艾司氯胺酮的临床应用进展
Progress in the Clinical Application of Esketamine
摘要: 艾司氯胺酮是外消旋氯胺酮的S-对映异构体,是一种新型的具有镇痛作用的静脉麻醉药,与氯胺酮相比,具有起效快、代谢快、镇痛作用强、对呼吸影响小、术中血流动力学稳定、副作用少、缩短患者术后苏醒时间等优点,更适合临床使用。在麻醉诱导、维持、术后镇痛及精神疾病等领域有着广泛的应用。因此,本文将对艾司氯胺酮的临床应用、抗抑郁作用以及对术后认知功能障碍(POCD)的影响的研究进展进行综述,为艾司氯胺酮的临床合理使用提供参考依据。
Abstract: Esketamine is the S-enantiomer of racemic ketamine, which is a new type of intravenous anesthetic with analgesic effect. Compared with ketamine, esketamine has the advantages of fast onset, fast metabolism, strong analgesic effect, small impact on respiration, intraoperative hemodynamic stability, less mental side effects, and shortening the postoperative recovery time of patients, and is more suitable for clinical use. It has a wide range of applications in the fields of anesthesia induction, maintenance, postoperative analgesia, and psychiatric diseases. Therefore, this article will review the clinical application, antidepressant effect and impact of esketamine on Postoperative Cognitive Dysfunction (POCD), so as to provide a reference for the rational clinical use of esketamine.
文章引用:乔宇, 韩志强. 艾司氯胺酮的临床应用进展[J]. 临床医学进展, 2024, 14(10): 1592-1599. https://doi.org/10.12677/acm.2024.14102835

1. 引言

R-氯胺酮和S-氯胺酮是氯胺酮的光学对映异构体。氯胺酮来源于苯环己哌啶,具有分离麻醉的特性,也具有镇静、镇痛、抗炎和抗抑郁作用。自1970年起在临床麻醉中使用已有50多年的历史。氯胺酮由于其精神副作用明显,使其逐渐被其他麻醉剂所取代。艾司氯胺酮作为一种具有强效镇痛作用的新型静脉麻醉药,具有消除快、药理作用强以及副作用小等优点[1] [2],临床应用方面优于氯胺酮。因此,艾司氯胺酮自2019年11月在我国上市后,作为一种有良好稳定的麻醉效力、起效快、安全性较高的药物,人们对艾司氯胺酮的兴趣越来越大,其临床使用及研究受到广泛关注。

2. 艾司氯胺酮概述

艾司氯胺酮是从外消旋混合物氯胺酮中分离出的右旋异构体,主要是通过拮抗n-甲基-d-天冬氨酸(NMDA)受体,进而发挥其镇静镇痛作用。艾司氯胺酮对NMDA受体的亲和力约为氯胺酮的三倍,故艾司氯胺酮与氯胺酮相比具有更强的镇静、镇痛及抗抑郁作用,且用于麻醉诱导的S-氯胺酮剂量是氯胺酮的一半,复苏时间比氯胺酮少三分之二。艾司氯胺酮可与多种受体和通道相结合,如NMDA受体、M胆碱受体、单胺受体、腺苷受体、其他嘌呤受体以及脊髓网状通路、Ca2+激活的钾通道(BK通道)、超极化激活的环核苷酸门控通道-1 (HCN-1)、阳离子通道等相互作用,发挥其麻醉、镇静、镇痛、抗抑郁及拟交感神经特性等作用[1] [3]

艾司氯胺酮主要经肝脏代谢,肾脏排出,在细胞色素P450肝酶CYP2B6和CYP3A4催化下去甲基化变成具有镇痛作用的去甲氯胺酮,后进一步代谢为水溶性无药理活性代谢物,大部分经肾排出。艾司氯胺酮有静脉注射、经鼻给药、口服、肌注等多种给药途径,其中静脉输注可迅速达到最大血浆浓度,而鼻内给药则不受首过肝代谢的影响。艾司氯胺酮的消除半衰期约为5小时,比氯胺酮的消除半衰期2~4小时略长,但艾司氯胺酮较氯胺酮具有更高的清除率[2]。因而,艾司氯胺酮可缩短麻醉术后患者苏醒时长,提供更好的麻醉安全性。而艾司氯胺酮的不良反应与氯胺酮相似,主要为头晕、幻觉、恶心、呕吐、血压及颅内压升高、心率增快、分泌物增多等[4]

