新型冠状病毒感染患者血清TH1、TH2和TH17相关细胞因子水平:Meta分析
The Level of Serum TH1, TH2 and TH17-Related Cytokines in Patients with COVID-19 Infection: A Meta-Analysis
DOI: 10.12677/acm.2024.14102833, PDF, HTML, XML,   
作者: 徐国超, 杨 丹*:贵州医科大学临床医学院,贵州 贵阳;杜龙平:大理大学临床医学院,云南 大理
关键词: 新型冠状病毒TH1TH2TH17Meta分析细胞因子COVID-19 TH1 TH2 TH17 Meta-Analysis Cytokines
摘要: 目的:本研究采用Meta分析方法,系统评估了COVID‐19患者外周血中TH1、TH2、TH17相关细胞因子水平,并深入探讨了这些细胞因子研究结果存在差异的原因。方法:本研究已通过国际荟萃分析INPLASY平台认证(INPLASY协议认证编号:202380023),通过检索中国知网、PubMed、Embase、Cochrane和Web of Science数据库,收集COVID-19患者和健康对照群体外周血TH1、TH2、TH17相关细胞因子(TNF-a、IL-2、IL-4、IL-10、IL-17)水平的病例对照研究,检索时间范围为建库至2023年10月10日。由研究者独立完成文献筛选、数据提取和偏倚评估,使用RevMan 5.4软件进行Meta分析。结果:该Meta分析共检索出19,941项研究,最终纳入了6项进行Meta分析,这些研究均为中、高质量文献。患者入组的时间范围从2020年~2022年不等。结果表明:COVID-19感染组的患者外周血TNF-a水平显著高于健康对照组(HC组) [MD = 3.42, 95%CI (1.91, 4.92), I2 = 50%, P < 0.00001];COVID-19感染组患者外周血IL-4水平显著高于健康对照组(HC组) [MD = 2.21, 95%CI (0.99, 3.42), I2 = 98%, P = 0.0004];COVID-19感染组患者外周血IL-10水平显著高于健康对照组(HC组) [MD = 3.38, 95%CI (1.97, 4.80), I2 = 84%, P < 0.00001];COVID-19感染组患者外周血IL-17水平显著高于健康对照组(HC组) [MD = 5.94, 95%CI (1.50, 10.39), I2 = 98%, P = 0.009];COVID-19感染组患者与HC组外周血IL-2水平差异无统计学意义[MD = 0.89, 95%CI (−2.19, 3.97), I2 = 67%, P = 0.57]。结论:一些与TH1、TH2及TH17相关的细胞因子在COVID-19患者外周血中的水平明显高于健康对照组,这些细胞因子在新型冠状病毒感染的疾病进展中起着重要作用。
Abstract: Objective: In this study, we used Meta-analysis to systematically evaluate the levels of TH1, TH2, and TH17-related cytokines in the peripheral blood of COVID-19 patients, and the reasons for the differences in the findings of these cytokines were explored in depth. Methods: This study has been validated by the international Meta-analysis INPLASY platform (INPLASY protocol certification number: 202380023), by searching China Knowledge, PubMed, Embase, Cochrane and Web of Science databases, a case-control study on the levels of TH1, TH2, and TH17-related cytokines (TNFa, IL-2, IL-4, IL-10, and IL-17) in peripheral blood of COVID-19 patients and healthy control groups was collected, with a search timeframe from library construction to October 10, 2023. Literature screening, data extraction and bias assessment were done independently by the authors, and Meta-analysis was performed using RevMan 5.4 software. Results: The Meta-analysis retrieved a total of 19,941 studies, and 6 were finally included for Meta-analysis, which were all medium- and high-quality literature. The time of patient enrollment ranged from 2020 to 2022. The results showed that patients in the COVID-19-infected group had significantly higher peripheral blood TNF-a levels than in the healthy control group (HC group) [MD = 3.42, 95%CI (1.91, 4.92), I2 = 50%, P < 0.00001]; peripheral blood IL-4 levels were significantly higher in patients in the COVID-19-infected group than in the healthy control group (HC group) [MD = 2.21, 95%CI (0.99, 3.42), I2 = 98%, P = 0.0004]; peripheral blood IL-10 levels were significantly higher in patients in the COVID-19-infected group than in the healthy control group (HC group) [MD = 3.38, 95%CI (1.97, 4.80), I2 = 84%, P <0.00001]; peripheral blood IL-17 levels were significantly higher in patients in the COVID-19-infected group than in the healthy control group (HC group) [MD = 5.94, 95%CI (1.50, 10.39), I2 = 98%, P = 0.009]; the difference in peripheral blood IL-2 levels between patients in the COVID-19-infected group and the HC group was not statistically significant [MD = 0.89, 95%CI (−2.19, 3.97), I2 =67%, P = 0.57]. Conclusion: Some cytokines related to TH1, TH2 and TH17 were significantly higher in the peripheral blood of COVID-19 patients than in the healthy control group, and these cytokines play an important role in the disease progression of novel coronavirus infections.
文章引用:徐国超, 杨丹, 杜龙平. 新型冠状病毒感染患者血清TH1、TH2和TH17相关细胞因子水平:Meta分析[J]. 临床医学进展, 2024, 14(10): 1575-1584. https://doi.org/10.12677/acm.2024.14102833

