免疫原性微核在肿瘤中的发病机制及研究进展
The Pathogenesis and Research Progress of Immunogenic Micronuclei in Tumors
DOI: 10.12677/acm.2024.14102829, PDF, HTML, XML,   
作者: 周晶晶:内蒙古医科大学第一临床医学院,内蒙古 呼和浩特;王 菲*:内蒙古医科大学附属医院妇产科,内蒙古 呼和浩特
关键词: 微核微核被膜cGAS-STING通路免疫原性微核肿瘤Micronuclei Micronuclei Envelope cGAS-STING Pathway Immunogenic Micronuclei Tumor
摘要: 在过去的几年中,基因组测序技术的进步已经揭示,由于持续的基因组不稳定性,患者的癌症基因组在患者之间以及个体肿瘤内都是高度异质性的。除了是肿瘤基因组异质性的关键来源之外,染色体错误分离还可能导致基因组物质在有丝分裂后被排除在初级核之外,并被封装到细胞质中的较小核小体中,称为微核(micronuclei, MN)。大量研究显示,具有免疫原性的MN介导了炎症反应、抗肿瘤作用和促癌症转移等下游途径,暗示免疫原性微核(immunogenic micronuclei, iMN)具有广泛的生物医学意义。迄今为止,还没有广泛的综述可以综合研究iMN在肿瘤中的发病机制及研究进展。在这篇综述中,我们旨在总结近年来iMN在分子起源和细胞对iMN的反应方面的进展。我们将首先讨论MN形成的多种分子机制,然后概述iMN与癌症之间的关联,并以新兴的研究课题和挑战结束。本综述将全面了解免疫原性微核在肿瘤中的发病机制及研究进展。
Abstract: In the past few years, the advancement of genomic sequencing technology has revealed that the cancer genomes of patients are highly heterogeneous between patients as well as within individual tumors due to ongoing genomic instability. In addition to being a key source of tumor genomic heterogeneity, chromosomal missegregation can also result in the exclusion of genomic material from the primary nucleus after mitosis and its encapsulation in smaller nucleosomes in the cytoplasm, known as micronuclei (MN). A large number of studies have shown that immunogenic MN mediates downstream pathways, such as inflammatory responses, antitumor effects, and promotion of cancer metastasis, suggesting that immunogenic micronuclei (iMN) have widespread biomedical significance. To date, there has been no comprehensive review that summarizes the pathogenesis and research progress of iMN in tumors. In this review, we aim to summarize recent advances in molecular origins and cellular responses to iMN. We will first discuss the various molecular mechanisms of MN formation, and then outline the association between iMN and cancer, concluding with emerging research topics and challenges. This review will provide a comprehensive understanding of the pathogenesis and research progress of immunogenic micronuclei in tumors.
文章引用:周晶晶, 王菲. 免疫原性微核在肿瘤中的发病机制及研究进展[J]. 临床医学进展, 2024, 14(10): 1539-1546. https://doi.org/10.12677/acm.2024.14102829

1. 引言

MN曾被认为是染色体不稳定性的被动指标,且被隔离成的MN对染色质有重要的负面影响,可能导致染色体不稳定。Hatch等人的研究证明了同步的广泛MN功能障碍和大量DNA损伤是MN不可逆的被膜(envelope, NE)塌陷引起的。他们发现,在间期,细胞群中的大多数MN在不可逆的NE塌陷后失去区室化。NE完整性的丧失会阻止基本的核功能,包括复制、转录和DNA损伤的识别和修复。在MN的NE塌陷之前,核纤层蛋白组织缺陷与核纤层蛋白B1水平降低特别相关,这种塌陷会导致持久的MN损伤,从而影响基因组稳定性[1]。随着技术的发展,逐渐发现iMN对宿主细胞具有遗传和非遗传层面的影响。iMN的遗传层面影响包括诱发染色体碎裂和eccDNA形成;而iMN的非遗传层面影响则是通过激活cGAS-STING介导的固有免疫,启动不同的下游信号通路,最终产生一系列生物学过程[2]

2. MN的形成

在大多数真核生物的细胞中,基因组储存在细胞核中。这通常被核膜包围,NE是细胞核内遗传物质和细胞质之间的物理屏障,影响细胞核和细胞质细胞器之间的分子交换。然而,有丝分裂过程中的DNA复制、DNA修复和染色体分离以及细胞周期检查点缺陷中的各种错误可导致染色体或染色体片段的物理分离,从而诱导微核(MN)的形成[3]。微核是小的膜结合区室,其DNA由核包膜封装,并在空间上与主核分离。长期以来,微核一直与染色体不稳定、基因组重排和诱变有关[4]

