[1]
|
Tsubota, K., Pflugfelder, S.C., Liu, Z., Baudouin, C., Kim, H.M., Messmer, E.M., et al. (2020) Defining Dry Eye from a Clinical Perspective. International Journal of Molecular Sciences, 21, Article 9271. https://doi.org/10.3390/ijms21239271
|
[2]
|
Craig, J.P., Nichols, K.K., Akpek, E.K., Caffery, B., Dua, H.S., Joo, C., et al. (2017) TFOS DEWS II Definition and Classification Report. The Ocular Surface, 15, 276-283. https://doi.org/10.1016/j.jtos.2017.05.008
|
[3]
|
Gipson, I.K. (2013) Age-related Changes and Diseases of the Ocular Surface and Cornea. Investigative Opthalmology & Visual Science, 54, ORSF48-ORSF53. https://doi.org/10.1167/iovs.13-12840
|
[4]
|
Jaiswal, S., Asper, L., Long, J., Lee, A., Harrison, K. and Golebiowski, B. (2019) Ocular and Visual Discomfort Associated with Smartphones, Tablets and Computers: What We Do and Do Not Know. Clinical and Experimental Optometry, 102, 463-477. https://doi.org/10.1111/cxo.12851
|
[5]
|
Vrancken, G., Gregory, A.C., Huys, G.R.B., Faust, K. and Raes, J. (2019) Synthetic Ecology of the Human Gut Microbiota. Nature Reviews Microbiology, 17, 754-763. https://doi.org/10.1038/s41579-019-0264-8
|
[6]
|
Hou, K., Wu, Z., Chen, X., Wang, J., Zhang, D., Xiao, C., et al. (2022) Microbiota in Health and Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 135. https://doi.org/10.1038/s41392-022-00974-4
|
[7]
|
Aragona, P., Baudouin, C., Benitez del Castillo, J.M., Messmer, E., Barabino, S., Merayo-Lloves, J., et al. (2021) The Ocular Microbiome and Microbiota and Their Effects on Ocular Surface Pathophysiology and Disorders. Survey of Ophthalmology, 66, 907-925. https://doi.org/10.1016/j.survophthal.2021.03.010
|
[8]
|
Graham, J.E., Moore, J.E., Jiru, X., Moore, J.E., Goodall, E.A., Dooley, J.S.G., et al. (2007) Ocular Pathogen or Commensal: A PCR-Based Study of Surface Bacterial Flora in Normal and Dry Eyes. Investigative Opthalmology & Visual Science, 48, 5616-5623. https://doi.org/10.1167/iovs.07-0588
|
[9]
|
Dong, Q., Brulc, J.M., Iovieno, A., Bates, B., Garoutte, A., Miller, D., et al. (2011) Diversity of Bacteria at Healthy Human Conjunctiva. Investigative Opthalmology & Visual Science, 52, 5408-5412. https://doi.org/10.1167/iovs.10-6939
|
[10]
|
Zhou, Y., Holland, M.J., Makalo, P., Joof, H., Roberts, C.H., Mabey, D.C., et al. (2014) The Conjunctival Microbiome in Health and Trachomatous Disease: A Case Control Study. Genome Medicine, 6, Article No. 99. https://doi.org/10.1186/s13073-014-0099-x
|
[11]
|
Doan, T., Akileswaran, L., Andersen, D., Johnson, B., Ko, N., Shrestha, A., et al. (2016) Paucibacterial Microbiome and Resident DNA Virome of the Healthy Conjunctiva. Investigative Opthalmology & Visual Science, 57, 5116-5126. https://doi.org/10.1167/iovs.16-19803
|
[12]
|
Li, Z., Gong, Y., Chen, S., Li, S., Zhang, Y., Zhong, H., et al. (2019) Comparative Portrayal of Ocular Surface Microbe with and without Dry Eye. Journal of Microbiology, 57, 1025-1032. https://doi.org/10.1007/s12275-019-9127-2
|
[13]
|
Ozkan, J., Nielsen, S., Diez-Vives, C., Coroneo, M., Thomas, T. and Willcox, M. (2017) Temporal Stability and Composition of the Ocular Surface Microbiome. Scientific Reports, 7, Article No. 9880. https://doi.org/10.1038/s41598-017-10494-9
|
[14]
|
Baim, A.D., Movahedan, A., Farooq, A.V. and Skondra, D. (2018) The Microbiome and Ophthalmic Disease. Experimental Biology and Medicine, 244, 419-429. https://doi.org/10.1177/1535370218813616
|
[15]
|
Kugadas, A., Wright, Q., Geddes-McAlister, J. and Gadjeva, M. (2017) Role of Microbiota in Strengthening Ocular Mucosal Barrier Function through Secretory IGA. Investigative Opthalmology & Visual Science, 58, 4593-4600. https://doi.org/10.1167/iovs.17-22119
|
[16]
|
Sheppard, J., Lee, B.S. and Periman, L.M. (2023) Dry Eye Disease: Identification and Therapeutic Strategies for Primary Care Clinicians and Clinical Specialists. Annals of Medicine, 55, 241-252.