1. 引言

COVID-19的病原体是严重急性呼吸综合征冠状病毒2 (SARS-CoV-2),具有高传染性和显著致死率的特征[1]。SARS-CoV-2感染可激活先天和适应性免疫反应,并在疾病后期导致大量炎症反应,COVID-19的严重程度取决于血清细胞因子水平等关键因素[2]。研究表明[3],在COVID-19患者中存在一种复杂的免疫失调综合征,涉及多种细胞因子的调节。患者体内的TH1、TH2、TH17细胞和抗体的产生以及多种细胞因子,如白细胞介素(如IL-4、IL-10、IL-17)、IFN-γ、TNF-α等,在机体感染新冠病毒的炎症反应中发挥关键作用[4]。适当的免疫反应有助于抑制SARS-CoV-2感染,但免疫反应失调和过激会导致急性严重全身炎症反应,即“细胞因子风暴”[5]。动态监测血清TH1、TH2和TH17相关细胞因子浓度可以作为确定免疫系统活动状态、疾病进展以及对COVID-19患者治疗有效性的生物标志物[6]。调控细胞因子水平,有效降低炎症介质、减轻炎症反应,对抑制炎症因子风暴和改善预后都具有积极意义[7]。尽管目前有众多研究检测了COVID-19患者的TH1、TH2及TH17相关细胞因子水平,但结果存在差异。因此,本研究旨在通过Meta分析系统评估COVID-19患者外周血中TH1、TH2及TH17相关细胞因子水平,进一步探讨这些细胞因子研究结果的差异原因。

2. 资料与方法

此Meta分析已在国际荟萃分析Inplasy平台上注册并获得认证(Inplasy协议认证编号:202380023,https://doi.org/10.37766/inplasy2023.8.0023)。

2.1. 检索策略

本研究在中国知网、PubMed、Embase、Cochrane和Web of Science数据库中进行文献检索,收集与COVID-19患者外周血TH1、TH2和TH17相关细胞因子水平的病例对照研究,检索时间范围限定为建库至2023年10月10日。采用主题词和自由词相结合的检索策略,英文检索词包括“Severe Acute Respiratory Syndrome Coronavirus 2”、“SARS-CoV-2”、“SARS CoV 2 Virus”、“COVID 19 Virus”、“Wuhan Coronavirus”、“Cell, Th1”、“Th1 Cell”、“TH-1 Cells”、“Cell, TH-1”、“T Helper 1 Cells”、“Type 1 Helper T Cells”、“Th2 Cell”、“T Helper2 Cell”、“Cell, T Helper2”、“Cells, T Helper2”、“TH-2 Cell”、“Cell, TH-2”、“Cells, TH-2”、“TH 2 Cell”、“T Helper2 Cells”、“T Helper 2 Cells”、“Type-2 Helper T Cells”、“Type 2 Helper T Cells”、“T Helper 2 Cell”、“Th17 Cell”、“T Helper 17 Cell”、“TH-17 Cell”、“TH 17 Cell”、“T Helper 17 Cells”、“Type 17 Helper T Cells”、“TH-17 Cells”、“Cell, TH-17”、“Cells, TH-17”、“Type 17 Helper T Cell”、“cytokine”。中文检索词包括:“新型冠状病毒”、“新冠肺炎”、“TH1细胞”、“TH2细胞”、“TH17细胞”、“T细胞”、“细胞因子”等。