我们早就知道纺锤体组装的许多方面的破坏会产生MN,但还有其他分子参与者和机制与MN的形成有关(见下文)。

导致染色体滞后的因素包括着丝粒和着丝点功能异常、着丝点微管附着异常以及有丝分裂纺锤体组装缺陷。在最近的一个例子中,缺乏功能性运动蛋白运动KIF18A的人类体细胞和小鼠被证明在染色体排列上失败,在有丝分裂退出后产生MN [5]。另一项研究报道,在去泛素化酶Cezanne/OTUD7B的损耗下,MN的频率增加,这与通过反对后期促进复合物/环体(APC/C)的活性来控制染色体分离有关[6]。不太明显的是,在携带溶酶体缺陷的人类细胞中,已经观察到导致MN的滞后染色体,这意味着溶酶体降解一种或多种有丝分裂底物,影响染色体分离,包括组蛋白H3 [7]亚群或黏结蛋白[8]的成分。

无中心染色体片段是由未修复的DNA双链断裂产生的,其中一些与DNA复制有关。因此,DNA复制和修复的许多因素的解除管制已被证明会导致MN。最近的例子包括核糖核酸酶RNAseH2 [9] [10]、MCM2-7复制解旋酶[11]、DNA损伤反应介质蛋白MDC1和TOPB1 [12]、DNA定向引物酶/聚合酶(PrimPol) [13]、Fanconi贫血/BRCA途径的多种组分[11] [14]-[17]、Bloom综合征recq样解旋酶(BLM) [18]、SMC5/6复合物[17]、染色质重塑因子SSX [19]和ATRX [14],以及parp1相互作用蛋白KHDC3L [20]。最后,含有双中心染色体的染色质桥的分解导致在卵裂沟两侧形成无中心片段,在两个子细胞中产生MN [21] [22]

有丝分裂退出时细胞核和NE不能正确组装有助于MN的形成。最近的一项研究表明,DNA结合蛋白自整合屏障因子(BAF)通过将一组染色体组装并维持在一起形成单个团块来控制核的形成,从而允许形成单个核并防止/抑制微核。据报道,在滞后染色体上正常的NE组装也经常失败。基于极光B控制的信号级联反应,已经提出了微核包膜不完全组装的几种假设[23] [24],但确切的机制仍有待建立。最近提出了一个额外的“纺锤体抑制模型”,其中有丝分裂纺锤体的微管直接抑制非核心NE蛋白(如B型层蛋白、层蛋白B受体)和核孔复合物(npc)的募集,从而导致MN具有不可逆的NE损伤[23] [25]

3. MN的后果

3.1. 微核膜组成的缺陷

相较于核被膜,相当部分MN的被膜(micronuclear envelope, mNE)易发生不可逆的破裂[2]。核膜是一种功能性屏障,可维持微核膜将遗传物质从细胞质分离出来,并为DNA转录和复制提供可控环境。构成核膜的成分包括核膜内层粘连蛋白(包括A/C型和b型层粘连蛋白);A/C型层蛋白对核膜的机械刚度很重要,而B型层粘连蛋白有助于膜的完整性[26]。MN膜的其他成分包括核膜跨膜蛋白,如emerin、MAN1、SUN1和核纤层蛋白B受体[27]。然而,微核膜是功能失调的,一些研究表明,它们不能募集到完整的核膜蛋白。一般来说,据估计,在多种细胞类型中,30%~50%的微核膜缺乏核纤层蛋白B的正确结合,使它们更容易破裂,这可能是由于细胞内产生的机械力[28]。然而,核纤层蛋白B1的掺入程度并不是微核膜稳定性的唯一决定因素;Mammel等人最近的研究表明,染色体长度和微核内的基因密度也可以发挥作用[29]

微核膜功能障碍的另一个来源可能涉及MN形成过程中内质网(ER)的侵犯。微核包膜对必需核孔组装蛋白(NUP153和M141)的招募要低得多[30]。尽管含有核纤层蛋白B的MN占很大比例,但只有一小部分MN也将核孔蛋白募集到其包膜中,因此大多数MN仍然表现出蛋白质转运异常[31]。导致未能正确地将核孔成分掺入微核膜中。这可能是由于ER蛋白片包围了染色质区域,从而抑制了适当的核孔蛋白的募集和形成。同样,一项研究还证明了当ESCRT-IIII (一种内体分选复合物)功能失调时,ER膜的作用及其在微核形成中的破坏性作用[32]

