[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
郑荣寿, 张思维, 孙可欣, 等. 2016年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2023, 45(3): 212-220.
|
[3]
|
中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2023版) [J]. 中国综合临床, 2023, 39(6): 401-423.
|
[4]
|
Clark, G., Stockinger, H., Balderas, R., van Zelm, M.C., Zola, H., Hart, D., et al. (2016) Nomenclature of CD Molecules from the Tenth Human Leucocyte Differentiation Antigen Workshop. Clinical & Translational Immunology, 5, e57. https://doi.org/10.1038/cti.2015.38
|
[5]
|
Olingy, C., Alimadadi, A., Araujo, D.J., Barry, D., Gutierrez, N.A., Werbin, M.H., et al. (2022) CD33 Expression on Peripheral Blood Monocytes Predicts Efficacy of Anti-PD-1 Immunotherapy against Non-Small Cell Lung Cancer. Frontiers in Immunology, 13, Article ID: 842653. https://doi.org/10.3389/fimmu.2022.842653
|
[6]
|
Fultang, L., Panetti, S., Ng, M., Collins, P., Graef, S., Rizkalla, N., et al. (2019) MDSC Targeting with Gemtuzumab Ozogamicin Restores T Cell Immunity and Immunotherapy against Cancers. EBioMedicine, 47, 235-246. https://doi.org/10.1016/j.ebiom.2019.08.025
|
[7]
|
Bachanova, V. and Miller, J.S. (2014) NK Cells in Therapy of Cancer. Critical Reviews in Oncogenesis, 19, 133-141. https://doi.org/10.1615/critrevoncog.2014011091
|
[8]
|
Hu, J., Zhang, L., Xia, H., Yan, Y., Zhu, X., Sun, F., et al. (2023) Tumor Microenvironment Remodeling after Neoadjuvant Immunotherapy in Non-Small Cell Lung Cancer Revealed by Single-Cell RNA Sequencing. Genome Medicine, 15, Article No. 14. https://doi.org/10.1186/s13073-023-01164-9
|
[9]
|
Nikkhoi, S.K., Li, G., Eleya, S., Yang, G., Vandavasi, V.G. and Hatefi, A. (2023) Bispecific Killer Cell Engager with High Affinity and Specificity toward CD16a on NK Cells for Cancer Immunotherapy. Frontiers in Immunology, 13, Article ID: 1039969. https://doi.org/10.3389/fimmu.2022.1039969
|
[10]
|
Kennedy, P.R., Vallera, D.A., Ettestad, B., Hallstrom, C., Kodal, B., Todhunter, D.A., et al. (2023) A Tri-Specific Killer Engager against Mesothelin Targets NK Cells towards Lung Cancer. Frontiers in Immunology, 14, Article ID: 1060905. https://doi.org/10.3389/fimmu.2023.1060905
|
[11]
|
Picard, L.K., Claus, M., Fasbender, F. and Watzl, C. (2022) Human NK Cells Responses Are Enhanced by CD56 Engagement. European Journal of Immunology, 52, 1441-1451. https://doi.org/10.1002/eji.202249868
|
[12]
|
Sun, Y., Wan, J., Song, Q., Luo, C., Li, X., Luo, Y., et al. (2021) Prognostic Significance of CD56 Antigen Expression in Patients with De Novo Non-M3 Acute Myeloid Leukemia. BioMed Research International, 2021, Article ID: 1929357. https://doi.org/10.1155/2021/1929357
|
[13]
|
Hui, G.K., Gao, X., Gor, J., Lu, J., Sun, P.D. and Perkins, S.J. (2023) The Solution Structure of the Unbound IGG Fc Receptor CD64 Resembles Its Crystal Structure: Implications for Function. PLOS ONE, 18, e0288351. https://doi.org/10.1371/journal.pone.0288351
|
[14]
|
Elawady, S., Botros, S.K., Sorour, A.E., Ghany, E.A., Elbatran, G. and Ali, R. (2014) Neutrophil CD64 as a Diagnostic Marker of Sepsis in Neonates. Journal of Investigative Medicine, 62, 644-649. https://doi.org/10.2310/jim.0000000000000060
|
[15]
|
Snyder, K.M., Dixon, K.J., Davis, Z., Hosking, M., Hart, G., Khaw, M., et al. (2023) iPSC-Derived Natural Killer Cells Expressing the FcγR Fusion CD64/16A Can Be Armed with Antibodies for Multitumor Antigen Targeting. Journal for ImmunoTherapy of Cancer, 11, e007280. https://doi.org/10.1136/jitc-2023-007280