2.2. 文献纳入与排除标准

纳入标准如下:1) 符合研究的病例对照研究;2) 病例组为已明确诊断为新型冠状病毒感染患者,对照组为健康人群;3) 检测到外周血中TH1、TH2及TH17相关细胞因子的水平,包括TNF-a、IL-2、IL-4、IL-10、IL-17;4) 包含充足的数据;5) 文献以中文或英文发表。

排除标准如下:1) 研究涉及动物作为研究对象;2) 研究内容与研究目的不相关;3) 缺乏适当的对照组;4) 无法获取充足的实验数据;5) 综述、评论、信件、会议摘要和个案报告。

2.3. 文献筛选及数据提取

研究人员从合格的文献中提取并验证所需的数据。如果出现疑惑,将寻求指导教师的帮助。提取内容包括:1) 第一作者、研究所在的国家、发表年份、患者数量、对照组数量和平均年龄;2) COVID-19患者外周血中的TH1、TH2及TH17相关细胞因子,如TNF-a、L-2、IL-4、IL-10、IL-17;3) 如果文献以图表形式呈现数据,将使用Getdata软件进行数据提取;4) 如果数据以中位数(范围)或M(P25, P75)表示,将使用Chatgtp进行数据转换为均值 ± 标准差的形式。

2.4. 文献质量评价

本研究使用纽卡斯尔–渥太华量表(NOS)来评估病例–对照研究的文献质量,评估指标包括:① 病例确定是否恰当;② 病例的代表性;③ 对照选择;④ 对照确定;⑤ 病例和对照的可比性;⑥ 暴露因素确定;⑦ 采用相同方法确定病例和对照组的暴露因素;⑧ 无应答率。评分范围从0分到9分,得分为8~9,得分为5~7分的文献被认为具有中等质量。

2.5. 统计分析

本研究为了评估纳入研究之间的异质性采用I2检验,当I2 ≥ 50%时,表示文献间存在异质性,采用随机效应模型进行文献合并分析,而当I2 < 50%时,采用固定效应模型进行文献合并分析。通过漏斗图评价发表偏倚。当p值小于0.05时,差异有统计学意义。

3. 结果

3.1. 检索结果

初次检索出相关文献总数为19,941篇,包括PubMed (n = 668)、EMbase (n = 9124)、Cochrane Library (n = 983)、Web of Science (n = 7979)和CNKI (n = 1187)。在逐层筛选后,最终选择了6篇研究进行纳入。详细的文献检索流程和结果见图1。文献的质量评价和发表偏移:所选6篇文献质量评价均为中、高质量,以外周血中TH1、TH2及TH17相关细胞因子总体水平作漏斗图分析,发现两侧的结果不完全对称,可能存在发表偏移(见图2)。

Figure 1. Literature screening process and results

1. 文献筛选流程及结果

Figure 2. Funnel plot of Meta-analysis of publication bias in the included literature (IL-10)

2. 纳入文献发表偏移的荟萃分析漏斗图(IL-10)

3.2. 纳入研究的基本特征

纳入研究的基本特征见表1

Table 1. Basic characteristics of included studies

1. 纳入研究基本特征

研究

国家

研究组数量

研究组平均年龄

对照组数量

对照组平均年龄

Smail 2023 [8]

伊拉克

60

44.3 ± 1.19

90

41.2 ± 1.35

Ahearn-Ford 2021 [9]

爱尔兰

24

-

29

-

Han 2020 [10]

中国

102

-

45

-

Lu 2021 [11]

中国

120

-

35

-

罗斯威2022 [12]

中国

15

42.7 ± 15.7

15

55.8 ± 15.0

董艳迎2020 [13]

