PI3K/AKT信号通路在心肌病中应用的研究进展
Research Advances in the Application of PI3K/AKT Signaling Pathway in Cardiomyopathy
DOI: 10.12677/acm.2024.14112844, PDF, HTML, XML,   
作者: 向仲双:南华大学附属怀化医院,湖南 衡阳;申 强:湖南医药学院总医院,心血管内科,湖南 怀化
关键词: PI3KAKT扩张性心肌病糖尿病心肌病肥厚性心肌病其他类型心肌病PI3K AKT Dilated Cardiomyopathy Diabetic Cardiomyopathy Hypertrophic Cardiomyopathy Other Types of Cardiomyopathy Hospital
摘要: 磷脂酰肌醇-3-激酶(PI3K)/蛋白激酶B (AKT)通路作为信号通路中的明星通路之一,在各个领域均发挥重要作用,如心血管疾病、肿瘤、内分泌系统疾病及其他全身系统疾病等。研究发现PI3K/AKT信号通路参与细胞的生长、代谢、凋亡及糖脂代谢等途径,有进一步研究表明PI3K/AKT信号通路是影响代谢性心血管疾病发病和进展的重要通路之一。深入探究PI3K/AKT信号通路在心肌病中的作用机制,对心肌病的预防、治疗及预后评估具有一定的临床价值。
Abstract: Phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathway, as one of the star signaling pathways, plays an important role in various fields, such as cardiovascular diseases, tumors, endocrine system diseases and other systemic diseases. Studies have found that PI3K/AKT signaling pathway is involved in cell growth, metabolism, apoptosis, glucose and lipid metabolism, and other pathways. Further studies have shown that PI3K/AKT signaling pathway is one of the important pathways affecting the pathogenesis and progression of metabolic cardiovascular diseases. Further exploration of the mechanism of PI3K/AKT signaling pathway in cardiomyopathy has certain clinical value for the prevention, treatment and prognosis evaluation of cardiomyopathy.
文章引用:向仲双, 申强. PI3K/AKT信号通路在心肌病中应用的研究进展[J]. 临床医学进展, 2024, 14(11): 51-56. https://doi.org/10.12677/acm.2024.14112844

1. 心肌病分类

2023年欧洲心脏病学会(ESC)心肌病管理指南给出了心肌病新分类,提出非扩张型左室心肌病(NDLVC)概念;该指南首次对心肌病进行精准分类和明确定义,包括肥厚性心肌病(HCM)、扩张型心肌病(DCM)、非扩张型左室心肌病(NDLVC)、致心律失常性右室心肌病(ARVC)及限制性心肌病(RCM) [1]。临床上根据病因常见的还有代谢性心肌病、特发性心肌病、缺血性心肌病、围生期心肌病等。肥厚型心肌病是最常见的原发性心肌病,临床表现多为劳力性呼吸困难、晕厥、非典型胸痛、心力衰竭和心源性猝死。据估计,一般人群中肥厚型心肌病的患病率在无症状病例中约为1:200~1:500,在有症状病例中为1:3000 [2] [3]。扩张型心肌病多为遗传性,通常因左室扩张或舒张功能障碍进而出现心力衰竭症状,在一般人群中扩张型心肌病的患病率为1:2500 [4],以上数据有逐年波动趋势,因此研究心肌病的发病及治疗机制对疾病的防治有积极的临床意义。限制型心肌病在临床上较少见,通常与系统性疾病有关,如淀粉样变性、结节病、放射治疗和硬皮病等[5]。现有关于心肌病发病机制的研究众多,从宏观到微观、从组织病理到分子层面,发现其主要机制与氧化应激、细胞凋亡、内质网应激、炎症反应、线粒体功能障碍、自噬等相关。更深层次地,关于相关遗传学研究发现心肌病的发生与基因致病性变异的相关[6],阐明新的遗传因素可以更准确地预测表型和临床病程。