3. 艾司氯胺酮的临床应用

3.1. 全身麻醉

艾司氯胺酮是一种具有镇痛作用的静脉麻醉药,用于全身麻醉中可拮抗阿片类药物对呼吸的抑制并减少阿片类药物的用量,还可兴奋心血管系统,在麻醉诱导和维持期间,改善外周灌注和血压[5]-[7]。在Li等人的研究中,将80例进行全身麻醉单侧全膝关节置换术老年患者随机分为两组,对照组(C组)和艾司氯胺酮组(K组),麻醉诱导时,对照组静脉注射等体积生理盐水,艾司氯胺酮组静脉注射艾司氯胺酮0.2 mg/kg,结果与C组相比,K组在诱导期间的低血压发作次数要少得多,对接受膝关节置换术的老年人进行低剂量艾氯胺酮麻醉诱导,可以更好地保持血流动力学的稳定性[8]。有研究表示,围术期应用艾司氯胺酮可降低术后不良反应恶心呕吐(PONV)的发生率以及改善术后疲劳[9] [10]。在Xie等人进行的一项前瞻性的临床试验中,将接受泌尿外科手术的小儿患者随机分四组,对照组患者给予仅含有氢吗啡酮的镇痛泵,剂量为0.1 mg/kg(氢吗啡酮组1, H1)和0.15 mg/kg(氢吗啡酮组2, H2)。实验组患者在麻醉诱导期间静脉注射0.3 mg/kg艾司氯胺酮(艾司氯胺酮1组,ES1)或等体积的生理盐水(艾司氯胺酮2组,ES2)。将艾司氯胺酮1.0 mg/kg和氢吗啡酮0.1 mg/kg加入镇痛泵中。结果显示,与H1组相比,ES1组和H2组在术后所有时间点的数字评定量表(FLACC)及疼痛数字评分法(NRS)疼痛评分均显着降低。ES2组仅在术后24小时和48小时表现出较低的疼痛评分。ES1组在术后疼痛评分也显著低于ES2组。ES1、ES2和H2组PCA按钮按下总数和有效次数均低于H1组。麻醉诱导给予低剂量艾司氯胺酮和镇痛泵给药的联合方法可有效缓解小儿泌尿科患者术后疼痛,显著减少镇痛泵按下按钮的次数,优化这些患者的疼痛管理[11]

3.2. 术后镇痛

手术后通常会有不同程度的疼痛。严重的术后疼痛会影响患者的康复。它与治疗结果有关,给患者带来更多的痛苦。因此,控制术后疼痛也是治疗过程中的关键环节,不容忽视。艾司氯胺酮强大的镇痛作用,可以有效辅助镇痛,可预防及处理术后急性疼痛,可在术后短时间内减轻疼痛的强度,降低VAS疼痛评分,预防痛觉过敏,减少术后阿片类药物的需求。在Fan等人的进行胸外科手术的随机对照试验中,无阿片类药物麻醉组与阿片类药物麻醉组分别使用艾司氯胺酮(0.5 mg/kg)与舒芬太尼(0.2 ug/kg)进行麻醉诱导,分别使用艾司氯胺酮与瑞芬太尼联合丙泊酚及右美托咪啶进行麻醉维持,结果显示,两组术后疼痛评分和恢复质量差异无统计学意义,无阿片类药物静脉麻醉提供了与阿片类药物静脉麻醉相同水平的术后疼痛控制,且在维持循环和呼吸稳定以及改善自主通气视频辅助胸外科手术(SV-VATS)肺塌陷质量方面更有利[12]。同样,在Cheng等人的研究中,对于围手术期接受S-氯胺酮治疗的患者在术后24小时和48小时的静息疼痛评分和咳嗽低于接受生理盐水治疗的患者,艾司氯胺酮组术后48小时的整体40项恢复质量评分量表(QoR-40)评分更高,提示术中持续输注艾司氯胺酮可以在术后很长一段时间内发挥镇痛作用,可有效缓解术后疼痛,提高患者康复质量[13]。此外,艾司氯胺酮在多模式镇痛中也发挥重要作用,可用于预防及处理术后急性疼痛,围手术期静脉注射艾司氯胺酮可能会降低术后镇痛药消耗和疼痛强度。有研究发现,接受胸腔镜肺手术的患者在单独使用氢吗啡酮与氢吗啡酮联合艾司氯胺酮进行术后静脉自控镇痛结果具有差异性,结果显示,接受艾司氯胺酮治疗的患者在术后第1天和术后第2天休息和咳嗽时的NRS疼痛评分较单独使用氢吗啡酮组低[14]。Jing等人的研究显示,亚麻醉剂量的艾司氯胺酮用作全身麻醉的辅助用药可以降低腹腔镜胃肠道肿瘤手术后24小时的疼痛强度,且不会产生额外的不良反应[15]。术中输注艾司氯胺酮可有效缓解术后疼痛及减少术中阿片类药物的使用,同时改善了术后恢复质量。艾司氯胺酮强大的镇痛作用有利于患者的术后恢复。