中国

6

51.2 ± 13.78

10

49.7 ± 11.61

3.3. 纳入研究的文献质量评价结果

纳入研究的文献质量评价结果见表2

Table 2. Results of the evaluation of the quality of the literature included in the case-control studies (score)

2. 纳入病例–对照研究的文献质量评价结果(分)

纳入研究

研究人群选择

可行性

暴露因素

总分

Smail 2023 [8]

1

1

1

1

1

1

1

1

8

Ahearn-Ford 2021 [9]

1

1

1

1

2

1

1

1

9

Han 2020 [10]

1

1

1

1

1

1

1

1

8

Lu 2021 [11]

1

1

1

1

1

1

1

1

8

罗斯威2022 [12]

1

1

1

1

0

1

1

1

7

董艳迎2020 [13]

1

1

1

1

2

1

1

1

9

注:① 病例确定是否恰当;② 病例的代表性;③ 对照选择;④ 对照确定;⑤ 病例和对照的可比性;⑥ 暴露因素的确定;⑦ 采用相同方法确定病例和对照组的暴露因素;⑧ 无应答率。

3.4. COVID-19患者TH1相关细胞因子Meta分析结果

关于COVID-19患者的外周血TNF-a水平:有4篇文献[8] [10] [12] [13]均报道了COVID-19患者与健康对照组(HC组)的外周血TNF-a水平,各文献间χ2检验提示有异质性,I2 = 50%,用随机效应模型合并各文献,结果显示,COVID-19感染组患者外周血TNF-a水平高于健康对照组(HC组) [MD = 3.42, 95%CI (1.91, 4.92), P < 0.00001] (见图3);COVID-19患者外周血IL-2水平:3篇文献[10] [12] [13]均报道了COVID-19患者与健康对照组人群外周血IL-2水平,各文献间χ2检验提示异质性较大,I2 = 67%,用随机效应模型合并各文献,结果显示,COVID-19患者与HC组外周血IL-2水平[MD = 0.89, 95%CI (−2.19, 3.97), P = 0.57]差异无统计学意义(见图4)。

Figure 3. Peripheral blood TNF-a levels in COVID-19 patients and healthy control population

3. COVID-19患者与健康对照组人群外周血TNF-a水平

Figure 4. Peripheral blood IL-2 levels in COVID-19 patients and healthy control population

4. COVID-19患者与健康对照组人群外周血IL-2水平

3.5. COVID-19患者Th2相关细胞因子Meta分析结果

COVID-19患者外周血IL-4水平:4篇文献[9]-[12]均报道了COVID-19患者与健康对照组人群外周血IL-4水平,各文献间χ2检验提示异质性较大,I2 = 98%,用随机效应模型合并各文献,结果显示,COVID-19感染组患者外周血IL-4水平高于健康对照组(HC组) [MD = 2.21, 95%CI (0.99, 3.42), P = 0.0004] (见图5)。

Figure 5. Peripheral blood IL-4 levels in COVID-19 patients and healthy control population

5. COVID-19患者与健康对照组人群外周血IL-4水平

3.6. COVID-19患者Th17相关细胞因子Meta分析结果

COVID-19患者外周血IL-17水平:3篇文献[8] [9] [12]均报道了COVID-19患者与健康对照组人群外周血IL-17水平,各文献间χ2检验提示异质性较大,I2 = 98%,用随机效应模型合并各文献,结果显示,COVID-19感染组患者外周血IL-17水平显著高于健康对照组(HC组) [MD = 5.94, 95%CI (1.50, 10.39), P = 0.009] (见图6)。COVID-19患者外周血IL-10水平:5篇文献[8] [10]-[13]均报道了COVID-19患者与健康对照组人群外周血IL-10水平,各文献间χ2检验提示异质性较大,I2 = 84%,用随机效应模型合并各文献,结果显示,COVID-19感染组患者外周血IL-10水平高于健康对照组(HC组) [MD = 3.38, 95%CI (1.97, 4.80), P < 0.00001] (见图7)。

Figure 6. Peripheral blood IL-17 levels in COVID-19 patients and healthy control population

6. COVID-19患者与健康对照组人群外周血IL-17水平

Figure 7. Peripheral blood IL-10 levels in COVID-19 patients and healthy control population

