基于肠眼轴理论下干眼的治疗综述
Review on the Treatment of Dry Eye Based on Intestinal Axial Theory
摘要: 人体微生物群是指生活在人体不同部位的大量微生物(细菌、病毒和真菌),包括肠道、口腔、皮肤和眼睛。最近的研究强调了肠道微生物群(GM)与眼部健康之间的潜在关联。在这方面,一些证据支持肠眼轴的存在参与了干眼症的发病机制。目前,干眼的发病率日愈增高,严重影响了人们的生活及工作质量。既有的治疗及其护理方法对于严重干眼症患者并不能让其十分满意。因此,了解肠道微生物群与这些眼部疾病之间的联系可能有助于开发新的治疗方法,如益生菌、益生元、共生菌或粪便微生物群移植,通过这些方法可以调节肠道微生物群,从而达到令人满意的治疗效果。
Abstract: Human microbiota refers to a large number of microorganisms (bacteria, viruses and fungi) living in different parts of the human body, including intestines, mouth, skin and eyes. Recent studies have emphasized the potential relationship between intestinal microflora (GM) and eye health. In this regard, some evidence supports that the existence of intestinal axis is involved in the pathogenesis of dry eye. At present, the incidence of dry eye is increasing day by day, which seriously affects people’s life and work quality. The existing treatment and nursing methods are not very satisfactory for patients with severe dry eye. Therefore, understanding the relationship between intestinal microflora and these eye diseases may be helpful to develop new treatment methods, such as probiotics, prebiotics, symbiotic bacteria or fecal microflora transplantation, through which intestinal microflora can be adjusted, so as to achieve satisfactory treatment results.
文章引用:王伟琴, 郑燕林. 基于肠眼轴理论下干眼的治疗综述[J]. 临床医学进展, 2024, 14(11): 152-159. https://doi.org/10.12677/acm.2024.14112859

1. 干眼的定义及其现况

干眼是一种以泪液量减少、眼表炎症和损伤以及泪膜的高渗透压为特征的眼表疾病[1]。2017年,泪膜和眼表学会干眼研讨会II (TFOS·杜西伊)根据新的发现提供了干眼的新定义,宣布DED是一种多因素的眼表疾病,其特征是泪膜的稳态丧失,并伴有眼部症状,其中泪膜不稳定和高渗、眼表炎症和损伤以及神经感觉异常在发病中起作用[2],其症状主要表现为眼部的干涩感、异物感、灼热感、经常会伴随眼部有黏稠分泌物,可伴有眼表炎性反应、组织损伤及神经异常,造成眼部多种不适症状和(或)视功能障碍。

Youran Cai,Jintao Wei,Jiaxin Zhou,Wenjin Zou等人通过对包括PubMed、Cochrane Library和Web of Science在内的几个数据库进行了全面系统的搜索。对logit转换的患病率和发病率进行随机效应荟萃分析得出在亚洲任何人群中,估计的干眼合并患病率为20.1% (95%置信区间),发生率16.7% (95% CI: 0%~34.9%)。男性和女性的DED患病率分别为16.4% (95%可信区间:10.0%~25.8%)和21.7% (95%可信区间:14.7%~30.8%;p < 0.001),最终得出干眼的患病率随着年龄的增长而增加。随着人口老龄化发展[3],电子科技、网络的飞速发展[4]以及生活水平的提高,干眼的患病率逐年升高。DED在亚洲人群中很常见,并导致严重的疾病负担。其患病率女性高于男性,并且随着年龄的增长其严重程度有增加的趋势[3]。目前治疗干眼的方式及手段层出不穷,但是并不能达到切实有效的治疗效果。干眼症患者症状时易反复,并且由于现代社会用眼无法避免,干眼患者所引发的眼部不适症状极易引发各种联结疾病,让病人痛苦并也会造成较重的社会医疗压力。因此寻求一种切实有效的治疗方案迫在眉睫。

2. 肠眼轴

人体由数万个微生物组成,其中肠道微生物的占比是最大的,近年来发现肠道微生物对于人体稳态的维持以及人体免疫系统的调控起着重要的作用[5]随着基因测序技术的不断发展,人们发现肠道中的微生物群存在以厚壁菌门、拟杆菌门、放线菌门、变形菌门、梭菌门和疣菌门六门(以厚壁菌门和拟杆菌门为主)为主的核心生物群,正常情况下,各种微生物处于相对平衡状态,组成正常微生物群的细菌种类可通过竞争机制抑制致病菌生长,但机体的稳态无法维持,核心微生物群发生失调,使致病菌过度繁殖,机体发生疾病[6] [7]。由于肠道核心微生物群的发现,人们逐渐意识到,是否眼表也有类似的核心生物群的存在,其中微生物的数量或者种类发生改变是否会影响到疾病的发生和发展。但是在目前的研究报告中,并没有发现特定的眼表核心微生物群的存在,不同的研究报告的成果层出不穷[8]-[13]。尽管这个些结果可能与测量的误差,以及与16s rRNA测序的局限性有很大关系。例如,它只能检测到属水平的细菌,而不能评估微生物群的功能状态[14]。尽管目前对于眼表微生物群的研究不够完善,但是许多研究都强调了肠眼轴的存在,肠道微生物可以改变眼睛的免疫力[15]。所以鉴于肠脑轴,肠–内分泌轴的一步步揭露,科学家们也开始关注到肠眼轴这个新兴方向,并且开始研究肠道微生物群与眼部微生物群之间的关系以及与眼表疾病之间的联系。本文综述了近年来基于肠眼轴理论下有关于干眼的药物治疗进展。