3.2. mNE破裂的后果

由于膜组成会影响封装在其中的基因组物质的下游结果,这反过来又会影响多个微核过程,包括DNA复制、转录和修复。MN在结构和遗传活性方面表现出巨大异质性,相当部分的MN具有结构缺陷且倾向于破裂的核被膜(micronuclear envelope, mNE)。mNE破裂后,MN可以启动染色体碎裂和固有免疫通路。

mNE破裂导致MN内的染色体因失去保护而发生损伤;核结构和核膜完整性对于维持真核细胞基因组稳定性至关重要。Zhang等人[33]通过单细胞基因组测序和活细胞成像,证明了MN内的染色体会发生染色体碎裂,是因为微核mNE破裂会导致S期的MN不能正常募集DNA复制因子和修复蛋白。Crasta等人[34]研究发现,MN内的DNA复制效率低,并且与主核不同步,使得当主核进入M期时,MN仍处于S期。进入M期的主核产生大量的染色体凝缩信号,使MN内过早地发生染色体凝集(premature chromosome compaction)。染色体过早凝集对复制中的DNA产生强大的机械力,导致了MN内染色体大范围断裂。而Ly等人[35]的研究提示,非同源末端连接介导了MN内染色体片段重接形成一条新生染色体(neochromosome)。与此同时,一些未被连接到新生染色体上的DNA短片段发生环化而形成染色体外环状DNA (extrachromosomal circular DNA, eccDNA)。2021年,Wang等人[36]发现,eccDNA具有极高的免疫活化作用。这一发现暗示MN内发生染色体碎裂而形成的eccDNA的多与寡可能是决定MN免疫原活性高与低的关键因素。

破坏的MN的特征是染色质和相关ER膜和内核膜定位蛋白的大量构象改变,这可能抑制NE修复。重要的是,破坏的MN不仅在培养的癌细胞中被发现,而且在人类肿瘤、永生化上皮细胞和原代成纤维细胞中也被发现[1]。因此,NE塌陷和随后的MN功能破坏似乎是MN形成的一般后果。

4. 免疫原性微核与cGAS

免疫学领域重大突破之一是发现了胞质DNA感应通路,该通路启动并控制细胞对暴露于细胞质的潜在致病DNA的免疫反应[37]。先天免疫也称为固有免疫,是机体抵御病原微生物的重要防线。当机体被病原微生物入侵时,固有免疫依靠免疫细胞表面或者内部的模式识别受体(Pattern-Recognition Receptors, PRRs)识别病原相关分子模式(Pathogen-Associated Molecular Pattern, PAMP)和损伤相关分子模式(Damage-Associated Molecular Pattern, DAMP),从而激活机体免疫反应抵抗病原微生物感染。这种PRRs介导的对病原微生物的感知有助于机体及时清除入侵的病原微生物,防止机体损伤[38]

cGAS是一种经典的PRRs,其主要识别胞浆内的DNA。cGAS结合DNA后激活其酶活性,利用三磷酸鸟苷(Guanosine Triphosphate, GTP)和三磷酸腺苷(Adenosine Triphosphate, ATP)合成环鸟苷一磷酸腺苷一磷酸(cyclic GMP-AMP, cGAMP)。cGAMP与位于内质网上的干扰素刺激基因(Stimulator of Interferon Genes, STING)结合,引起STING由内质网向高尔基体的迁移。在这期间,STING招募IκB激酶(IκB kinase, IKK)和TANK结合激酶(TANK Binding Kinase 1, TBK1),激活重要的转录因子:核因子κB (Nuclear Factor kappa-B, NF-κB)和干扰素调节因子3 (Interferon Regulatory Factor 3, IRF3)。激活的NF-κB和IRF3由胞浆进入细胞核,启动包括干扰素β (Interferon β, IFN-β)在内的相关细胞因子的表达,进而调节免疫反应[39]