2. PI3K/AKT信号通路的结构与功能

磷酸肌醇3-激酶(PI3K)由多种细胞外刺激因子激活后磷酸化下游的蛋白激酶B (AKT)进一步调节细胞的代谢和增殖[7],其上游及下游蛋白组成的信号通路在生物稳态中发挥关键作用。该通路与多个通路存在直接连接,如上游的Toll like receptor、B cell receptor、JAK-STAT、PTEN、PIK3CA信号通路和下游的蛋白翻译、细胞周期、细胞凋亡、P53、mTOR、信号通路等[8]。PI3K根据结构与功能的差异,可被分为3类及8种亚型。I类PI3K因能产生第二信使磷酸肌醇三磷酸(PIP3)被广泛研究,其有4种亚型,分别是IA类(PI3Kα、PI3Kβ和PI3Kδ)和IB类(PI3Kγ),是由p110催化亚基和P85调节亚基形成的异二聚体[9]。调节亚基含有SH2和SH3结构域,与含有相应结合位点的靶蛋白相作用,如介导受体酪氨酸激酶激活PI3K,而催化亚基以连接G蛋白偶联受体传递信号[10]-[12]

AKT是一种丝/苏氨酸激酶,作为PI3K磷酸化下游,活化的AKT通过磷酸化多种酶、激酶和转录因子等下游因子进而调节细胞的功能。AKT有三种亚型,分别是AKT1、AKT2、AKT3,三者虽具有高度保守的同源序列,但功能各异,主要分布的部位各不相同。AKT1主要分布在组织中如心、脑、肺等,AKT2主要分布于胰岛素敏感组织,AKT3大多分布自睾丸组织中[13]。所有AKT亚型的蛋白结构都是由N端调节区、中间蛋白激酶区和C端调节区三部分组成,N端氨基酸的pleckstrin同源PH功能区域,主要负责与PI3K的类脂类催化产物磷酸肌醇三磷酸结合,促使AKT移位至脂膜并被磷酸激酶依赖激酶激活(PKD1)和(PKD2)激活;中间激酶活性区的308位苏氨酸(Thr-308)与PKD1结合磷酸化,进而促进AKT完全磷酸化;另外C端的473位丝氨酸(Ser-473)亦是磷酸化的调节位点[14]-[16]

3. PI3K/AKT在心肌病中的应用

3.1. PI3K/AKT与扩张型心肌病

扩张性心肌病(DCM)以心室扩大,室壁肌变薄为病理学特征,随着时间的推移,心脏结构不能代偿病理变化,室壁肌越来越薄不能有效输送血液,射血分数减少,病人多表现为收缩性心力衰竭(EF < 40%)表现。近年来大量研究探索DCM的防治机制,陈[17]等人通过体内实验发现扩张型心肌病大鼠中凋亡因子表达较正常组增多而PI3K/AKT蛋白表达较对照组减少,中药干预激活PI3K/AKT信号通路后扩张型心肌病组大鼠心肌细胞凋亡减少,说明PI3K/AKT信号通路能通过抗凋亡途径减少DCM疾病进展。此外,Dong [18]等人发现催化胆固醇生物合成的24-脱氢胆固醇还原酶(Dhcr24),是组织正常发育和抗凋亡活性所必需的,Dhcr24的代偿性表达可激活PI3K/AKT/HKII通路和减少Bax易位而保护DCM疾病加剧。同时,Zhu [19]等人发现在多柔比星诱导的DCM大鼠和H9c2细胞中CLSTN1蛋白表达显著增加,并进一步促进心腔扩大及心力衰竭,敲低CLSTN1可降低多柔比星诱导的体外心肌细胞毒性。在机制水平上,过表达CLSTN1可增加PI3K-AKT的磷酸化水平,从而缓解心腔扩大与心力衰竭症状。除此之外,Zhang [20]等人从基因层面发现,在DCM大鼠中,上调miR-132可激活PI3K/AKT通路,从而促进心肌细胞增殖,抑制细胞凋亡和心肌纤维化,达到保护心肌作用。

