[1]
|
高乐女, 黄运生, 王勇. 武汉地区57例新型冠状病毒肺炎的临床特征及中医证候初探[J]. 江西中医药大学学报, 2023, 35(2): 41-44.
|
[2]
|
Anka, A.U., Tahir, M.I., Abubakar, S.D., Alsabbagh, M., Zian, Z., Hamedifar, H., et al. (2020) Coronavirus Disease 2019 (COVID‐19): An Overview of the Immunopathology, Serological Diagnosis and Management. Scandinavian Journal of Immunology, 93, e12998. https://doi.org/10.1111/sji.12998
|
[3]
|
Del Valle, D.M., Kim-Schulze, S., Huang, H., Beckmann, N.D., Nirenberg, S., Wang, B., et al. (2020) An Inflammatory Cytokine Signature Predicts COVID-19 Severity and Survival. Nature Medicine, 26, 1636-1643. https://doi.org/10.1038/s41591-020-1051-9
|
[4]
|
Hasanvand, A. (2022) COVID-19 and the Role of Cytokines in This Disease. Inflammopharmacology, 30, 789-798. https://doi.org/10.1007/s10787-022-00992-2
|
[5]
|
Channappanavar, R. and Perlman, S. (2017) Pathogenic Human Coronavirus Infections: Causes and Consequences of Cytokine Storm and Immunopathology. Seminars in Immunopathology, 39, 529-539. https://doi.org/10.1007/s00281-017-0629-x
|
[6]
|
Kalantar, K., Ghamar Talepoor, A., Eshkevar Vakili, M., Karami, N., Kalani, M., Ghandehari, F., et al. (2023) Th-1, Th-2, Th-9, Th-17, Th-22 Type Cytokine Concentrations of Critical COVID-19 Patients after Treatment with Remdesivir. Immunobiology, 228, Article ID: 152378. https://doi.org/10.1016/j.imbio.2023.152378
|
[7]
|
崔艳花. 新型冠状病毒肺炎患者细胞因子的动态变化与住院时长的相关性[J]. 河南医学高等专科学校学报, 2022, 34(6): 688-692.
|
[8]
|
Smail, S.W., Babaei, E., Amin, K. and Abdulahad, W.H. (2023) Serum IL-23, IL-10, and TNF-α Predict In-Hospital Mortality in COVID-19 Patients. Frontiers in Immunology, 14, Article ID: 1145840. https://doi.org/10.3389/fimmu.2023.1145840
|
[9]
|
Ahearn‐Ford, S., Lunjani, N., McSharry, B., MacSharry, J., Fanning, L., Murphy, G., et al. (2021) Long‐Term Disruption of Cytokine Signalling Networks Is Evident in Patients Who Required Hospitalization for SARS‐COV‐2 Infection. Allergy, 76, 2910-2913. https://doi.org/10.1111/all.14953
|
[10]
|
Han, H., Ma, Q., Li, C., Liu, R., Zhao, L., Wang, W., et al. (2020) Profiling Serum Cytokines in COVID-19 Patients Reveals IL-6 and IL-10 Are Disease Severity Predictors. Emerging Microbes & Infections, 9, 1123-1130. https://doi.org/10.1080/22221751.2020.1770129
|
[11]
|
Lu, Q., Zhu, Z., Tan, C., Zhou, H., Hu, Y., Shen, G., et al. (2021) Changes of Serum IL‐10, IL‐1β, IL‐6, MCP‐1, TNF‐α, IP‐10 and IL‐4 in COVID‐19 Patients. International Journal of Clinical Practice, 75, e14462. https://doi.org/10.1111/ijcp.14462
|
[12]
|
罗斯威, 姚亚超, 钟丽梅, 等. 新冠肺炎患者和细菌性肺炎患者血清差异表达的细胞因子特征分析[J]. 新医学, 2022, 53(5): 372-378.
|
[13]
|
董艳迎, 李妙羡, 朱建宏, 等. 新型冠状病毒肺炎患者实验室检测指标与免疫学特征分析[J]. 分子诊断与治疗杂志, 2020, 12(6): 697-700+714.
|
[14]
|
黄春明, 詹远京, 胡中伟. 入院时CT正常新型冠状病毒感染者淋巴细胞亚群和细胞因子特点及临床意义[J]. 实用医学杂志, 2020, 36(23): 3179-3183.
|
[15]
|
杨文. T淋巴细胞亚群检测, 帮助了解你的免疫力[J]. 家庭医药, 2023(7): 75.