3.3. 门诊及内镜检查

艾司氯胺酮具有起效快、觉醒快、轻度呼吸抑制、支气管扩张、气道分泌物不明显、循环躁动低等特点,在麻醉方面具有独特的优势,特别是对于持续时间短的手术。Feng等人将80名进行无痛性支气管镜检查的老年患者随机分为实验组(艾司氯胺酮0.15 mg/kg + 丙泊酚1 mg/kg)和对照组(舒芬太尼0.1 μg/kg + 丙泊酚1 mg/kg),与对照组相比,实验组循环波动小,以及实验组丙泊酚总剂量显著降低,血管活性药物数量、呼吸抑制和支气管痉挛发生率显著降低(P < 0.05)。说明低剂量艾司氯胺酮联合丙泊酚用于老年患者的支气管镜检查,安全性高,效果好,呼吸循环也更稳定,不良反应发生率低[16]。在Zheng等人的随机对照试验中,将接受无痛胃肠镜的肥胖患者分为C (丙泊酚 + 生理盐水)组和S (丙泊酚 + 艾司氯胺酮0.25 mg/kg)组,其丙泊酚的消耗量分别为274.4 ± 22.6 mg和201.3 ± 16.6 mg。C组和S组的诱导时间分别为25.4 ± 2.3 s和17.8 ± 1.9 s。C组和S组术后觉醒时间分别为6.2 ± 1.1 min和4.8 ± 1.3 min。S组的诱导和术后觉醒时间比C组短,S组的血流动力学参数比C组更稳定。S组的注射疼痛、低氧血症、低血压、心动过缓、窒息、肢体运动等不良事件的发生率显著降低[17]。试验结果显示,使用亚麻醉剂量的艾司氯胺酮可提高无痛胃镜检查期间肥胖患者的安全性并降低不良事件的发生率。而在Zheng等人研究中发现,与右美托咪定相比,艾司氯胺酮的短时间起效、深度镇静和不良反应少为接受药物诱导睡眠内窥镜检查的阻塞性睡眠呼吸暂停低通气综合征(OSAHS)儿童提供了更有效、更安全的深度麻醉[18]

3.4. 抗抑郁作用

抑郁症是所有医学疾病中致残的主要原因,世界卫生组织数据显示,全世界有超过3亿人患有抑郁症[19]。虽然,抑郁症的具体作用机制目前尚未完全阐明,但有人提出外消旋氯胺酮抗抑郁机制中起关键作用的是NMDA受体的拮抗作用[20] [21],艾司氯胺酮作为氯胺酮的S-对映异构体,对NMDA受体具有更高的亲和力,在2019年美国已开发并批准了一种艾司氯胺酮鼻喷雾剂用于治疗难治性抑郁症。Gan等人在一项随机、双盲、安慰剂对照试验中,将156名接受胸腔镜肺癌手术的患者以1:1的比例随机分配接受静脉注射艾司氯胺酮(术中和患者自控镇痛直至术后48小时)和生理盐水安慰剂,试验结果是与生理盐水组相比,艾司氯胺酮组1个月时抑郁症状的发生率显著降低,且艾司氯胺酮组在术后1个月的恢复质量-15 (QoR-15)评分更高[22]。在最近的一项纳入11项随机对照试验,涉及1447名受试者的荟萃分析中表明,预防性使用艾司氯胺酮可缓解术后抑郁症状和发生率,减少术后抑郁、焦虑和慢性疼痛的发生。同时,它还改善了术后睡眠质量,提高了患者的术后生活质量[23]。Min等人在骨科髋关节置换术老年患者全身麻醉中,实验组与对照组分别应用亚麻醉剂量的艾司氯胺酮与舒芬太尼进行麻醉诱导,并在术后给予实验组与对照组分别给予艾司氯胺酮2.5 mg/kg与舒芬太尼2.5 ug/kg连接PCIA进行镇痛,实验结果显示,与舒芬太尼组相比,艾司氯胺酮组可减轻短期术后焦虑抑郁,缓解术后疼痛和应激反应,缩短全髋关节置换术后卧床休息时间,加速术后恢复[24]。在Seshadri等人的系统评价和荟萃分析中发现,不同剂量的鼻内艾司氯胺酮的抗抑郁疗效不同,抗抑郁效果随着剂量超过28 mg而增加,在56至84 mg之间发生最佳反应,可减轻抑郁症状,但因其具有一定的局限性,有待更多的临床试验检验证明[25]