|
[16]
|
Liao, G., Zhao, Z., Qian, Y., Ling, X., Chen, S., Li, X., et al. (2021) Prognostic Role of Soluble Programmed Death Ligand 1 in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Frontiers in Oncology, 11, Article ID: 774131. https://doi.org/10.3389/fonc.2021.774131
|
[17]
|
Yang, Q., Chen, M., Gu, J., Niu, K., Zhao, X., Zheng, L., et al. (2021) Novel Biomarkers of Dynamic Blood PD-L1 Expression for Immune Checkpoint Inhibitors in Advanced Non-Small-Cell Lung Cancer Patients. Frontiers in Immunology, 12, Article ID: 665133. https://doi.org/10.3389/fimmu.2021.665133
|
[18]
|
Tsai, J., Wei, S., Chen, C., Yang, S., Tseng, Y., Su, P., et al. (2022) Pembrolizumab and Chemotherapy Combination Prolonged Progression-Free Survival in Patients with NSCLC with High PD-L1 Expression and Low Neutrophil-to-Lymphocyte Ratio. Pharmaceuticals, 15, Article No. 1407. https://doi.org/10.3390/ph15111407
|
[19]
|
Möller, M., Turzer, S., Ganchev, G., Wienke, A., Schütte, W., Seliger, B., et al. (2022) Blood Immune Cell Biomarkers in Lung Cancer Patients Undergoing Treatment with a Combination of Chemotherapy and Immune Checkpoint Blockade. Cancers, 14, Article No. 3690. https://doi.org/10.3390/cancers14153690
|
[20]
|
Passiglia, F., Galvano, A., Castiglia, M., Incorvaia, L., Calò, V., Listì, A., et al. (2019) Monitoring Blood Biomarkers to Predict Nivolumab Effectiveness in NSCLC Patients. Therapeutic Advances in Medical Oncology, 11. https://doi.org/10.1177/1758835919839928
|
[21]
|
Rong, Y., Wu, W., Ni, X., Kuang, T., Jin, D., Wang, D., et al. (2013) Lactate Dehydrogenase a Is Overexpressed in Pancreatic Cancer and Promotes the Growth of Pancreatic Cancer Cells. Tumor Biology, 34, 1523-1530. https://doi.org/10.1007/s13277-013-0679-1
|
[22]
|
Le, A., Cooper, C.R., Gouw, A.M., Dinavahi, R., Maitra, A., Deck, L.M., et al. (2010) Inhibition of Lactate Dehydrogenase a Induces Oxidative Stress and Inhibits Tumor Progression. Proceedings of the National Academy of Sciences, 107, 2037-2042. https://doi.org/10.1073/pnas.0914433107
|
[23]
|
Xie, H., Valera, V.A., Merino, M.J., Amato, A.M., Signoretti, S., Linehan, W.M., et al. (2009) LDH-A Inhibition, a Therapeutic Strategy for Treatment of Hereditary Leiomyomatosis and Renal Cell Cancer. Molecular Cancer Therapeutics, 8, 626-635. https://doi.org/10.1158/1535-7163.mct-08-1049
|
[24]
|
Peng, L., Wang, Y., Liu, F., Qiu, X., Zhang, X., Fang, C., et al. (2020) Peripheral Blood Markers Predictive of Outcome and Immune-Related Adverse Events in Advanced Non-Small Cell Lung Cancer Treated with PD-1 Inhibitors. Cancer Immunology, Immunotherapy, 69, 1813-1822. https://doi.org/10.1007/s00262-020-02585-w
|
[25]
|
Ohaegbulam, K.C., Assal, A., Lazar-Molnar, E., Yao, Y. and Zang, X. (2015) Human Cancer Immunotherapy with Antibodies to the PD-1 and PD-L1 Pathway. Trends in Molecular Medicine, 21, 24-33. https://doi.org/10.1016/j.molmed.2014.10.009
|
[26]
|
Wang, M., Yao, L., Cheng, M., Cai, D., Martinek, J., Pan, C., et al. (2018) Humanized Mice in Studying Efficacy and Mechanisms of PD‐1‐Targeted Cancer Immunotherapy. The FASEB Journal, 32, 1537-1549. https://doi.org/10.1096/fj.201700740r
|
[27]
|
Alvarez, J.G.B., González-Cao, M., Karachaliou, N., et al. (2015) Advances in Immunotherapy for Treatment of Lung Cancer. Cancer Biology & Medicine, 12, 209-222.
