[1]
|
Elliott, P., Andersson, B., Arbustini, E., Bilinska, Z., Cecchi, F., Charron, P., et al. (2007) Classification of the Cardiomyopathies: A Position Statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. European Heart Journal, 29, 270-276. https://doi.org/10.1093/eurheartj/ehm342
|
[2]
|
Semsarian, C., Ingles, J., Maron, M.S. and Maron, B.J. (2015) New Perspectives on the Prevalence of Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 65, 1249-1254. https://doi.org/10.1016/j.jacc.2015.01.019
|
[3]
|
Maron, M.S., Hellawell, J.L., Lucove, J.C., Farzaneh-Far, R. and Olivotto, I. (2016) Occurrence of Clinically Diagnosed Hypertrophic Cardiomyopathy in the United States. The American Journal of Cardiology, 117, 1651-1654. https://doi.org/10.1016/j.amjcard.2016.02.044
|
[4]
|
Weintraub, R.G., Semsarian, C. and Macdonald, P. (2017) Dilated Cardiomyopathy. The Lancet, 390, 400-414. https://doi.org/10.1016/s0140-6736(16)31713-5
|
[5]
|
Brieler, J., Breeden, M.A. and Tucker, J. (2017) Cardiomyopathy: An Overview. American Family Physician, 96, 640-646.
|
[6]
|
Yamada, T. and Nomura, S. (2021) Recent Findings Related to Cardiomyopathy and Genetics. International Journal of Molecular Sciences, 22, Article No. 12522. https://doi.org/10.3390/ijms222212522
|
[7]
|
赵林丽, 吕云鹏, 唐青, 等. PI3K/AKT/mTOR信号通路在心血管疾病中的作用及其药物靶向治疗[J]. 中国实用医药, 2021, 16(4): 151-155.
|
[8]
|
Ghafouri-Fard, S., Khanbabapour Sasi, A., Hussen, B.M., Shoorei, H., Siddiq, A., Taheri, M., et al. (2022) Interplay between PI3K/AKT Pathway and Heart Disorders. Molecular Biology Reports, 49, 9767-9781. https://doi.org/10.1007/s11033-022-07468-0
|
[9]
|
Wang, J., Hu, K., Cai, X., Yang, B., He, Q., Wang, J., et al. (2022) Targeting PI3K/AKT Signaling for Treatment of Idiopathic Pulmonary Fibrosis. Acta Pharmaceutica Sinica B, 12, 18-32. https://doi.org/10.1016/j.apsb.2021.07.023
|
[10]
|
Ghafouri-Fard, S., Khanbabapour Sasi, A., Hussen, B.M., Shoorei, H., Siddiq, A., Taheri, M., et al. (2022) Interplay between PI3K/AKT Pathway and Heart Disorders. Molecular Biology Reports, 49, 9767-9781. https://doi.org/10.1007/s11033-022-07468-0
|
[11]
|
Engelman, J.A., Luo, J. and Cantley, L.C. (2006) The Evolution of Phosphatidylinositol 3-Kinases as Regulators of Growth and Metabolism. Nature Reviews Genetics, 7, 606-619. https://doi.org/10.1038/nrg1879
|
[12]
|
Durrant, T.N. and Hers, I. (2020) PI3K Inhibitors in Thrombosis and Cardiovascular Disease. Clinical and Translational Medicine, 9, e8. https://doi.org/10.1186/s40169-020-0261-6
|
[13]
|
Fayard, E., Xue, G., Parcellier, A., Bozulic, L. and Hemmings, B.A. (2010) Protein Kinase B (PKB/AKT), a Key Mediator of the PI3K Signaling Pathway. In: Rommel, C., Vanhaesebroeck, B. and Vogt, P.K., Eds., Phosphoinositide 3-Kinase in Health and Disease, Springer, 31-56. https://doi.org/10.1007/82_2010_58
|
[14]
|
Hanada, M., Feng, J. and Hemmings, B.A. (2004) Structure, Regulation and Function of PKB/AKT—A Major Therapeutic Target. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics, 1697, 3-16. https://doi.org/10.1016/j.bbapap.2003.11.009
|
[15]
|
郭一澎, 安丽萍. PI3K/AKT/mTOR信号通路与心血管疾病的关系[J]. 齐齐哈尔医学院学报, 2023, 44(20): 1932-1936.
|
[16]
|
李玉华, 赵敏. PI3K/AKT信号通路调控心肌细胞凋亡的研究进展[J]. 疑难病杂志, 2019, 18(11): 1169-1173.
|
[17]
|
陈伟佳, 白烨升, 祁玉营, 等. 参丹方通过PI3K/AKT信号通路改善扩张型心肌病大鼠心肌细胞凋亡的研究[J]. 中国临床药理学杂志, 2023, 39(21): 3116-3120.
|
[18]
|
Dong, W., Guan, F., Zhang, X., Gao, S., Liu, N., Chen, W., et al. (2018) Dhcr24 Activates the PI3K/AKT/HKII Pathway and Protects against Dilated Cardiomyopathy in Mice. Animal Models and Experimental Medicine, 1, 40-52. https://doi.org/10.1002/ame2.12007
|
[19]
|
Zhu, M., Chen, Y., Cheng, L., et al. (2022) Calsyntenin-1 Promotes Doxorubicin-Induced Dilated Cardiomyopathy in Rats. Cardiovascular Drugs and Therapy, 38, 237-252.