3.5. 改善术后认知功能障碍

术后认知功能障碍(POCD)是老年人手术和麻醉后常见的中枢神经系统并发症。目前,对POCD进行了大量研究,但其具体机制尚不清楚。其中,中枢神经炎症被认为在POCD的发展中起关键作用。由手术创伤引起的外周炎症因子如IL-1、IL-6、TNF-α等的释放,可通过各种机制如:依据血脑屏障的生理特性,外周炎症因子经被动扩散和主动转运的方式进入到中枢神经系统,进而诱导中枢神经系统的炎症反应,以及,外周炎症因子也可能直接与血脑屏障内皮细胞上相应位点结合,并在外周信号的刺激下产生免疫活性分子,激活中央小胶质细胞和星形胶质细胞并诱导中枢神经系统的免疫反应[26]。小胶质细胞是中枢神经系统中的常驻巨噬细胞,是中枢神经炎症反应发生和发展的关键环节[27] [28]。小胶质细胞中表达的多种受体识别炎症介质并传递炎症刺激信号,通过下游信号转导通路如NF-κB信号通路、PI3K/AKT信号通路、MAPK信号通路、NLRP3炎症小体信号通路等诱导小胶质细胞激活[29]-[32]。而活化的星形胶质细胞产生的S100β也可促进小胶质细胞活化[33],进而介导促炎细胞因子、趋化因子的释放,从而促进中枢神经炎症反应的发展,进一步加重中枢神经系统的炎症损伤,损害认知功能。而BDNF/TrkB/PI3K/Akt通路则参与抑制诱导的小胶质细胞激活的机制[34] [35]。在这个过程中,小胶质细胞的活化和中枢神经系统炎症是引起认知障碍的两个中心环节,也是POCD临床诊疗的突破点。艾司氯胺酮具有的抗炎作用可减少小胶质细胞活化以及下调促炎细胞因子,如肿瘤坏死因子-α (TNF-α)和白细胞介素-6 (IL-6)能抑制氧自由基刺激的炎性细胞释放,减少白细胞对白细胞介素、肿瘤坏死因子等细胞因子的分泌,从而缓解炎症反应[36],改善术后认知障碍。

在Wang等人的动物实验中发现,艾司氯胺酮可通过BDNF/TrkB/NF-κB信号通路减少术后抑郁模型中活化的小胶质细胞数量并改善抑郁样行为[37]。在Xu等人的实验中,艾司氯胺酮可通过激活mBDNF/TrkB/PI3K信号通路进而抑制异丙酚诱导的神经元凋亡、减轻大鼠认知功能障碍和氧化应激[38]。在Tu等人的临床研究中,用0.5 mg/kg艾司氯胺酮代替舒芬太尼进行麻醉诱导,结果缩短了麻醉时间,且改善了血流动力学和手术应激及炎症反应,促进了术后认知功能恢复,表现出良好的安全性和可靠性[39]。Ma等人使用低剂量艾司氯胺酮输注在一定程度上降低了接受胃肠道肿瘤全身麻醉的老年患者延迟神经认知恢复(DNR)的发生率,艾司氯胺酮组DNR发生率16.13%低于对照组38.71% (P < 0.05),减轻了术后疼痛,减少了术中阿片药物的应用,有利于术中血流动力学的稳定以及降低了不良反应的发生率[40]。另一项随机对照实验中,将接受胃肠道手术的患者被随机分为艾司氯胺酮组(S组)和对照组(C组) 2组,结果显示,S组神经认知恢复延迟(dNCR)发生率低于C组(18.15% vs. 38.24%, P < 0.05),但两组术后3个月POCD无差异。而术后第1天,两组血浆IL-6和S100β水平均显著升高(p < 0.05),但与C组相比,艾司氯胺酮预处理在一定程度上降低了这些水平(P < 0.05),其可能与艾司氯胺酮的抗神经炎症作用有关,该试验中艾司氯胺酮一定程度上降低了接受胃肠道手术的老年患者dNCR的发生率并改善了术后早期认知功能[41]。Zhang等人在接受改良根治性乳房切除术的患者中应用艾司氯胺酮可以在术后1天促进术后认知功能的恢复、改善疼痛、提高恢复质量[42]。也有研究发现,使用无阿片类药物艾司氯胺酮麻醉虽然可以在术后起到有效镇痛,但对炎症因子影响不大[43]