7. COVID-19患者与健康对照组人群外周血IL-10水平

4. 讨论

新型冠状病毒感染后疾病进展的机理颇为复杂,受到免疫等诸多因素影响,其中T淋巴细胞亚群及其相关细胞因子的变化是重要的免疫学特征。机体的免疫系统主要由细胞免疫和体液免疫组成,T淋巴细胞和B淋巴细胞分别负责细胞免疫和体液免疫功能[14]。新冠病毒侵入人体后,固有免疫在早期抗感染阶段发挥关键作用,而T淋巴细胞主要参与机体的细胞免疫应答,当T淋巴细胞亚群的数量和功能发生异常时,机体的正常免疫功能就会受到干扰[15]。机体的免疫应答也会激活多种细胞信号转导通路,导致大量炎症因子的释放,甚至引发细胞因子风暴,过激的炎症反应和免疫紊乱会对组织器官造成损害[16]。T淋巴细胞分为不同的亚型,包括TH1细胞(IFN-γ、IL-2和TNF-α)、TH2细胞(IL-4、IL-5、IL-13)、TH17细胞(IL-17、IL-22)和Treg (TGF-β、IL-10)等[17]

据报道,COVID-19患者血清中IFN-γ水平升高,这可促使巨噬细胞激活和促炎细胞因子产生,呈现TH1反应,TH1相关细胞因子的增加有助于COVID-19患者的预后更好,因为TH1反应是机体免疫系统根除病毒感染的策略之一[18] [19]。调控IFN信号被认为是一种重要的抗病毒机制,可能是抵御病毒的关键步骤,在住院COVID-19患者中,IFN-γ水平升高与疾病的严重程度和不良预后相关[20] [21]。此外,Lucas等人[22]还证实了外周血中IFN-γ浓度与病毒载量之间的相关性,随着病毒核酸的不断复制,IFN-γ的血清含量也逐渐增加。Alhajjat等人[23]发现,在二次暴露于新型冠状病毒后,促进NK细胞反应取决于T淋巴细胞特异抗原,且主要由CD4+ T淋巴细胞和CD8+ T淋巴细胞产生的IL-2水平激发NK细胞反应。Liao等人[24]的研究表明,IL-2可用于调节白细胞,尤其对淋巴细胞作用明显,它通过结合淋巴细胞上的IL-2受体来发挥作用。炎症信号通路可以激活IL-2基因启动子,并增强其转录因子的活性来调控IL-2的生成,其中一个途径是可被多种刺激(如IL-1、TNF-α和IL-6)激活的NF-κB通路[25]。此外,如MAPK和PI3K等其他信号通路也可能影响IL-2细胞因子的表达,这些通路激活后可导致AP-1和NFAT等转录因子的激活,并增强对IL-2基因启动子区域的结合,从而促进IL-2的转录[26]

辅助性T淋巴细胞2 (TH2)来源于幼稚型辅助性T细胞(Th0细胞),IL-4是其中一个诱导TH2发育的细胞因子[27],TH2在经历正反馈后产生更多的IL-4,此外,肥大细胞、嗜碱性粒细胞和嗜酸性粒细胞也可以产生IL-4 [28]。IL-4信号转导的一条重要途径是JAK-STAT通路,IL-4有着IL-4R-I和IL-4R-II两种类型的受体,I型受体可以激活JAK1、JAK3、STAT6,而II型受体与JAK1、JAK2、酪氨酸激酶2 (TYK2)和STAT6的激活相关[29]。Shih等人[30]的研究发现,IL-10可以抑制如IL-1和TNF-α在内的促炎细胞因子,并通过激活CD8 T细胞、NK细胞和IgG1 B细胞来增强抗病毒免疫反应。因此,IL-10可能成为治疗COVID-19患者的新路径。