|
[16]
|
Hu, B., Huang, S. and Yin, L. (2020) The Cytokine Storm and COVID‐19. Journal of Medical Virology, 93, 250-256. https://doi.org/10.1002/jmv.26232
|
[17]
|
Talaat, R.M., Mohamed, S.F., Bassyouni, I.H. and Raouf, A.A. (2015) Th1/Th2/Th17/Treg Cytokine Imbalance in Systemic Lupus Erythematosus (SLE) Patients: Correlation with Disease Activity. Cytokine, 72, 146-153. https://doi.org/10.1016/j.cyto.2014.12.027
|
[18]
|
De Biasi, S., Meschiari, M., Gibellini, L., Bellinazzi, C., Borella, R., Fidanza, L., et al. (2020) Marked T Cell Activation, Senescence, Exhaustion and Skewing towards TH17 in Patients with COVID-19 Pneumonia. Nature Communications, 11, Article No. 3434. https://doi.org/10.1038/s41467-020-17292-4
|
[19]
|
Kasuga, Y., Zhu, B., Jang, K. and Yoo, J. (2021) Innate Immune Sensing of Coronavirus and Viral Evasion Strategies. Experimental & Molecular Medicine, 53, 723-736. https://doi.org/10.1038/s12276-021-00602-1
|
[20]
|
Fiorucci, G., Chiantore, M.V., Mangino, G. and Romeo, G. (2015) MicroRNAs in Virus-Induced Tumorigenesis and IFN System. Cytokine & Growth Factor Reviews, 26, 183-194. https://doi.org/10.1016/j.cytogfr.2014.11.002
|
[21]
|
Gadotti, A.C., de Castro Deus, M., Telles, J.P., Wind, R., Goes, M., Garcia Charello Ossoski, R., et al. (2020) IFN-γ Is an Independent Risk Factor Associated with Mortality in Patients with Moderate and Severe COVID-19 Infection. Virus Research, 289, Article ID: 198171. https://doi.org/10.1016/j.virusres.2020.198171
|
[22]
|
Lucas, C., Wong, P., Klein, J., Castro, T.B.R., Silva, J., Sundaram, M., et al. (2020) Longitudinal Analyses Reveal Immunological Misfiring in Severe COVID-19. Nature, 584, 463-469. https://doi.org/10.1038/s41586-020-2588-y
|
[23]
|
Alhajjat, A.M., Redden, C.R., Langereis, M., Papastefan, S.T., Ito, J.A.S., Ott, K.C., et al. (2023) CD4 and IL-2 Mediated NK Cell Responses after COVID-19 Infection and mRNA Vaccination in Adults. Immunobiology, 228, Article ID: 152304. https://doi.org/10.1016/j.imbio.2022.152304
|
[24]
|
Liao, W., Lin, J. and Leonard, W.J. (2011) IL-2 Family Cytokines: New Insights into the Complex Roles of IL-2 as a Broad Regulator of T Helper Cell Differentiation. Current Opinion in Immunology, 23, 598-604. https://doi.org/10.1016/j.coi.2011.08.003
|
[25]
|
Zhang, Q., Wang, L., Wang, S., Cheng, H., Xu, L., Pei, G., et al. (2022) Signaling Pathways and Targeted Therapy for Myocardial Infarction. Signal Transduction and Targeted Therapy, 7, Article No. 78. https://doi.org/10.1038/s41392-022-00925-z
|
[26]
|
Kabata, H., Moro, K. and Koyasu, S. (2018) The Group 2 Innate Lymphoid Cell (ILC2) Regulatory Network and Its Underlying Mechanisms. Immunological Reviews, 286, 37-52. https://doi.org/10.1111/imr.12706
|
[27]
|
Wu, J., Chen, S. and Li, X. (2023) Correlation between B-Cell Lymphoma 6 with the Balance of T Helper-1/2 and Severity of Allergic Rhinitis. Allergologia et Immunopathologia, 51, 1-8. https://doi.org/10.15586/aei.v51i1.673
|
[28]
|
Spangler, J.B., Moraga, I., Jude, K.M., Savvides, C.S. and Garcia, K.C. (2019) A Strategy for the Selection of Monovalent Antibodies That Span Protein Dimer Interfaces. Journal of Biological Chemistry, 294, 13876-13886. https://doi.org/10.1074/jbc.ra119.009213
|
[29]
|
Tsiogka, A., Kyriazopoulou, M., Kontochristopoulos, G., Nicolaidou, E., Stratigos, A., Rigopoulos, D., et al. (2022) The JAK/STAT Pathway and Its Selective Inhibition in the Treatment of Atopic Dermatitis: A Systematic Review. Journal of Clinical Medicine, 11, Article 4431. https://doi.org/10.3390/jcm11154431
|
[30]
|
Shih, L., Yang, C., Liao, M., Lu, K., Hu, W. and Lin, C. (2023) An Important Call: Suggestion of Using IL-10 as Therapeutic Agent for COVID-19 with ARDS and Other Complications. Virulence, 14, Article ID: 2190650. https://doi.org/10.1080/21505594.2023.2190650
|
[31]
|
Berry, S.P.D., Dossou, C., Kashif, A., Sharifinejad, N., Azizi, G., Hamedifar, H., et al. (2022) The Role of IL-17 and Anti-Il-17 Agents in the Immunopathogenesis and Management of Autoimmune and Inflammatory Diseases. International Immunopharmacology, 102, Article ID: 108402. https://doi.org/10.1016/j.intimp.2021.108402
|
[32]
|
Muyayalo, K.P., Huang, D., Zhao, S., Xie, T., Mor, G. and Liao, A. (2020) COVID‐19 and Treg/Th17 Imbalance: Potential Relationship to Pregnancy Outcomes. American Journal of Reproductive Immunology, 84, e13304. https://doi.org/10.1111/aji.13304
|
[33]
|
Martonik, D., Parfieniuk-Kowerda, A., Rogalska, M. and Flisiak, R. (2021) The Role of Th17 Response in COVID-19. Cells, 10, Article 1550. https://doi.org/10.3390/cells10061550
|