4. 小结

综上所述,艾司氯胺酮较氯胺酮具有强大的镇静、镇痛作用,可广泛用于围术期的麻醉诱导、麻醉维持及术后镇痛,因其对呼吸影响小,可保留一定的自主呼吸,为门诊内镜检查提供了更安全、更有效的麻醉深度。由于艾司氯胺酮较氯胺酮具有更高的清除率,因而,艾司氯胺酮可缩短麻醉术后患者苏醒时长,提供更好的麻醉安全性。此外,艾司氯胺酮的精神副作用较氯胺酮少,具有良好的抗抑郁作用,且一定程度改善患者术后早期认知功能。目前多数研究具有一定局限性,疼痛防治及精神领域也存在一些需要解决的问题。仍需大量研究来明确艾司氯胺酮的用药方案,而明确艾司氯胺酮的作用机理,可以使药物更安全地使用,更好地为患者服务。

NOTES

*通讯作者。

参考文献

[1] Mion, G. and Villevieille, T. (2013) Ketamine Pharmacology: An Update (Pharmacodynamics and Molecular Aspects, Recent Findings). CNS Neuroscience & Therapeutics, 19, 370-380.
https://doi.org/10.1111/cns.12099
[2] Zanos, P., Moaddel, R., Morris, P.J., Riggs, L.M., Highland, J.N., Georgiou, P., et al. (2018) Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacological Reviews, 70, 621-660.
https://doi.org/10.1124/pr.117.015198
[3] Zhou, C., Douglas, J.E., Kumar, N.N., Shu, S., Bayliss, D.A. and Chen, X. (2013) Forebrain HCN1 Channels Contribute to Hypnotic Actions of Ketamine. Anesthesiology, 118, 785-795.
https://doi.org/10.1097/aln.0b013e318287b7c8
[4] Zhang, X., Zhang, N., Liu, D., Ding, J., Zhang, Y. and Zhu, Z. (2022) Research Advances in the Clinical Application of Esketamine. Ibrain, 8, 55-67.
https://doi.org/10.1002/ibra.12019
[5] Jonkman, K., van Rijnsoever, E., Olofsen, E., Aarts, L., Sarton, E., van Velzen, M., et al. (2018) Esketamine Counters Opioid-Induced Respiratory Depression. British Journal of Anaesthesia, 120, 1117-1127.
https://doi.org/10.1016/j.bja.2018.02.021
[6] Yuan, J.J., Chen, S.H., Xie, Y.L., Xue, Q., Mao, Y.Y., Xing, F., Wang, D.M. and Yang, J.J. (2022) Effects of Subanesthetic Dose of Esketamine on Opioid Consumption after Thoracoscopic Surgery. Chinese Medical Journal, 102, 1108-1113.
[7] Zhou, N., Liang, X., Gong, J., Li, H., Liu, W., Zhou, S., et al. (2022) S-Ketamine Used during Anesthesia Induction Increases the Perfusion Index and Mean Arterial Pressure after Induction: A Randomized, Double-Blind, Placebo-Controlled Trial. European Journal of Pharmaceutical Sciences, 179, Article ID: 106312.
https://doi.org/10.1016/j.ejps.2022.106312
[8] Li, J., Wang, Z., Wang, A. and Wang, Z. (2022) Clinical Effects of Low-Dose Esketamine for Anaesthesia Induction in the Elderly: A Randomized Controlled Trial. Journal of Clinical Pharmacy and Therapeutics, 47, 759-766.
https://doi.org/10.1111/jcpt.13604
[9] Qi, Y., Zhou, M., Zheng, W., Dong, Y., Li, W., Wang, L., et al. (2024) Effect of S-Ketamine on Postoperative Nausea and Vomiting in Patients Undergoing Video-Assisted Thoracic Surgery: A Randomized Controlled Trial. Drug Design, Development and Therapy, 18, 1189-1198.
https://doi.org/10.2147/dddt.s449705
[10] Lin, X., Feng, X., Sun, L., Wang, Y., Wu, X., Lu, S., et al. (2024) Effects of Esketamine on Postoperative Fatigue Syndrome in Patients after Laparoscopic Resection of Gastric Carcinoma: A Randomized Controlled Trial. BMC Anesthesiology, 24, Article No. 185.
https://doi.org/10.1186/s12871-024-02513-w
[11] Xie, Y., Liang, Z., Chen, S., Liu, J., lv, H., Xing, F., et al. (2024) Effectiveness of Perioperative Low-Dose Esketamine Infusion for Postoperative Pain Management in Pediatric Urological Surgery: A Prospective Clinical Trial. BMC Anesthesiology, 24, Article No. 65.