在免疫系统中,TH17细胞既有保护作用,又有致病作用。Berry等人[31]的研究指出,白细胞介素-17 (IL-17)是一种促进炎症的细胞因子,由TH17细胞、CD8+ T细胞、γδ T细胞、自然杀伤T细胞和先天淋巴样细胞等多种类型的免疫细胞产生。研究显示[32],TH17炎症反应对COVID-19患者的发病有明显促进作用,通过释放IL-17、GM-CSF等细胞因子来加重免疫反应,促进中性粒细胞迁移和Treg数量减少。Martonik等人[33]的研究结论表明,TH17细胞在COVID-19的病程进展中扮演重要角色,它可以激活细胞因子级联反应,还诱导TH2反应、抑制TH1及Treg细胞分化。COVID-19患者早期阶段对Th17的靶向应答有助于减轻病程、改善临床结果。

然而,当前关于COVID-19患者TH1、TH2及TH17相关细胞因子,包括TNF-a、IL-2、IL-4、IL-10、IL-17水平的临床研究结果并不是一致的。为进一步了解这些细胞因子在COVID-19患者发病机制中的作用,本研究进行了Meta分析。结果表明:尽管COVID-19患者的外周血IL-2水平与健康对照组(HC组)差异无统计学意义,但是TNF-a水平显著高于健康对照组,COVID-19患者的外周血IL-4、IL-10和IL-17水平也均明显高于健康对照组。因此,TH1、TH2及TH17相关细胞因子可能与COVID-19患者的发病机制、病情变化和疾病预后相关。

本Meta分析纳入的均为非随机对照研究文献,因此可能会使检测结果存在偶然性。另外,本研究纳入的文献有限,可能造成分析偏移。值得注意的是,尽管已尽力排除了研究间的异质性,但TH1、TH2及TH17相关细胞因子水平的测定受到多种因素的影响。因此,未来需要更多的临床研究来确认这些结果。

综上所述,这项荟萃分析证实了COVID-19患者的TH1、TH2及TH17相关细胞因子,如TNF-a、IL-4、IL10和IL-17存在异常的表达。这些细胞因子的水平对于COVID-19患者的发病机制、病情变化和疾病预后具有至关重要的作用。