糖尿病性心肌病(DMCM)是二型糖尿病的并发症之一,是扩张性型心肌病中的一种,其临床表现与扩张型心肌病临床表现相似,通常伴有心肌结构和功能的改变,并伴有心肌细胞凋亡。近年来关于中药通过PI3K/AKT通路改善DMCM研究较多。从宏观方面,吴[21]等人发现黄芪甲苷通过激活PI3K/AKT/eNOS信号通路改善DMCM大鼠心功能,病理表现在减轻心肌组织的炎性细胞浸润及间质纤维组织增生。当eNOS被激活时,它产生的NO弥漫到血管平滑肌,从而扩张血管,抑制血小板和单核细胞粘附中发挥作用,改善心血管功能[22]。Ren [23]等人发现姜黄素能通过调节Sirt1-Foxo1和PI3K-AKT减轻大鼠DMCM心肌损伤,通过改善氧化应激、脂质代谢及细胞凋亡等途径改善DMCM。Zhong等[24]发现知母总皂苷通过调节PI3K/AKT/HIF-1α通路恢复糖酵解代谢,改善糖尿病心肌病。除此从微观层面han等[25]人发现miR-372-3p下调通过激活PI3K/AKT/mTOR/HIF-1α信号通路和抑制氧化应激促进血管生成,从而抑制糖尿病心肌病的发生,起到心肌保护作用,PI3K/AKT的抑制剂LY294002逆转了这一效果。Yang等[26]发现通过上调miR-203可减少心肌肥厚、心肌纤维化、心肌细胞凋亡以及心肌组织中PIK3CA (miR-203的靶基因)、PI3K、AKT、ANP、MDA和ROS的水平,从而改善糖尿病引起的心功能障碍和病理变化。

3.2. PI3K/AKT与肥厚性心肌病

肥厚性心肌病(HCM)是一种常见且复杂的常染色体显遗传性疾病,是青年人群常见的猝死原因之一,男性发病率高于女性。HCM是以心室肥厚,心室腔减小,收缩功能正常,舒张功能障碍为特征的疾病。

近年来关于心肌肥厚与PI3K/AKT信号转导通路之间的研究越来越多。Li等[27]人发现羽扇豆醇通过抑制TLR4-PI3K-AKT-NF-κB信号通路的抗炎机制来保护心肌肥厚。在药物诱导的心肌肥厚小鼠模型中,羽扇豆醇通过TLR4-PI3K-AKT信号通路减少炎症细胞因子和抑制NF-κB p65核转位,从而减轻炎症反应。给予PI3K/AKT激动剂740 Y-P逆转了这一作用。同时Liu等[28]人通过网络药理学发现从Genecards数据库中获取水蛭素和心肌肥厚的潜在蛋白靶点,通过Gene Ontology和通路富集分析鉴定与基因相关的潜在通路,并将数据可视化展示,随后运用分子对接、分子生物学技术进行体外实验证明水蛭素可通过复杂的机制治疗心肌肥厚,其中PI3K/AKT信号通路可能与水蛭素的治疗效果最相关。Qian等[29]发现黄芩素通过抑制磷PI3K/AKT信号转导通路促肥大通路减轻异丙肾上腺素诱导的体内外心肌肥大。