|
[17]
|
Marsh, P. and Pflugfelder, S.C. (1999) Topical Nonpreserved Methylprednisolone Therapy for Keratoconjunctivitis Sicca in Sjögren Syndrome. Ophthalmology, 106, 811-816. https://doi.org/10.1016/s0161-6420(99)90171-9
|
[18]
|
Wang, C., Zaheer, M., Bian, F., Quach, D., Swennes, A., Britton, R., et al. (2018) Sjögren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice. International Journal of Molecular Sciences, 19, Article 565. https://doi.org/10.3390/ijms19020565
|
[19]
|
Zaheer, M., Wang, C., Bian, F., Yu, Z., Hernandez, H., de Souza, R.G., et al. (2018) Protective Role of Commensal Bacteria in Sjögren Syndrome. Journal of Autoimmunity, 93, 45-56. https://doi.org/10.1016/j.jaut.2018.06.004
|
[20]
|
Wang, C., Schaefer, L., Bian, F., Yu, Z., Pflugfelder, S.C., Britton, R.A., et al. (2019) Dysbiosis Modulates Ocular Surface Inflammatory Response to Liposaccharide. Investigative Opthalmology & Visual Science, 60, 4224-4233. https://doi.org/10.1167/iovs.19-27939
|
[21]
|
Liu, J., Wu, M., He, J., Xiao, C., Xue, Y., Fu, T., et al. (2018) Antibiotic-induced Dysbiosis of Gut Microbiota Impairs Corneal Nerve Regeneration by Affecting CCR2-Negative Macrophage Distribution. The American Journal of Pathology, 188, 2786-2799. https://doi.org/10.1016/j.ajpath.2018.08.009
|
[22]
|
de Paiva, C.S., Jones, D.B., Stern, M.E., Bian, F., Moore, Q.L., Corbiere, S., et al. (2016) Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome. Scientific Reports, 6, Article No. 23561. https://doi.org/10.1038/srep23561
|
[23]
|
Floyd, J.L. and Grant, M.B. (2020) The Gut–eye Axis: Lessons Learned from Murine Models. Ophthalmology and Therapy, 9, 499-513. https://doi.org/10.1007/s40123-020-00278-2
|
[24]
|
Arboleya, S., Watkins, C., Stanton, C. and Ross, R.P. (2016) Gut Bifidobacteria Populations in Human Health and Aging. Frontiers in Microbiology, 7, Article 1204. https://doi.org/10.3389/fmicb.2016.01204
|
[25]
|
Devi, T.B., Devadas, K., George, M., Gandhimathi, A., Chouhan, D., Retnakumar, R.J., et al. (2021) Low Bifidobacterium Abundance in the Lower Gut Microbiota Is Associated with Helicobacter Pylori-Related Gastric Ulcer and Gastric Cancer. Frontiers in Microbiology, 12, Article 631140. https://doi.org/10.3389/fmicb.2021.631140
|
[26]
|
Heeney, D.D., Gareau, M.G. and Marco, M.L. (2018) Intestinal Lactobacillus in Health and Disease, a Driver or Just along for the Ride? Current Opinion in Biotechnology, 49, 140-147. https://doi.org/10.1016/j.copbio.2017.08.004
|
[27]