https://doi.org/10.1186/s12871-024-02450-8
[12] Fan, Q., Luo, J., Zhou, Q., Zhang, Y., Zhang, X., Li, J., et al. (2023) Esketamine Opioid-Free Intravenous Anesthesia versus Opioid Intravenous Anesthesia in Spontaneous Ventilation Video-Assisted Thoracic Surgery: A Randomized Controlled Trial. Frontiers in Oncology, 13, Article 1145953.
https://doi.org/10.3389/fonc.2023.1145953
[13] Cheng, X., Wang, H., Diao, M. and Jiao, H. (2022) Effect of S-Ketamine on Postoperative Quality of Recovery in Patients Undergoing Video-Assisted Thoracic Surgery. Journal of Cardiothoracic and Vascular Anesthesia, 36, 3049-3056.
https://doi.org/10.1053/j.jvca.2022.04.028
[14] Zhang, A., Zhou, Y., Zheng, X., Zhou, W., Gu, Y., Jiang, Z., et al. (2024) Effects of S-Ketamine Added to Patient-Controlled Analgesia on Early Postoperative Pain and Recovery in Patients Undergoing Thoracoscopic Lung Surgery: A Randomized Double-Blinded Controlled Trial. Journal of Clinical Anesthesia, 92, Article ID: 111299.
https://doi.org/10.1016/j.jclinane.2023.111299
[15] Jing, Z., Han, Y., Li, Y., Zeng, R., Wu, J., Wang, Y., et al. (2024) Effect of Subanesthetic Dose of Esketamine on Postoperative Pain in Elderly Patients Undergoing Laparoscopic Gastrointestinal Tumor Surgery: A Prospective, Double-Blind, Randomized Controlled Trial. Heliyon, 10, e27593.
https://doi.org/10.1016/j.heliyon.2024.e27593
[16] Feng, Y., Du, T., Wang, J. and Chen, Z. (2022) Low Dose of Esketamine Combined with Propofol in Painless Fibronchoscopy in Elderly Patients. Medicine, 101, e31572.
https://doi.org/10.1097/md.0000000000031572
[17] Zheng, L., Wang, Y., Ma, Q., Liang, W., Zhang, X., Ren, Z., et al. (2023) Efficacy and Safety of a Subanesthetic Dose of Esketamine Combined with Propofol in Patients with Obesity Undergoing Painless Gastroscopy: A Prospective, Double-Blind, Randomized Controlled Trial. Drug Design, Development and Therapy, 17, 1347-1356.
https://doi.org/10.2147/dddt.s408076
[18] Zheng, Y., Li, X., Sang, A., Xie, Q., Zhou, T., Shen, M., et al. (2022) The Safety and Efficacy of Esketamine in Comparison to Dexmedetomidine during Drug-Induced Sleep Endoscopy in Children with Obstructive Sleep Apnea Hypopnea Syndrome: A Randomized, Controlled and Prospective Clinical Trial. Frontiers in Pharmacology, 13, Article 1036509.
https://doi.org/10.3389/fphar.2022.1036509
[19] Charlson, F., van Ommeren, M., Flaxman, A., Cornett, J., Whiteford, H. and Saxena, S. (2019) New WHO Prevalence Estimates of Mental Disorders in Conflict Settings: A Systematic Review and Meta-Analysis. The Lancet, 394, 240-248.
https://doi.org/10.1016/s0140-6736(19)30934-1
[20] Jelen, L.A., Young, A.H. and Stone, J.M. (2020) Ketamine: A Tale of Two Enantiomers. Journal of Psychopharmacology, 35, 109-123.
https://doi.org/10.1177/0269881120959644
[21] Lener, M.S., Niciu, M.J., Ballard, E.D., Park, M., Park, L.T., Nugent, A.C., et al. (2017) Glutamate and Gamma-Aminobutyric Acid Systems in the Pathophysiology of Major Depression and Antidepressant Response to Ketamine. Biological Psychiatry, 81, 886-897.