3.3. PI3K/AKT与其他类型心肌病

除了以上扩张性心肌病、糖尿病性心肌病、肥厚性心肌病,还有其他原因导致的心肌病,Jiang等人[30]通过基因表达综合数据库(GEO)对铁死亡与特发性心肌疾病共同基因进行差异表达分析,发现共17个特发性心肌病相关基因,KEGG结果显示这些基因主要参与缺血性心肌病的MAPK信号通路和特发性心肌病的PI3K-AKT信号通路,表明抑制PI3K-AKT信号通路可缓解特发性心肌病中铁死亡这一环节。Mao等[31]实验发现达贝泊汀α恢复PI3K/AKT和STAT3活性改善了心脏功能,减少了心肌细胞凋亡,对β(1)-肾上腺素能受体)第二细胞外环肽诱导的自身免疫性心肌病起保护作用。另外Zhou等人[32]发现核因子红系2相关因子2 (Nrf2)是体内一种重要的氧化还原平衡控制因子,短期暴露于间歇性低氧(IH)诱发心肌病的小鼠模型对IH反应的心脏Nrf2和金属硫蛋白(MT)表达急性显著增加,长期则下降,其机制为Nrf2或MT的心脏过表达通过复杂的PI3K/AKT/GSK3B/Fyn信号提供了来自IH的心脏保护。

4. 总结与展望

PI3K/AKT信号转导通路作为调控心肌病的重要通路,人们对两者之间的研究取得了一些进展,研究发现该通路与心肌细胞炎症、氧化应激、坏死、凋亡、细胞代谢等方面密切相关,但仍然存在一些问题和挑战。首先目前对该通路的调控主要应用于扩张型心肌病及肥厚性心肌病治疗,在限制性心肌病中的应用有待进一步实验探究。其次,该通路相关抑制剂的使用较为单一,多种抑制剂已开发但未进行临床试验,其治疗效果有待进一步考究。最后,多种抑制剂的联合使用已有文献提及,但具体药理作用及临床试验有待完善。综上所述,PI3K/AKT信号通路在心肌病治疗中的应用前景广阔,但仍需要进一步深入地研究和探索。相信随着科学不断研究和发展,这一通路将成为治疗心肌病的重要手段之一。