|
[28]
|
Wang, W., Zou, R., Qiu, Y., Liu, J., Xin, Y., He, T., et al. (2021) Interaction Networks Converging on Immunosuppressive Roles of Granzyme B: Special Niches within the Tumor Microenvironment. Frontiers in Immunology, 12, Article ID: 670324. https://doi.org/10.3389/fimmu.2021.670324
|
[29]
|
Qiao, D., Cheng, J., Yan, W. and Li, H. (2023) PD-L1/PD-1 Blockage Enhanced the Cytotoxicity of Natural Killer Cell on the Non-Small Cell Lung Cancer (NSCLC) by Granzyme B Secretion. Clinical and Translational Oncology, 25, 2373-2383. https://doi.org/10.1007/s12094-023-03120-w
|
[30]
|
Lam, M.S.Y., Reales-Calderon, J.A., Ow, J.R., Aw, J.J.Y., Tan, D., Vijayakumar, R., et al. (2023) G9a/GLP Inhibition during ex Vivo Lymphocyte Expansion Increases in Vivo Cytotoxicity of Engineered T Cells against Hepatocellular Carcinoma. Nature Communications, 14, Article No. 563. https://doi.org/10.1038/s41467-023-36160-5
|
[31]
|
Li, M., Chen, J., Yu, H., Zhang, B., Hou, X., Jiang, H., et al. (2023) Cerebrospinal Fluid Immunological Cytokines Predict Intracranial Tumor Response to Immunotherapy in Non-Small Cell Lung Cancer Patients with Brain Metastases. OncoImmunology, 13, Article ID: 2290790. https://doi.org/10.1080/2162402x.2023.2290790
|
[32]
|
Rosenberg, S.A. (2014) IL-2: The First Effective Immunotherapy for Human Cancer. The Journal of Immunology, 192, 5451-5458. https://doi.org/10.4049/jimmunol.1490019
|
[33]
|
Lagunas-Cruz, M.d.C., Valle-Mendiola, A., Trejo-Huerta, J., Rocha-Zavaleta, L., Mora-García, M.d.L., Gutiérrez-Hoya, A., et al. (2019) IL-2 Induces Transient Arrest in the G1 Phase to Protect Cervical Cancer Cells from Entering Apoptosis. Journal of Oncology, 2019, Article ID: 7475295. https://doi.org/10.1155/2019/7475295
|
[34]
|
Sanmamed, M.F., Perez-Gracia, J.L., Schalper, K.A., Fusco, J.P., Gonzalez, A., Rodriguez-Ruiz, M.E., et al. (2017) Changes in Serum Interleukin-8 (IL-8) Levels Reflect and Predict Response to Anti-PD-1 Treatment in Melanoma and Non-Small-Cell Lung Cancer Patients. Annals of Oncology, 28, 1988-1995. https://doi.org/10.1093/annonc/mdx190
|
[35]
|
Kanoh, Y., Abe, T., Masuda, N. and Akahoshi, T. (2012) Progression of Non-Small Cell Lung Cancer: Diagnostic and Prognostic Utility of Matrix Metalloproteinase-2, C-Reactive Protein and Serum Amyloid A. Oncology Reports, 29, 469-473. https://doi.org/10.3892/or.2012.2123
|
[36]
|
Moshkovskii, S.A. (2012) Why Do Cancer Cells Produce Serum Amyloid A Acute-Phase Protein? Biochemistry (Moscow), 77, 339-341. https://doi.org/10.1134/s0006297912040037
|
[37]
|
Biaoxue, R., Hua, L., Wenlong, G. and Shuanying, Y. (2016) Increased Serum Amyloid a as Potential Diagnostic Marker for Lung Cancer: A Meta-Analysis Based on Nine Studies. BMC Cancer, 16, Article No. 836. https://doi.org/10.1186/s12885-016-2882-0
|