https://doi.org/10.1016/j.biopsych.2016.05.005
[22] Gan, S., Long, Y., Wang, Q., Feng, C., Lai, C., Liu, C., et al. (2023) Effect of Esketamine on Postoperative Depressive Symptoms in Patients Undergoing Thoracoscopic Lung Cancer Surgery: A Randomized Controlled Trial. Frontiers in Psychiatry, 14, Article 1128406.
https://doi.org/10.3389/fpsyt.2023.1128406
[23] Niu, G., Zheng, X., Deng, B., Du, Y.S. and Mei, Y. (2024) The Effects of Prophylactic Use of Esketamine on Postoperative Depression and Quality of Life: A Meta-Analysis. Minerva Anestesiologica, 90, 321-329.
https://doi.org/10.23736/s0375-9393.24.17703-6
[24] Min, M., Du, C., Chen, X. and Xin, W. (2023) Effect of Subanesthetic Dose of Esketamine on Postoperative Rehabilitation in Elderly Patients Undergoing Hip Arthroplasty. Journal of Orthopaedic Surgery and Research, 18, Article No. 268.
https://doi.org/10.1186/s13018-023-03728-2
[25] Seshadri, A., Prokop, L. and Singh, B. (2024) Efficacy of Intravenous Racemic Ketamine and Intranasal Esketamine with Dose Escalation for Treatment-Resistant Depression: A Systematic Review and Meta-Analysis. Journal of Affective Disorders, 356, 379-384.
[26] Li, Z., Zhu, Y., Kang, Y., Qin, S. and Chai, J. (2022) Neuroinflammation as the Underlying Mechanism of Postoperative Cognitive Dysfunction and Therapeutic Strategies. Frontiers in Cellular Neuroscience, 16, Article 843069.
https://doi.org/10.3389/fncel.2022.843069
[27] Safavynia, S.A. and Goldstein, P.A. (2019) The Role of Neuroinflammation in Postoperative Cognitive Dysfunction: Moving from Hypothesis to Treatment. Frontiers in Psychiatry, 9, Article 752.
https://doi.org/10.3389/fpsyt.2018.00752
[28] Feng, X., Valdearcos, M., Uchida, Y., Lutrin, D., Maze, M. and Koliwad, S.K. (2017) Microglia Mediate Postoperative Hippocampal Inflammation and Cognitive Decline in Mice. JCI Insight, 2, e91229.
https://doi.org/10.1172/jci.insight.91229
[29] Zhang, M. and Yin, Y. (2023) Dual Roles of Anesthetics in Postoperative Cognitive Dysfunction: Regulation of Microglial Activation through Inflammatory Signaling Pathways. Frontiers in Immunology, 14, Article 1102312.
https://doi.org/10.3389/fimmu.2023.1102312
[30] Dresselhaus, E.C. and Meffert, M.K. (2019) Cellular Specificity of NF-κB Function in the Nervous System. Frontiers in Immunology, 10, Article 1043.
https://doi.org/10.3389/fimmu.2019.01043
[31] Zheng, K., Lv, B., Wu, L., Wang, C., Xu, H., Li, X., et al. (2022) Protecting Effect of Emodin in Experimental Autoimmune Encephalomyelitis Mice by Inhibiting Microglia Activation and Inflammation via Myd88/PI3K/Akt/NF-κB Signalling Pathway. Bioengineered, 13, 9322-9344.
https://doi.org/10.1080/21655979.2022.2052671
[32] Liu, Z., Yao, X., Jiang, W., Li, W., Zhu, S., Liao, C., et al. (2020) Advanced Oxidation Protein Products Induce Microglia-Mediated Neuroinflammation via MAPKs-NF-κB Signaling Pathway and Pyroptosis after Secondary Spinal Cord Injury. Journal of Neuroinflammation, 17, Article No. 90.
https://doi.org/10.1186/s12974-020-01751-2