参考文献

[1] Elliott, P., Andersson, B., Arbustini, E., Bilinska, Z., Cecchi, F., Charron, P., et al. (2007) Classification of the Cardiomyopathies: A Position Statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. European Heart Journal, 29, 270-276.
https://doi.org/10.1093/eurheartj/ehm342
[2] Semsarian, C., Ingles, J., Maron, M.S. and Maron, B.J. (2015) New Perspectives on the Prevalence of Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 65, 1249-1254.
https://doi.org/10.1016/j.jacc.2015.01.019
[3] Maron, M.S., Hellawell, J.L., Lucove, J.C., Farzaneh-Far, R. and Olivotto, I. (2016) Occurrence of Clinically Diagnosed Hypertrophic Cardiomyopathy in the United States. The American Journal of Cardiology, 117, 1651-1654.
https://doi.org/10.1016/j.amjcard.2016.02.044
[4] Weintraub, R.G., Semsarian, C. and Macdonald, P. (2017) Dilated Cardiomyopathy. The Lancet, 390, 400-414.
https://doi.org/10.1016/s0140-6736(16)31713-5
[5] Brieler, J., Breeden, M.A. and Tucker, J. (2017) Cardiomyopathy: An Overview. American Family Physician, 96, 640-646.
[6] Yamada, T. and Nomura, S. (2021) Recent Findings Related to Cardiomyopathy and Genetics. International Journal of Molecular Sciences, 22, Article No. 12522.
https://doi.org/10.3390/ijms222212522
[7] 赵林丽, 吕云鹏, 唐青, 等. PI3K/AKT/mTOR信号通路在心血管疾病中的作用及其药物靶向治疗[J]. 中国实用医药, 2021, 16(4): 151-155.
[8] Ghafouri-Fard, S., Khanbabapour Sasi, A., Hussen, B.M., Shoorei, H., Siddiq, A., Taheri, M., et al. (2022) Interplay between PI3K/AKT Pathway and Heart Disorders. Molecular Biology Reports, 49, 9767-9781.
https://doi.org/10.1007/s11033-022-07468-0
[9] Wang, J., Hu, K., Cai, X., Yang, B., He, Q., Wang, J., et al. (2022) Targeting PI3K/AKT Signaling for Treatment of Idiopathic Pulmonary Fibrosis. Acta Pharmaceutica Sinica B, 12, 18-32.
https://doi.org/10.1016/j.apsb.2021.07.023
[10] Ghafouri-Fard, S., Khanbabapour Sasi, A., Hussen, B.M., Shoorei, H., Siddiq, A., Taheri, M., et al. (2022) Interplay between PI3K/AKT Pathway and Heart Disorders. Molecular Biology Reports, 49, 9767-9781.
https://doi.org/10.1007/s11033-022-07468-0
[11] Engelman, J.A., Luo, J. and Cantley, L.C. (2006) The Evolution of Phosphatidylinositol 3-Kinases as Regulators of Growth and Metabolism. Nature Reviews Genetics, 7, 606-619.
https://doi.org/10.1038/nrg1879
[12] Durrant, T.N. and Hers, I. (2020) PI3K Inhibitors in Thrombosis and Cardiovascular Disease. Clinical and Translational Medicine, 9, e8.
https://doi.org/10.1186/s40169-020-0261-6
[13] Fayard, E., Xue, G., Parcellier, A., Bozulic, L. and Hemmings, B.A. (2010) Protein Kinase B (PKB/AKT), a Key Mediator of the PI3K Signaling Pathway. In: Rommel, C., Vanhaesebroeck, B. and Vogt, P.K., Eds., Phosphoinositide 3-Kinase in Health and Disease, Springer, 31-56.
https://doi.org/10.1007/82_2010_58
[14] Hanada, M., Feng, J. and Hemmings, B.A. (2004) Structure, Regulation and Function of PKB/AKT—A Major Therapeutic Target. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics, 1697, 3-16.
https://doi.org/10.1016/j.bbapap.2003.11.009
[15] 郭一澎, 安丽萍. PI3K/AKT/mTOR信号通路与心血管疾病的关系[J]. 齐齐哈尔医学院学报, 2023, 44(20): 1932-1936.
[16] 李玉华, 赵敏. PI3K/AKT信号通路调控心肌细胞凋亡的研究进展[J]. 疑难病杂志, 2019, 18(11): 1169-1173.
[17] 陈伟佳, 白烨升, 祁玉营, 等. 参丹方通过PI3K/AKT信号通路改善扩张型心肌病大鼠心肌细胞凋亡的研究[J]. 中国临床药理学杂志, 2023, 39(21): 3116-3120.
[18] Dong, W., Guan, F., Zhang, X., Gao, S., Liu, N., Chen, W., et al. (2018) Dhcr24 Activates the PI3K/AKT/HKII Pathway and Protects against Dilated Cardiomyopathy in Mice. Animal Models and Experimental Medicine, 1, 40-52.
https://doi.org/10.1002/ame2.12007
[19] Zhu, M., Chen, Y., Cheng, L., et al. (2022) Calsyntenin-1 Promotes Doxorubicin-Induced Dilated Cardiomyopathy in Rats. Cardiovascular Drugs and Therapy, 38, 237-252.