|
[20]
|
Zhang, C., Huang, Y., Lu, J., Lin, J., Ge, Z. and Huang, H. (2018) Retracted: Upregulated MicroRNA‐132 Rescues Cardiac Fibrosis and Restores Cardiocyte Proliferation in Dilated Cardiomyopathy through the Phosphatase and Tensin Homolog-Mediated PI3K/AKT Signal Transduction Pathway. Journal of Cellular Biochemistry, 120, 1232-1244. https://doi.org/10.1002/jcb.27081
|
[21]
|
苏笑宇, 朱禹奇, 段默涵, 等. 黄芪甲苷通过PI3K/AKT信号通路改善2型糖尿病大鼠心脏功能的研究进展[J]. 名医, 2023(20): 36-38.
|
[22]
|
Miki, T., Yuda, S., Kouzu, H. and Miura, T. (2012) Diabetic Cardiomyopathy: Pathophysiology and Clinical Features. Heart Failure Reviews, 18, 149-166. https://doi.org/10.1007/s10741-012-9313-3
|
[23]
|
Ren, B., Zhang, Y., Liu, S., Cheng, X., Yang, X., Cui, X., et al. (2020) Curcumin Alleviates Oxidative Stress and Inhibits Apoptosis in Diabetic Cardiomyopathy via Sirt1‐Foxo1 and PI3K-AKT Signalling Pathways. Journal of Cellular and Molecular Medicine, 24, 12355-12367. https://doi.org/10.1111/jcmm.15725
|
[24]
|
Zhong, L., Li, J., Yu, J., Cao, X., Du, J., Liang, L., et al. (2024) Anemarrhena Asphodeloides Bunge Total Saponins Ameliorate Diabetic Cardiomyopathy by Modifying the PI3K/AKT/HIF-1α Pathway to Restore Glycolytic Metabolism. Journal of Ethnopharmacology, 319, Article ID: 117250. https://doi.org/10.1016/j.jep.2023.117250
|
[25]
|
Han, Z., Zhao, D., Han, M., Zhang, R. and Hao, Y. (2022) Knockdown of MIR-372-3p Inhibits the Development of Diabetic Cardiomyopathy by Accelerating Angiogenesis via Activating the PI3K/AKT/mTOR/HIF-1α Signaling Pathway and Suppressing Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 4342755. https://doi.org/10.1155/2022/4342755
|
[26]
|
Yang, X., Li, X., Lin, Q. and Xu, Q. (2019) Up-Regulation of Microrna-203 Inhibits Myocardial Fibrosis and Oxidative Stress in Mice with Diabetic Cardiomyopathy through the Inhibition of PI3K/AKT Signaling Pathway via PIK3CA. Gene, 715, Article ID: 143995. https://doi.org/10.1016/j.gene.2019.143995
|
[27]
|
Li, D., Guo, Y., Cen, X., Qiu, H., Chen, S., Zeng, X., et al. (2021) Lupeol Protects against Cardiac Hypertrophy via TLR4-PI3K-AKT-NF-κB Pathways. Acta Pharmacologica Sinica, 43, 1989-2002. https://doi.org/10.1038/s41401-021-00820-3
|
[28]
|
Liu, M., Luo, G., Dong, L., Mazhar, M., Wang, L., He, W., et al. (2022) Network Pharmacology and in Vitro Experimental Verification Reveal the Mechanism of the Hirudin in Suppressing Myocardial Hypertrophy. Frontiers in Pharmacology, 13, Article ID: 914518. https://doi.org/10.3389/fphar.2022.914518
|
[29]
|
Qian, W., Yu, D., Zhang, J., Hu, Q., Tang, C., Liu, P., et al. (2018) Wogonin Attenuates Isoprenaline-Induced Myocardial Hypertrophy in Mice by Suppressing the PI3K/AKT Pathway. Frontiers in Pharmacology, 9, Article No. 896. https://doi.org/10.3389/fphar.2018.00896
|
[30]
|
Jiang, Y., Chen, L., Chao, Z., Chen, T. and Zhou, Y. (2022) Ferroptosis Related Genes in Ischemic and Idiopathic Cardiomyopathy: Screening for Potential Pharmacological Targets. Frontiers in Cell and Developmental Biology, 10, Article ID: 817819. https://doi.org/10.3389/fcell.2022.817819
|
[31]
|
Mao, W., Iwai, C., Liu, J., Sheu, S., Fu, M. and Liang, C. (2008) Darbepoetin Alfa Exerts a Cardioprotective Effect in Autoimmune Cardiomyopathy via Reduction of ER Stress and Activation of the PI3K/AKT and STAT3 Pathways. Journal of Molecular and Cellular Cardiology, 45, 250-260. https://doi.org/10.1016/j.yjmcc.2008.05.010
|
[32]
|
Zhou, S., Yin, X., Jin, J., Tan, Y., Conklin, D.J., Xin, Y., et al. (2017) Intermittent Hypoxia-Induced Cardiomyopathy and Its Prevention by Nrf2 and Metallothionein. Free Radical Biology and Medicine, 112, 224-239. https://doi.org/10.1016/j.freeradbiomed.2017.07.031
|