2017年,Mackenzie等人[40]和Harding等人[41]通过cGAS和DNA示踪技术,首次发现cGAS能与MN结合。在U2OS细胞中,cGAS阳性MN通常缺乏核标记物Rb蛋白,证明大部分cGAS阳性MN存在mNE破裂[40]。因此,mNE破裂的MN与cGAS结合形成免疫原性微核(immunogenic micronuclei, iMN),并进一步激活cGAS依赖的促炎反应。cGAS识别破裂的MN中的DNA以及STING的激活后来扩展到多个微核模型中,包括brca2缺陷的人癌细胞和小鼠胚胎成纤维细胞[15]、细菌感染的小鼠巨噬细胞和人癌细胞[42]、培养的原发人乳腺肿瘤和患者来源的异种移植物[43]。iMN诱导的cGAS激活与癌症进展进一步相关,以STING依赖性的方式促进细胞侵袭和转移[44]。有趣的是,cGAS本身已被证明会加剧DNA损伤,从而进一步促进肿瘤发生[45]

5. 免疫原性微核与肿瘤

过去一个多世纪以来,MN一直被笼统地认为是染色体不稳定的标志。Hatch等人研究了非小细胞肺癌肿瘤切片含有破坏的MN,表明iMN是癌细胞的一般特征,即iMN是癌细胞的一般特征,这可能是实体瘤基因组不稳定的有用标志物[1]。相比于正常细胞,肿瘤细胞内自发性MN频率显著升高,且高MN率与肿瘤患者的不良预后密切相关[2]

在大多数肿瘤类型中,癌细胞以非整倍性、不正确的染色体数目或结构的状态存在。大多数实体瘤都表现出在细胞分裂过程中整个或部分染色体的持续丢失和获得,称为染色体不稳定性(Chromosome Instability, CIN) [46],高水平CIN的细胞在有丝分裂期间经常错误分离其染色体,导致随后的子细胞中染色体数目和结构不平衡[46]。在癌症的背景下,目前认为慢性cGAS激活是高度上调的,因为癌细胞的特征是失去了几个参与细胞周期调节和基因组完整性维持的肿瘤抑制基因,从而通过增加CIN促进细胞质微核dsDNA的释放[47]。慢性cGAS激活在肿瘤的发生中起着重要作用,特别是通过增加髓源性抑制细胞的募集将平衡从免疫刺激性肿瘤微环境转变为更具免疫抑制性的微环境[48]。此外,在缺乏参与细胞周期检查点的关键肿瘤抑制基因(包括p53)的情况下,cGAS-STING通路的持续激活被认为有助于化疗耐药性,这主要归因于炎性细胞因子发挥的促肿瘤作用,以及诱导包括NF-κB信号通路在内的致癌下游分子通路[49]。同样,研究表明,持续的cGAS-STING活化也是非小细胞肺癌等癌症中EGFR酪氨酸激酶抑制剂耐药的原因,而特定的靶标分子Bcl-xL可能会提供更优化的靶向活性和改进治疗窗口。因此,使用选择性Bcl-xL抑制剂进行间歇性治疗可能是实现持久临床活性的最有效方法[50]

转移是癌细胞从原发肿瘤部位向身体其他器官的扩散,是大多数癌症相关死亡的原因。CIN与转移的发生率正相关,并且研究将CIN、MN的形成和细胞质DNA的存在与促进转移的潜在机制途径联系起来。支持CIN参与转移的进一步证据来自于利用微管解聚合蛋白、KIF2B和MCAK过表达等方法操纵染色体不稳定性率的研究[44]。这抑制了由高度稳定的有丝分裂微管引起的染色体错误分离率[51]。将CIN抑制应用于染色体不稳定的乳腺癌细胞,然后将其注射到免疫功能低下的小鼠中,研究发现,与CIN较高的对照细胞相比,转移率降低[44]。结果显示,染色体不稳定的细胞具有更高的炎症和间充质基因表达率。从上皮状态到间充质状态的转变是重要的,因为它为癌细胞成功迁移到一个新的部位提供了关键的转移特性。间充质细胞具有增强的移动性、侵袭性和对凋亡刺激的抵抗力[52]。因此,导致这种转变的基因上调可能会增强转移能力。

然而,在Kif18a (一种对微管–染色体附着很重要的有丝分裂运动蛋白)阴性的小鼠胚胎中进行的实验产生了稳定的微核,不易破裂,也不会促进肿瘤发生[53]。这项研究支持了MN产生的染色体不稳定性及其破裂可能促进转移状态的观点。即具有免疫原性的微核可能促进癌症转移。微核形成和破裂导致转移表型的关键因素还需要进一步的研究来确认。然而,迄今为止,没有证据表明MN的产生和破裂在激活细胞内促进转移的基本变化状态中的作用。

