Gerrick, E.R., Xu, W., Park, S.W., Long, J.E., Boutte, C.C., et al. (2017) Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. mBio, 8, e02133. https://doi.org/10.1128/mbio.02133-16
|
[32]
|
Yuan, G., Flores, N.M., Hausmann, S., Lofgren, S.M., Kharchenko, V., Angulo-Ibanez, M., et al. (2021) Elevated NSD3 Histone Methylation Activity Drives Squamous Cell Lung Cancer. Nature, 590, 504-508. https://doi.org/10.1038/s41586-020-03170-y
|