[20] Zhang, C., Huang, Y., Lu, J., Lin, J., Ge, Z. and Huang, H. (2018) Retracted: Upregulated MicroRNA‐132 Rescues Cardiac Fibrosis and Restores Cardiocyte Proliferation in Dilated Cardiomyopathy through the Phosphatase and Tensin Homolog-Mediated PI3K/AKT Signal Transduction Pathway. Journal of Cellular Biochemistry, 120, 1232-1244.
https://doi.org/10.1002/jcb.27081
[21] 苏笑宇, 朱禹奇, 段默涵, 等. 黄芪甲苷通过PI3K/AKT信号通路改善2型糖尿病大鼠心脏功能的研究进展[J]. 名医, 2023(20): 36-38.
[22] Miki, T., Yuda, S., Kouzu, H. and Miura, T. (2012) Diabetic Cardiomyopathy: Pathophysiology and Clinical Features. Heart Failure Reviews, 18, 149-166.
https://doi.org/10.1007/s10741-012-9313-3
[23] Ren, B., Zhang, Y., Liu, S., Cheng, X., Yang, X., Cui, X., et al. (2020) Curcumin Alleviates Oxidative Stress and Inhibits Apoptosis in Diabetic Cardiomyopathy via Sirt1‐Foxo1 and PI3K-AKT Signalling Pathways. Journal of Cellular and Molecular Medicine, 24, 12355-12367.
https://doi.org/10.1111/jcmm.15725
[24] Zhong, L., Li, J., Yu, J., Cao, X., Du, J., Liang, L., et al. (2024) Anemarrhena Asphodeloides Bunge Total Saponins Ameliorate Diabetic Cardiomyopathy by Modifying the PI3K/AKT/HIF-1α Pathway to Restore Glycolytic Metabolism. Journal of Ethnopharmacology, 319, Article ID: 117250.
https://doi.org/10.1016/j.jep.2023.117250
[25] Han, Z., Zhao, D., Han, M., Zhang, R. and Hao, Y. (2022) Knockdown of MIR-372-3p Inhibits the Development of Diabetic Cardiomyopathy by Accelerating Angiogenesis via Activating the PI3K/AKT/mTOR/HIF-1α Signaling Pathway and Suppressing Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 4342755.
https://doi.org/10.1155/2022/4342755
[26] Yang, X., Li, X., Lin, Q. and Xu, Q. (2019) Up-Regulation of Microrna-203 Inhibits Myocardial Fibrosis and Oxidative Stress in Mice with Diabetic Cardiomyopathy through the Inhibition of PI3K/AKT Signaling Pathway via PIK3CA. Gene, 715, Article ID: 143995.
https://doi.org/10.1016/j.gene.2019.143995
[27] Li, D., Guo, Y., Cen, X., Qiu, H., Chen, S., Zeng, X., et al. (2021) Lupeol Protects against Cardiac Hypertrophy via TLR4-PI3K-AKT-NF-κB Pathways. Acta Pharmacologica Sinica, 43, 1989-2002.
https://doi.org/10.1038/s41401-021-00820-3
[28] Liu, M., Luo, G., Dong, L., Mazhar, M., Wang, L., He, W., et al. (2022) Network Pharmacology and in Vitro Experimental Verification Reveal the Mechanism of the Hirudin in Suppressing Myocardial Hypertrophy. Frontiers in Pharmacology, 13, Article ID: 914518.
https://doi.org/10.3389/fphar.2022.914518
[29] Qian, W., Yu, D., Zhang, J., Hu, Q., Tang, C., Liu, P., et al. (2018) Wogonin Attenuates Isoprenaline-Induced Myocardial Hypertrophy in Mice by Suppressing the PI3K/AKT Pathway. Frontiers in Pharmacology, 9, Article No. 896.
https://doi.org/10.3389/fphar.2018.00896
[30] Jiang, Y., Chen, L., Chao, Z., Chen, T. and Zhou, Y. (2022) Ferroptosis Related Genes in Ischemic and Idiopathic Cardiomyopathy: Screening for Potential Pharmacological Targets. Frontiers in Cell and Developmental Biology, 10, Article ID: 817819.
https://doi.org/10.3389/fcell.2022.817819
[31] Mao, W., Iwai, C., Liu, J., Sheu, S., Fu, M. and Liang, C. (2008) Darbepoetin Alfa Exerts a Cardioprotective Effect in Autoimmune Cardiomyopathy via Reduction of ER Stress and Activation of the PI3K/AKT and STAT3 Pathways. Journal of Molecular and Cellular Cardiology, 45, 250-260.
https://doi.org/10.1016/j.yjmcc.2008.05.010
[32] Zhou, S., Yin, X., Jin, J., Tan, Y., Conklin, D.J., Xin, Y., et al. (2017) Intermittent Hypoxia-Induced Cardiomyopathy and Its Prevention by Nrf2 and Metallothionein. Free Radical Biology and Medicine, 112, 224-239.
https://doi.org/10.1016/j.freeradbiomed.2017.07.031