|
Wang, W., Chen, L., Zhou, R., Wang, X., Song, L., Huang, S., et al. (2014) Increased Proportions of Bifidobacterium and the Lactobacillus Group and Loss of Butyrate-Producing Bacteria in Inflammatory Bowel Disease. Journal of Clinical Microbiology, 52, 398-406. https://doi.org/10.1128/jcm.01500-13
|
[28]
|
Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C. and Gil, A. (2012) Probiotic Mechanisms of Action. Annals of Nutrition and Metabolism, 61, 160-174. https://doi.org/10.1159/000342079
|
[29]
|
Liu, Y., Wang, J. and Wu, C. (2022) Modulation of Gut Microbiota and Immune System by Probiotics, Pre-Biotics, and Post-Biotics. Frontiers in Nutrition, 8, Article 634894. https://doi.org/10.3389/fnut.2021.634897
|
[30]
|
Nagpal, R., Wang, S., Ahmadi, S., Hayes, J., Gagliano, J., Subashchandrabose, S., et al. (2018) Human-Origin Probiotic Cocktail Increases Short-Chain Fatty Acid Production via Modulation of Mice and Human Gut Microbiome. Scientific Reports, 8, Article No. 12649. https://doi.org/10.1038/s41598-018-30114-4
|
[31]
|
Thomas, C.M. and Versalovic, J. (2010) Probiotics-Host Communication: Modulation of Signaling Pathways in the Intestine. Gut Microbes, 1, 148-163. https://doi.org/10.4161/gmic.1.3.11712
|
[32]
|
Aghamohammad, S., Sepehr, A., Miri, S.T., Najafi, S., Rohani, M. and Pourshafiea, M.R. (2022) The Effects of the Probiotic Cocktail on Modulation of the NF-κB and JAK/STAT Signaling Pathways Involved in the Inflammatory Response in Bowel Disease Model. BMC Immunology, 23, Article No. 8. https://doi.org/10.1186/s12865-022-00484-6
|
[33]
|
Clemente, J.C., Manasson, J. and Scher, J.U. (2018) The Role of the Gut Microbiome in Systemic Inflammatory Disease. BMJ, 360, j5145. https://doi.org/10.1136/bmj.j5145
|
[34]
|
Mendez, R., Watane, A., Farhangi, M., Cavuoto, K.M., Leith, T., Budree, S., et al. (2020) Gut Microbial Dysbiosis in Individuals with Sjögren’s Syndrome. Microbial Cell Factories, 19, Article No. 90. https://doi.org/10.1186/s12934-020-01348-7
|
[35]
|
Mazziotta, C., Tognon, M., Martini, F., Torreggiani, E. and Rotondo, J.C. (2023) Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells, 12, Article 184. https://doi.org/10.3390/cells12010184
|
[36]
|
Yan, F. and Polk, D.B. (2011) Probiotics and Immune Health. Current Opinion in Gastroenterology, 27, 496-501. https://doi.org/10.1097/mog.0b013e32834baa4d
|
[37]
|
Fedorak, R.N. (2010) Probiotics in the Management of Ulcerative Colitis. Gastroenterology & Hepatology, 6, 688-690.