6. 总结与展望

人类的微核形成与各种医疗状况有关。精子细胞中的MN可能导致不孕,而淋巴细胞中大量的MN与妊娠并发症和流产有关。大量论文描述了微核与癌症发展之间的相关性。尽管几十年来人们一直认为微核是基因组不稳定性的结果,但微核的完整病因学及其下游结果直到最近才开始进行更详细的研究。微核生物学的多个领域已经被发现,并且仍有待充分表征,但随着该领域的进展,我们预计这些知识可能为癌症治疗提供线索。MN被认为反映了肿瘤发生的初始阶段。易患癌症的个体往往比没有遗传史的人更快地形成MN。因此,MN筛查可以作为预测各种疾病(包括癌症)的宝贵方法。另外,更好地了解具有免疫原性的MN急性和慢性激活cGAS的机制,可为肿瘤细胞对免疫识别的敏感性提供新的机会。

NOTES

*通讯作者。

参考文献

[1] Hatch, E.M., Fischer, A.H., Deerinck, T.J. and Hetzer, M.W. (2013) Catastrophic Nuclear Envelope Collapse in Cancer Cell Micronuclei. Cell, 154, 47-60.
https://doi.org/10.1016/j.cell.2013.06.007
[2] 张城, 汪旭, 郭锡汉. 免疫原性微核的起源与生物医学意义[J]. 生命科学, 2022, 34(4): 392-400.
[3] Guo, X., Ni, J., Liang, Z., Xue, J., Fenech, M.F. and Wang, X. (2019) The Molecular Origins and Pathophysiological Consequences of Micronuclei: New Insights into an Age-Old Problem. Mutation Research/Reviews in Mutation Research, 779, 1-35.
https://doi.org/10.1016/j.mrrev.2018.11.001
[4] Krupina, K., Goginashvili, A. and Cleveland, D.W. (2021) Causes and Consequences of Micronuclei. Current Opinion in Cell Biology, 70, 91-99.
https://doi.org/10.1016/j.ceb.2021.01.004
[5] Fonseca, C.L., Malaby, H.L.H., Sepaniac, L.A., Martin, W., Byers, C., Czechanski, A., et al. (2019) Mitotic Chromosome Alignment Ensures Mitotic Fidelity by Promoting Interchromosomal Compaction during Anaphase. Journal of Cell Biology, 218, 1148-1163.
https://doi.org/10.1083/jcb.201807228
[6] Bonacci, T. and Emanuele, M.J. (2019) Impressionist Portraits of Mitotic Exit: APC/C, K11-Linked Ubiquitin Chains and Cezanne. Cell Cycle, 18, 652-660.
https://doi.org/10.1080/15384101.2019.1593646
[7] Hämälistö, S., Stahl, J.L., Favaro, E., Yang, Q., Liu, B., Christoffersen, L., et al. (2020) Spatially and Temporally Defined Lysosomal Leakage Facilitates Mitotic Chromosome Segregation. Nature Communications, 11, Article No. 229.
https://doi.org/10.1038/s41467-019-14009-0
[8] Almacellas, E., Pelletier, J., Day, C., Ambrosio, S., Tauler, A. and Mauvezin, C. (2020) Lysosomal Degradation Ensures Accurate Chromosomal Segregation to Prevent Chromosomal Instability. Autophagy, 17, 796-813.
https://doi.org/10.1080/15548627.2020.1764727
[9] Mackenzie, K.J., Carroll, P., Martin, C., Murina, O., Fluteau, A., Simpson, D.J., et al. (2017) cGAS Surveillance of Micronuclei Links Genome Instability to Innate Immunity. Nature, 548, 461-465.
https://doi.org/10.1038/nature23449
[10] Bartsch, K., Knittler, K., Borowski, C., Rudnik, S., Damme, M., Aden, K., et al. (2017) Absence of RNase H2 Triggers Generation of Immunogenic Micronuclei Removed by Autophagy. Human Molecular Genetics, 26, 3960-3972.
https://doi.org/10.1093/hmg/ddx283
[11] McNairn, A.J., Chuang, C., Bloom, J.C., Wallace, M.D. and Schimenti, J.C. (2019) Female-Biased Embryonic Death from Inflammation Induced by Genomic Instability. Nature, 567, 105-108.
https://doi.org/10.1038/s41586-019-0936-6
[12] Leimbacher, P., Jones, S.E., Shorrocks, A.K., de Marco Zompit, M., Day, M., Blaauwendraad, J., et al. (2019) MDC1 Interacts with TOPBP1 to Maintain Chromosomal Stability during Mitosis. Molecular Cell, 74, 571-583.E8.
https://doi.org/10.1016/j.molcel.2019.02.014
[13] Bailey, L.J., Bianchi, J. and Doherty, A.J. (2019) PrimPol Is Required for the Maintenance of Efficient Nuclear and Mitochondrial DNA Replication in Human Cells. Nucleic Acids Research, 47, 4026-4038.