[33] Kabadi, S.V., Stoica, B.A., Zimmer, D.B., Afanador, L., Duffy, K.B., Loane, D.J., et al. (2015) S100B Inhibition Reduces Behavioral and Pathologic Changes in Experimental Traumatic Brain Injury. Journal of Cerebral Blood Flow & Metabolism, 35, 2010-2020.
https://doi.org/10.1038/jcbfm.2015.165
[34] Wen, Y., Xu, J., Shen, J., Tang, Z., Li, S., Zhang, Q., et al. (2024) Esketamine Prevents Postoperative Emotional and Cognitive Dysfunction by Suppressing Microglial M1 Polarization and Regulating the BDNF-TrkB Pathway in Ageing Rats with Preoperative Sleep Disturbance. Molecular Neurobiology, 61, 5680-5698.
https://doi.org/10.1007/s12035-023-03860-4
[35] Sun, G., Miao, Z., Ye, Y., Zhao, P., Fan, L., Bao, Z., et al. (2020) Curcumin Alleviates Neuroinflammation, Enhances Hippocampal Neurogenesis, and Improves Spatial Memory after Traumatic Brain Injury. Brain Research Bulletin, 162, 84-93.
https://doi.org/10.1016/j.brainresbull.2020.05.009
[36] Feeney, A. and Papakostas, G.I. (2023) Pharmacotherapy. Psychiatric Clinics of North America, 46, 277-290.
https://doi.org/10.1016/j.psc.2023.02.003
[37] Wang, T., Weng, H., Zhou, H., Yang, Z., Tian, Z., Xi, B., et al. (2022) Esketamine Alleviates Postoperative Depression-Like Behavior through Anti-Inflammatory Actions in Mouse Prefrontal Cortex. Journal of Affective Disorders, 307, 97-107.
https://doi.org/10.1016/j.jad.2022.03.072
[38] Xu, G., Wang, Y., Chen, Z., Zhang, Y., Zhang, X. and Zhang, G. (2022) Esketamine Improves Propofol-Induced Brain Injury and Cognitive Impairment in Rats. Translational Neuroscience, 13, 430-439.
https://doi.org/10.1515/tnsci-2022-0251
[39] Tu, W., Yuan, H., Zhang, S., Lu, F., Yin, L., Chen, C. and Li, J. (2021) Influence of Anesthetic Induction of Propofol Combined with Esket-Amine on Perioperative Stress and Inflammatory Responses and Postoperative Cognition of Elderly Surgical Patients. American Journal of Translational Research, 13, 1701-1709.
[40] Ma, J., Wang, F., Wang, J., Wang, P., Dou, X., Yao, S., et al. (2023) The Effect of Low-Dose Esketamine on Postoperative Neurocognitive Dysfunction in Elderly Patients Undergoing General Anesthesia for Gastrointestinal Tumors: A Randomized Controlled Trial. Drug Design, Development and Therapy, 17, 1945-1957.
https://doi.org/10.2147/dddt.s406568
[41] Han, C., Ji, H., Guo, Y., Fei, Y., Wang, C., Yuan, Y., et al. (2023) Effect of Subanesthetic Dose of Esketamine on Perioperative Neurocognitive Disorders in Elderly Undergoing Gastrointestinal Surgery: A Randomized Controlled Trial. Drug Design, Development and Therapy, 17, 863-873.
https://doi.org/10.2147/dddt.s401161
[42] Zhang, J., Jia, D., Li, W., Li, X., Ma, Q. and Chen, X. (2023) General Anesthesia with S-Ketamine Improves the Early Recovery and Cognitive Function in Patients Undergoing Modified Radical Mastectomy: A Prospective Randomized Controlled Trial. BMC Anesthesiology, 23, Article No. 214.
https://doi.org/10.1186/s12871-023-02161-6
[43] Dai, J., Li, S., Zheng, R. and Li, J. (2023) Effect of Esketamine on Inflammatory Factors in Opioid-Free Anesthesia Based on Quadratus Lumborum Block: A Randomized Trial. Medicine, 102, e34975.
https://doi.org/10.1097/md.0000000000034975