作者贡献

徐国超:完成论文写作、文献阅读、文献质量评价,杜龙平完成数据提取和数据分析等工作。杨丹:通讯作者,指导教师,论文质量控制及全文内容审校。

NOTES

*通讯作者。

参考文献

[1] 高乐女, 黄运生, 王勇. 武汉地区57例新型冠状病毒肺炎的临床特征及中医证候初探[J]. 江西中医药大学学报, 2023, 35(2): 41-44.
[2] Anka, A.U., Tahir, M.I., Abubakar, S.D., Alsabbagh, M., Zian, Z., Hamedifar, H., et al. (2020) Coronavirus Disease 2019 (COVID‐19): An Overview of the Immunopathology, Serological Diagnosis and Management. Scandinavian Journal of Immunology, 93, e12998.
https://doi.org/10.1111/sji.12998
[3] Del Valle, D.M., Kim-Schulze, S., Huang, H., Beckmann, N.D., Nirenberg, S., Wang, B., et al. (2020) An Inflammatory Cytokine Signature Predicts COVID-19 Severity and Survival. Nature Medicine, 26, 1636-1643.
https://doi.org/10.1038/s41591-020-1051-9
[4] Hasanvand, A. (2022) COVID-19 and the Role of Cytokines in This Disease. Inflammopharmacology, 30, 789-798.
https://doi.org/10.1007/s10787-022-00992-2
[5] Channappanavar, R. and Perlman, S. (2017) Pathogenic Human Coronavirus Infections: Causes and Consequences of Cytokine Storm and Immunopathology. Seminars in Immunopathology, 39, 529-539.
https://doi.org/10.1007/s00281-017-0629-x
[6] Kalantar, K., Ghamar Talepoor, A., Eshkevar Vakili, M., Karami, N., Kalani, M., Ghandehari, F., et al. (2023) Th-1, Th-2, Th-9, Th-17, Th-22 Type Cytokine Concentrations of Critical COVID-19 Patients after Treatment with Remdesivir. Immunobiology, 228, Article ID: 152378.
https://doi.org/10.1016/j.imbio.2023.152378
[7] 崔艳花. 新型冠状病毒肺炎患者细胞因子的动态变化与住院时长的相关性[J]. 河南医学高等专科学校学报, 2022, 34(6): 688-692.
[8] Smail, S.W., Babaei, E., Amin, K. and Abdulahad, W.H. (2023) Serum IL-23, IL-10, and TNF-α Predict In-Hospital Mortality in COVID-19 Patients. Frontiers in Immunology, 14, Article ID: 1145840.
https://doi.org/10.3389/fimmu.2023.1145840
[9] Ahearn‐Ford, S., Lunjani, N., McSharry, B., MacSharry, J., Fanning, L., Murphy, G., et al. (2021) Long‐Term Disruption of Cytokine Signalling Networks Is Evident in Patients Who Required Hospitalization for SARS‐COV‐2 Infection. Allergy, 76, 2910-2913.
https://doi.org/10.1111/all.14953
[10] Han, H., Ma, Q., Li, C., Liu, R., Zhao, L., Wang, W., et al. (2020) Profiling Serum Cytokines in COVID-19 Patients Reveals IL-6 and IL-10 Are Disease Severity Predictors. Emerging Microbes & Infections, 9, 1123-1130.
https://doi.org/10.1080/22221751.2020.1770129
[11] Lu, Q., Zhu, Z., Tan, C., Zhou, H., Hu, Y., Shen, G., et al. (2021) Changes of Serum IL‐10, IL‐1β, IL‐6, MCP‐1, TNF‐α, IP‐10 and IL‐4 in COVID‐19 Patients. International Journal of Clinical Practice, 75, e14462.
https://doi.org/10.1111/ijcp.14462
[12] 罗斯威, 姚亚超, 钟丽梅, 等. 新冠肺炎患者和细菌性肺炎患者血清差异表达的细胞因子特征分析[J]. 新医学, 2022, 53(5): 372-378.
[13] 董艳迎, 李妙羡, 朱建宏, 等. 新型冠状病毒肺炎患者实验室检测指标与免疫学特征分析[J]. 分子诊断与治疗杂志, 2020, 12(6): 697-700+714.
[14] 黄春明, 詹远京, 胡中伟. 入院时CT正常新型冠状病毒感染者淋巴细胞亚群和细胞因子特点及临床意义[J]. 实用医学杂志, 2020, 36(23): 3179-3183.
[15] 杨文. T淋巴细胞亚群检测, 帮助了解你的免疫力[J]. 家庭医药, 2023(7): 75.
[16] Hu, B., Huang, S. and Yin, L. (2020) The Cytokine Storm and COVID‐19. Journal of Medical Virology, 93, 250-256.
https://doi.org/10.1002/jmv.26232
[17] Talaat, R.M., Mohamed, S.F., Bassyouni, I.H. and Raouf, A.A. (2015) Th1/Th2/Th17/Treg Cytokine Imbalance in Systemic Lupus Erythematosus (SLE) Patients: Correlation with Disease Activity. Cytokine, 72, 146-153.
https://doi.org/10.1016/j.cyto.2014.12.027
[18] De Biasi, S., Meschiari, M., Gibellini, L., Bellinazzi, C., Borella, R., Fidanza, L., et al. (2020) Marked T Cell Activation, Senescence, Exhaustion and Skewing towards TH17 in Patients with COVID-19 Pneumonia. Nature Communications, 11, Article No. 3434.
https://doi.org/10.1038/s41467-020-17292-4
[19] Kasuga, Y., Zhu, B., Jang, K. and Yoo, J. (2021) Innate Immune Sensing of Coronavirus and Viral Evasion Strategies. Experimental & Molecular Medicine, 53, 723-736.