https://doi.org/10.1093/nar/gkz056
[14] Pladevall-Morera, D., Munk, S., Ingham, A., Garribba, L., Albers, E., Liu, Y., et al. (2019) Proteomic Characterization of Chromosomal Common Fragile Site (CFS)-Associated Proteins Uncovers ATRX as a Regulator of CFS Stability. Nucleic Acids Research, 47, 8004-8018.
https://doi.org/10.1093/nar/gkz510
[15] Heijink, A.M., Talens, F., Jae, L.T., van Gijn, S.E., Fehrmann, R.S.N., Brummelkamp, T.R., et al. (2019) BRCA2 Deficiency Instigates cGAS-Mediated Inflammatory Signaling and Confers Sensitivity to Tumor Necrosis Factor-Alpha-Mediated Cytotoxicity. Nature Communications, 10, Article No. 100.
https://doi.org/10.1038/s41467-018-07927-y
[16] De Magis, A., Manzo, S.G., Russo, M., Marinello, J., Morigi, R., Sordet, O., et al. (2018) DNA Damage and Genome Instability by G-Quadruplex Ligands Are Mediated by R Loops in Human Cancer Cells. Proceedings of the National Academy of Sciences, 116, 816-825.
https://doi.org/10.1073/pnas.1810409116
[17] Rossi, F., Helbling‐Leclerc, A., Kawasumi, R., Jegadesan, N.K., Xu, X., Devulder, P., et al. (2019) SMC5/6 Acts Jointly with Fanconi Anemia Factors to Support DNA Repair and Genome Stability. EMBO Reports, 21, e48222.
https://doi.org/10.15252/embr.201948222
[18] Gratia, M., Rodero, M.P., Conrad, C., Bou Samra, E., Maurin, M., Rice, G.I., et al. (2019) Bloom Syndrome Protein Restrains Innate Immune Sensing of Micronuclei by cGAS. Journal of Experimental Medicine, 216, 1199-1213.
https://doi.org/10.1084/jem.20181329
[19] Traynor, S., Møllegaard, N.E., Jørgensen, M.G., Brückmann, N.H., Pedersen, C.B., Terp, M.G., et al. (2019) Remodeling and Destabilization of Chromosome 1 Pericentromeric Heterochromatin by SSX Proteins. Nucleic Acids Research, 47, 6668-6684.
https://doi.org/10.1093/nar/gkz396
[20] Zhang, W., Chen, Z., Zhang, D., Zhao, B., Liu, L., Xie, Z., et al. (2019) KHDC3L Mutation Causes Recurrent Pregnancy Loss by Inducing Genomic Instability of Human Early Embryonic Cells. PLOS Biology, 17, e3000468.
https://doi.org/10.1371/journal.pbio.3000468
[21] Umbreit, N.T., Zhang, C., Lynch, L.D., Blaine, L.J., Cheng, A.M., Tourdot, R., et al. (2020) Mechanisms Generating Cancer Genome Complexity from a Single Cell Division Error. Science, 368, eaba0712.
https://doi.org/10.1126/science.aba0712
[22] Shoshani, O., Brunner, S.F., Yaeger, R., Ly, P., Nechemia-Arbely, Y., Kim, D.H., et al. (2020) Chromothripsis Drives the Evolution of Gene Amplification in Cancer. Nature, 591, 137-141.
https://doi.org/10.1038/s41586-020-03064-z
[23] Liu, S. and Pellman, D. (2020) The Coordination of Nuclear Envelope Assembly and Chromosome Segregation in Metazoans. Nucleus, 11, 35-52.
https://doi.org/10.1080/19491034.2020.1742064
[24] Maiato, H., Afonso, O. and Matos, I. (2014) A Chromosome Separation Checkpoint: A Midzone Aurora B Gradient Mediates a Chromosome Separation Checkpoint That Regulates the Anaphase-Telophase Transition. BioEssays, 37, 257-266.
https://doi.org/10.1002/bies.201400140
[25] Liu, S., Kwon, M., Mannino, M., Yang, N., Renda, F., Khodjakov, A., et al. (2018) Nuclear Envelope Assembly Defects Link Mitotic Errors to Chromothripsis. Nature, 561, 551-555.
https://doi.org/10.1038/s41586-018-0534-z