|
[38]
|
Li, B., Liang, L., Deng, H., Guo, J., Shu, H. and Zhang, L. (2020) Efficacy and Safety of Probiotics in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 11, Article 332. https://doi.org/10.3389/fphar.2020.00332
|
[39]
|
Liu, Y., Alookaran, J.J. and Rhoads, J.M. (2018) Probiotics in Autoimmune and Inflammatory Disorders. Nutrients, 10, Article 1537. https://doi.org/10.3390/nu10101537
|
[40]
|
Śliżewska, K., Markowiak-Kopeć, P. and Śliżewska, W. (2020) The Role of Probiotics in Cancer Prevention. Cancers, 13, Article 20. https://doi.org/10.3390/cancers13010020
|
[41]
|
Wallace, C.J.K. and Milev, R. (2017) The Effects of Probiotics on Depressive Symptoms in Humans: A Systematic Review. Annals of General Psychiatry, 16, Article No. 14. https://doi.org/10.1186/s12991-017-0138-2
|
[42]
|
Bai, X., Xu, Q., Zhang, W. and Wang, C. (2022) The Gut-Eye Axis: Correlation between the Gut Microbiota and Autoimmune Dry Eye in Individuals with Sjögren Syndrome. Eye & Contact Lens: Science & Clinical Practice, 49, 1-7. https://doi.org/10.1097/icl.0000000000000953
|
[43]
|
Choi, S.H., Oh, J.W., Ryu, J.S., Kim, H.M., Im, S., Kim, K.P., et al. (2020) IRT5 Probiotics Changes Immune Modulatory Protein Expression in the Extraorbital Lacrimal Glands of an Autoimmune Dry Eye Mouse Model. Investigative Opthalmology & Visual Science, 61, 42. https://doi.org/10.1167/iovs.61.3.42
|
[44]
|
Kim, J., Choi, S., Kim, Y., Jeong, H., Ryu, J., Lee, H., et al. (2017) Clinical Effect of IRT-5 Probiotics on Immune Modulation of Autoimmunity or Alloimmunity in the Eye. Nutrients, 9, Article 1166. https://doi.org/10.3390/nu9111166
|
[45]
|
Moon, J., Ryu, J.S., Kim, J.Y., Im, S. and Kim, M.K. (2020) Effect of IRT5 Probiotics on Dry Eye in the Experimental Dry Eye Mouse Model. PLOS ONE, 15, e0243176. https://doi.org/10.1371/journal.pone.0243176
|
[46]
|
Yun, S., Son, Y., Lee, D., Shin, Y., Han, M.J. and Kim, D. (2021) Lactobacillus plantarum and Bifidobacterium bifidum Alleviate Dry Eye in Mice with Exorbital Lacrimal Gland Excision by Modulating Gut Inflammation and Microbiota. Food & Function, 12, 2489-2497. https://doi.org/10.1039/d0fo02984j
|
[47]
|
Russell, M.W., Muste, J.C., Kuo, B.L., Wu, A.K. and Singh, R.P. (2023) Clinical Trials Targeting the Gut-Microbiome to Effect Ocular Health: A Systematic Review. Eye, 37, 2877-2885. https://doi.org/10.1038/s41433-023-02462-7
|
[48]
|
Chisari, G., Chisari, E.M., Borzi, A.M. and Chisari, C.G. (2018) Aging Eye Microbiota in Dry Eye Syndrome in Patients Treated with Enterococcus Faecium and Saccharomyces boulardii. Current Clinical Pharmacology, 12, 99-105. https://doi.org/10.2174/1574884712666170704145046
|
[49]
|
Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., et al. (2017) Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nature Reviews Gastroenterology & Hepatology, 14, 491-502. https://doi.org/10.1038/nrgastro.2017.75
|
[50]
|
Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S., et al. (2019) Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 8, Article 92. https://doi.org/10.3390/foods8030092
|
[51]
|
Vivero-Lopez, M., Pereira-da-Mota, A.F., Carracedo, G., Huete-Toral, F., Parga, A., Otero, A., et al. (2022) Phosphorylcholine-based Contact Lenses for Sustained Release of Resveratrol: Design, Antioxidant and Antimicrobial Performances, and in Vivo Behavior. ACS Applied Materials & Interfaces, 14, 55431-55446. https://doi.org/10.1021/acsami.2c18217
|
[52]
|
Huang, G., Su, L., Zhang, N., Han, R., Leong, W.K., Li, X., et al. (2022) The Prebiotic and Anti-Fatigue Effects of Hyaluronan. Frontiers in Nutrition, 9, Article 977556. https://doi.org/10.3389/fnut.2022.977556
|
[53]
|
Rastmanesh, R. (2021) Aquaporin5-targeted Treatment for Dry Eye through Bioactive Compounds and Gut Microbiota. Journal of Ocular Pharmacology and Therapeutics, 37, 464-471. https://doi.org/10.1089/jop.2021.0029
|
[54]
|
Ren, Y., Lu, H., Reinach, P.S., Zheng, Q., Li, J., Tan, Q., et al. (2017) Hyperosmolarity-Induced AQP5 Upregulation Promotes Inflammation and Cell Death via JNK1/2 Activation in Human Corneal Epithelial Cells. Scientific Reports, 7, Article No. 4727. https://doi.org/10.1038/s41598-017-05145-y
|
[55]
|
Tavakoli, A., Markoulli, M., Papas, E. and Flanagan, J. (2022) The Impact of Probiotics and Prebiotics on Dry Eye Disease Signs and Symptoms. Journal of Clinical Medicine, 11, Article 4889. https://doi.org/10.3390/jcm11164889
|
[56]
|
Chisari, G., Chisari, E.M. and Francaviglia, A. (2017) The Mixture of Bifidobacterium Associated with Fructo-Oligosaccharides Reduces the Damage of the Ocular Surface. Clinical Therapeutics, 168, 181-185.