https://doi.org/10.1038/s12276-021-00602-1
[20] Fiorucci, G., Chiantore, M.V., Mangino, G. and Romeo, G. (2015) MicroRNAs in Virus-Induced Tumorigenesis and IFN System. Cytokine & Growth Factor Reviews, 26, 183-194.
https://doi.org/10.1016/j.cytogfr.2014.11.002
[21] Gadotti, A.C., de Castro Deus, M., Telles, J.P., Wind, R., Goes, M., Garcia Charello Ossoski, R., et al. (2020) IFN-γ Is an Independent Risk Factor Associated with Mortality in Patients with Moderate and Severe COVID-19 Infection. Virus Research, 289, Article ID: 198171.
https://doi.org/10.1016/j.virusres.2020.198171
[22] Lucas, C., Wong, P., Klein, J., Castro, T.B.R., Silva, J., Sundaram, M., et al. (2020) Longitudinal Analyses Reveal Immunological Misfiring in Severe COVID-19. Nature, 584, 463-469.
https://doi.org/10.1038/s41586-020-2588-y
[23] Alhajjat, A.M., Redden, C.R., Langereis, M., Papastefan, S.T., Ito, J.A.S., Ott, K.C., et al. (2023) CD4 and IL-2 Mediated NK Cell Responses after COVID-19 Infection and mRNA Vaccination in Adults. Immunobiology, 228, Article ID: 152304.
https://doi.org/10.1016/j.imbio.2022.152304
[24] Liao, W., Lin, J. and Leonard, W.J. (2011) IL-2 Family Cytokines: New Insights into the Complex Roles of IL-2 as a Broad Regulator of T Helper Cell Differentiation. Current Opinion in Immunology, 23, 598-604.
https://doi.org/10.1016/j.coi.2011.08.003
[25] Zhang, Q., Wang, L., Wang, S., Cheng, H., Xu, L., Pei, G., et al. (2022) Signaling Pathways and Targeted Therapy for Myocardial Infarction. Signal Transduction and Targeted Therapy, 7, Article No. 78.
https://doi.org/10.1038/s41392-022-00925-z
[26] Kabata, H., Moro, K. and Koyasu, S. (2018) The Group 2 Innate Lymphoid Cell (ILC2) Regulatory Network and Its Underlying Mechanisms. Immunological Reviews, 286, 37-52.
https://doi.org/10.1111/imr.12706
[27] Wu, J., Chen, S. and Li, X. (2023) Correlation between B-Cell Lymphoma 6 with the Balance of T Helper-1/2 and Severity of Allergic Rhinitis. Allergologia et Immunopathologia, 51, 1-8.
https://doi.org/10.15586/aei.v51i1.673
[28] Spangler, J.B., Moraga, I., Jude, K.M., Savvides, C.S. and Garcia, K.C. (2019) A Strategy for the Selection of Monovalent Antibodies That Span Protein Dimer Interfaces. Journal of Biological Chemistry, 294, 13876-13886.
https://doi.org/10.1074/jbc.ra119.009213
[29] Tsiogka, A., Kyriazopoulou, M., Kontochristopoulos, G., Nicolaidou, E., Stratigos, A., Rigopoulos, D., et al. (2022) The JAK/STAT Pathway and Its Selective Inhibition in the Treatment of Atopic Dermatitis: A Systematic Review. Journal of Clinical Medicine, 11, Article 4431.
https://doi.org/10.3390/jcm11154431
[30] Shih, L., Yang, C., Liao, M., Lu, K., Hu, W. and Lin, C. (2023) An Important Call: Suggestion of Using IL-10 as Therapeutic Agent for COVID-19 with ARDS and Other Complications. Virulence, 14, Article ID: 2190650.
https://doi.org/10.1080/21505594.2023.2190650
[31] Berry, S.P.D., Dossou, C., Kashif, A., Sharifinejad, N., Azizi, G., Hamedifar, H., et al. (2022) The Role of IL-17 and Anti-Il-17 Agents in the Immunopathogenesis and Management of Autoimmune and Inflammatory Diseases. International Immunopharmacology, 102, Article ID: 108402.
https://doi.org/10.1016/j.intimp.2021.108402
[32] Muyayalo, K.P., Huang, D., Zhao, S., Xie, T., Mor, G. and Liao, A. (2020) COVID‐19 and Treg/Th17 Imbalance: Potential Relationship to Pregnancy Outcomes. American Journal of Reproductive Immunology, 84, e13304.
https://doi.org/10.1111/aji.13304
[33] Martonik, D., Parfieniuk-Kowerda, A., Rogalska, M. and Flisiak, R. (2021) The Role of Th17 Response in COVID-19. Cells, 10, Article 1550.
https://doi.org/10.3390/cells10061550