[26] Lammerding, J., Fong, L.G., Ji, J.Y., Reue, K., Stewart, C.L., Young, S.G., et al. (2006) Lamins A and C but Not Lamin B1 Regulate Nuclear Mechanics. Journal of Biological Chemistry, 281, 25768-25780.
https://doi.org/10.1074/jbc.m513511200
[27] Chen, C., Chi, Y., Mutalif, R.A., Starost, M.F., Myers, T.G., Anderson, S.A., et al. (2012) Accumulation of the Inner Nuclear Envelope Protein Sun1 Is Pathogenic in Progeric and Dystrophic Laminopathies. Cell, 149, 565-577.
https://doi.org/10.1016/j.cell.2012.01.059
[28] Hatch, E.M. and Hetzer, M.W. (2016) Nuclear Envelope Rupture Is Induced by Actin-Based Nucleus Confinement. Journal of Cell Biology, 215, 27-36.
https://doi.org/10.1083/jcb.201603053
[29] Mammel, A.E., Huang, H.Z., Gunn, A.L., Choo, E. and Hatch, E.M. (2021) Chromosome Length and Gene Density Contribute to Micronuclear Membrane Stability. Life Science Alliance, 5, e202101210.
https://doi.org/10.26508/lsa.202101210
[30] Maass, K.K., Rosing, F., Ronchi, P., Willmund, K.V., Devens, F., Hergt, M., et al. (2018) Altered Nuclear Envelope Structure and Proteasome Function of Micronuclei. Experimental Cell Research, 371, 353-363.
https://doi.org/10.1016/j.yexcr.2018.08.029
[31] Terradas, M., Martín, M., Hernández, L., Tusell, L. and Genescà, A. (2012) Nuclear Envelope Defects Impede a Proper Response to Micronuclear DNA Lesions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 729, 35-40.
https://doi.org/10.1016/j.mrfmmm.2011.09.003
[32] Vietri, M., Schultz, S.W., Bellanger, A., Jones, C.M., Petersen, L.I., Raiborg, C., et al. (2020) Unrestrained ESCRT-III Drives Micronuclear Catastrophe and Chromosome Fragmentation. Nature Cell Biology, 22, 856-867.
https://doi.org/10.1038/s41556-020-0537-5
[33] Zhang, C., Spektor, A., Cornils, H., Francis, J.M., Jackson, E.K., Liu, S., et al. (2015) Chromothripsis from DNA Damage in Micronuclei. Nature, 522, 179-184.
https://doi.org/10.1038/nature14493
[34] Crasta, K., Ganem, N.J., Dagher, R., Lantermann, A.B., Ivanova, E.V., Pan, Y., et al. (2012) DNA Breaks and Chromosome Pulverization from Errors in Mitosis. Nature, 482, 53-58.
https://doi.org/10.1038/nature10802
[35] Ly, P., Teitz, L.S., Kim, D.H., Shoshani, O., Skaletsky, H., Fachinetti, D., et al. (2016) Selective Y Centromere Inactivation Triggers Chromosome Shattering in Micronuclei and Repair by Non-Homologous End Joining. Nature Cell Biology, 19, 68-75.
https://doi.org/10.1038/ncb3450
[36] Wang, Y., Wang, M., Djekidel, M.N., Chen, H., Liu, D., Alt, F.W., et al. (2021) eccDNAs Are Apoptotic Products with High Innate Immunostimulatory Activity. Nature, 599, 308-314.
https://doi.org/10.1038/s41586-021-04009-w
[37] Chen, Q., Sun, L. and Chen, Z.J. (2016) Regulation and Function of the cGAS-STING Pathway of Cytosolic DNA Sensing. Nature Immunology, 17, 1142-1149.
https://doi.org/10.1038/ni.3558
[38] Briard, B., Place, D.E. and Kanneganti, T. (2020) DNA Sensing in the Innate Immune Response. Physiology, 35, 112-124.
https://doi.org/10.1152/physiol.00022.2019
[39] Abe, T. and Barber, G.N. (2014) Cytosolic-DNA-Mediated, STING-Dependent Proinflammatory Gene Induction Necessitates Canonical NF-κB Activation through TBK1. Journal of Virology, 88, 5328-5341.
https://doi.org/10.1128/jvi.00037-14
[40] Mackenzie, K.J., Carroll, P., Martin, C., Murina, O., Fluteau, A., Simpson, D.J., et al. (2017) cGAS Surveillance of Micronuclei Links Genome Instability to Innate Immunity. Nature, 548, 461-465.