|
[57]
|
Erdem, B., Kaya, Y., Kıran, T.R. and Yılmaz, S. (2023) An Association between the Intestinal Permeability Biomarker Zonulin and the Development of Diabetic Retinopathy in Type 2 Diabetes Mellitus. Turkish Journal of Ophthalmology, 53, 91-96. https://doi.org/10.4274/tjo.galenos.2022.70375
|
[58]
|
Gupta, A. and Khanna, S. (2017) Fecal Microbiota Transplantation. JAMA, 318, 102. https://doi.org/10.1001/jama.2017.6466
|
[59]
|
Ramai, D. (2018) Fecal Microbiota Transplantation: Donor Relation, Fresh or Frozen, Delivery Methods, Cost-effectiveness. Annals of Gastroenterology, 31, 1-9. https://doi.org/10.20524/aog.2018.0328
|
[60]
|
Wei, Y., Gong, J., Zhu, W., Guo, D., Gu, L., Li, N., et al. (2015) Fecal Microbiota Transplantation Restores Dysbiosis in Patients with Methicillin Resistant Staphylococcus Aureus Enterocolitis. BMC Infectious Diseases, 15, Article No. 265. https://doi.org/10.1186/s12879-015-0973-1
|
[61]
|
Xiao, W., Su, J., Gao, X., Yang, H., Weng, R., Ni, W., et al. (2022) The Microbiota-Gut-Brain Axis Participates in Chronic Cerebral Hypoperfusion by Disrupting the Metabolism of Short-Chain Fatty Acids. Microbiome, 10, Article No. 62. https://doi.org/10.1186/s40168-022-01255-6
|
[62]
|
Zhao, Z., Ning, J., Bao, X., Shang, M., Ma, J., Li, G., et al. (2021) Fecal Microbiota Transplantation Protects Rotenone-Induced Parkinson’s Disease Mice via Suppressing Inflammation Mediated by the Lipopolysaccharide-TLR4 Signaling Pathway through the Microbiota-Gut-Brain Axis. Microbiome, 9, Article No. 226. https://doi.org/10.1186/s40168-021-01107-9
|
[63]
|
Hardianti Gunardi, T., Paramita Susantono, D., Arus Victor, A. and Sitompul, R. (2021) Atopobiosis and Dysbiosis in Ocular Diseases: Is Fecal Microbiota Transplant and Probiotics a Promising Solution? Journal of Ophthalmic and Vision Research, 16, 631-643. https://doi.org/10.18502/jovr.v16i4.9754
|
[64]
|
Choi, R.Y., Asquith, M. and Rosenbaum, J.T. (2018) Fecal Transplants in Spondyloarthritis and Uveitis: Ready for a Clinical Trial? Current Opinion in Rheumatology, 30, 303-309. https://doi.org/10.1097/bor.0000000000000506
|
[65]
|
Watane, A., Cavuoto, K.M., Rojas, M., Dermer, H., Day, J.O., Banerjee, S., et al. (2022) Fecal Microbial Transplant in Individuals with Immune-Mediated Dry Eye. American Journal of Ophthalmology, 233, 90-100. https://doi.org/10.1016/j.ajo.2021.06.022
|