https://doi.org/10.1038/nature23449
[41] Harding, S.M., Benci, J.L., Irianto, J., Discher, D.E., Minn, A.J. and Greenberg, R.A. (2017) Mitotic Progression Following DNA Damage Enables Pattern Recognition within Micronuclei. Nature, 548, 466-470.
https://doi.org/10.1038/nature23470
[42] Ku, J.W.K., Chen, Y., Lim, B.J.W., Gasser, S., Crasta, K.C. and Gan, Y. (2020) Bacterial-Induced Cell Fusion Is a Danger Signal Triggering cGAS-STING Pathway via Micronuclei Formation. Proceedings of the National Academy of Sciences, 117, 15923-15934.
https://doi.org/10.1073/pnas.2006908117
[43] Lohard, S., Bourgeois, N., Maillet, L., Gautier, F., Fétiveau, A., Lasla, H., et al. (2020) STING-Dependent Paracriny Shapes Apoptotic Priming of Breast Tumors in Response to Anti-Mitotic Treatment. Nature Communications, 11, Article No. 259.
https://doi.org/10.1038/s41467-019-13689-y
[44] Bakhoum, S.F., Ngo, B., Laughney, A.M., Cavallo, J., Murphy, C.J., Ly, P., et al. (2018) Chromosomal Instability Drives Metastasis through a Cytosolic DNA Response. Nature, 553, 467-472.
https://doi.org/10.1038/nature25432
[45] Liu, H., Zhang, H., Wu, X., Ma, D., Wu, J., Wang, L., et al. (2018) Nuclear cGAS Suppresses DNA Repair and Promotes Tumorigenesis. Nature, 563, 131-136.
https://doi.org/10.1038/s41586-018-0629-6
[46] Watkins, T.B.K., Lim, E.L., Petkovic, M., Elizalde, S., Birkbak, N.J., Wilson, G.A., et al. (2020) Pervasive Chromosomal Instability and Karyotype Order in Tumour Evolution. Nature, 587, 126-132.
https://doi.org/10.1038/s41586-020-2698-6
[47] Tijhuis, A.E., Johnson, S.C. and McClelland, S.E. (2019) The Emerging Links between Chromosomal Instability (CIN), Metastasis, Inflammation and Tumour Immunity. Molecular Cytogenetics, 12, Article No. 17.
https://doi.org/10.1186/s13039-019-0429-1
[48] Liang, H., Deng, L., Hou, Y., Meng, X., Huang, X., Rao, E., et al. (2017) Host STING-Dependent MDSC Mobilization Drives Extrinsic Radiation Resistance. Nature Communications, 8, Article No. 1736.
https://doi.org/10.1038/s41467-017-01566-5
[49] Coussens, L.M. and Werb, Z. (2002) Inflammation and Cancer. Nature, 420, 860-867.
https://doi.org/10.1038/nature01322
[50] Terai, H., Kitajima, S., Potter, D.S., Matsui, Y., Quiceno, L.G., Chen, T., et al. (2018) ER Stress Signaling Promotes the Survival of Cancer “Persister Cells” Tolerant to EGFR Tyrosine Kinase Inhibitors. Cancer Research, 78, 1044-1057.
https://doi.org/10.1158/0008-5472.can-17-1904
[51] Guscott, M., Saha, A., Maharaj, J. and McClelland, S.E. (2022) The Multifaceted Role of Micronuclei in Tumour Progression: A Whole Organism Perspective. The International Journal of Biochemistry & Cell Biology, 152, Article ID: 106300.
https://doi.org/10.1016/j.biocel.2022.106300
[52] Mittal, V. (2018) Epithelial Mesenchymal Transition in Tumor Metastasis. Annual Review of Pathology: Mechanisms of Disease, 13, 395-412.
https://doi.org/10.1146/annurev-pathol-020117-043854
[53] Sepaniac, L.A., Martin, W., Dionne, L.A., Stearns, T.M., Reinholdt, L.G. and Stumpff, J. (2021) Micronuclei in Kif18a Mutant Mice Form Stable Micronuclear Envelopes and Do Not Promote Tumorigenesis. Journal of Cell Biology, 220, e202101165.
https://doi.org/10.1083/jcb.202101165