3. 治疗

目前干眼的治疗主要以人工泪液为主,再辅以非药物疗法。目前的治疗方案对于轻中度干眼症状效果较为明显,但对于重度干眼及干燥综合征型干眼来讲,疗效难以达到患者预期的效果。并且目前的用药都有其的缺陷性,人工泪液作为一线药物,但其达到的治疗效果较为短暂,维持时间不长,其他类型的各种药物眼用制剂,都有或多或少的副作用[16],就如以局部皮质类固醇的使用来说,其在治疗DED中可能是有价值的,但长期使用它们并非没有并发症的风险。包括高眼压、白内障和机会性感染,即使在短时间使用后也会发生[17]

自2007 Graham等人进行了第一次高效研究,他们使用传统培养方法和16S rRNA测序方法鉴定了57名健康个体结膜样本中的细菌属[8]起,开始了眼部核心微生物群的探索,肠道微生物与眼部疾病的关系也逐渐露出水面,Wang等[18]和Zaheer等[19]通过利用不同小鼠模型来观察眼和泪腺的表型得出:无菌小鼠较常规饲养组小鼠角膜屏障破坏更大,泪腺内总炎症细胞和CD4T细胞浸润更严重,杯状细胞丢失更多,故更易产生干燥性角结膜炎。Zaheer等[19]还证实共生菌群在干眼中起保护眼表的作用。研究表明,共生菌减少所造成肠道生态失调不仅增加了相关炎症细胞数目,同时增加了局部脂多糖的分布,抗菌处理后的小鼠局部给予脂多糖会增加眼表炎症,表明GM中共生菌在眼表免疫反应中具有保护作用[20],若将来自常规小鼠的粪便菌群移植到无菌小鼠内,那么无菌小鼠的干眼表型会得到减轻乃至恢复,从而得出共生菌群或其代谢产物具有免疫调节特性,可以减轻干燥综合征所导致的干眼症。在抗生素诱导的肠道生态失调模型中,研究发现肠道生态失调可通过影响CCR2-巨噬细胞的分布导致角膜发育异常,包括角膜形态学改变、角膜缘血管和角膜神经的形成[21],还会加剧眼表对干燥的应激反应,增加效应T细胞向眼表的募集[22],De Paiva等[22]也报道了在服用了抗生素的干燥综合征动物模型中诱导了更严重的干眼表型,且在对干燥综合征患者的前瞻性研究中发现,患有最严重的干燥性角膜结膜炎等眼部疾病的受试者的粪便微生物群多样性最低。此外,Li等[12]对有和无干眼症的人群采集了结膜拭子样本,并对样本进行了rRNA基因高通量测序后得出,干眼症患者眼表的优势菌群含量降低,这一结果表明了眼表的微生物群可能与单纯的干眼症状的发生和发展有关。基于上述研究可知,通过改善肠道菌群,重建健康的肠道微生态,可以预防和治疗眼病,特别是利用粪便菌群移植技术和益生菌,在平衡肠道菌群,缓解疾病体征和症状方面具有显著优势[23]其主要为以下几个类型:

3.1. 益生菌

目前常用的益生菌制剂通常含有乳酸杆菌和双歧杆菌,在几种胃肠道和肠外疾病中他们往往会发生改变[24]-[27]。据报道,食用益生菌的直接或间接益处包括减少胃肠道炎症和促炎细胞因子的分泌,抑制病原体生长,改善上皮屏障的完整性,增加SCFA的产生[28]-[31]。益生菌的抗炎作用主要是通过调节肠道上皮细胞中的JAK/STAT和NF-κB通路,促进组织愈合,改善细胞对应激的反应[32]。根据代谢物循环理论,有利于免疫调节的微生物代谢物,如短链脂肪酸(SCFA),进入体循环并到达眼表和泪腺的数量减少,影响远端靶器官的免疫活性。短链脂肪酸,主要是丁酸(以及较小程度的丙酸和乙酸),由共生类群发酵膳食淀粉产生,已被证明具有有效的免疫调节活性肠道生态失调导致的SCFA减少与自身免疫性疾病有关[33],而主要产生SFCA的细菌之一Faecalibacterium在SS受试者中也显著减少[34]由此可以推断,SFCA的减少影响泪液分泌的减少。同样,SCFA的减少也可能影响眼表和泪腺的远端自身反应性T细胞。

此外,益生菌通过调节toll样受体信号传导影响Th1、Th2、Th17、树突状细胞、NK细胞、B淋巴细胞和巨噬细胞的活性[35] [36]。益生菌通过与黏膜免疫系统相互作用,诱导IgA、细菌素和防御素的产生,然后分泌到管腔中,增强宿主免疫力[37]。基于这些优势,益生菌被认为是与转基因生态失调相关的各种疾病的潜在治疗方法,包括肠道综合征、溃疡性结肠炎、类风湿关节炎、重度抑郁症,甚至癌症[38]-[41]。虽然在眼部疾病方面的证据仍然很少,但临床前研究的结果是有希望的,干眼症是另一种导致眼部炎症的眼部疾病,益生菌被认为可以治疗[42]。在这方面,IRT5 (一种由罗伊氏乳杆菌、嗜酸乳杆菌、干酪乳杆菌、嗜冷链球菌和两歧双歧杆菌组成的益生菌混合物)的摄入被证明对恢复NOD.B10的泪液分泌有效。H2b小鼠(已建立的自身免疫性干眼模型) [43] [44]。这种改善伴随着T调节细胞丰度的增加,以牺牲免疫反应性CD8+ IFN-γ + T细胞为代价[44]。在肠道水平,转基因的重塑使仓鼠乳杆菌和helveticus乳杆菌的相对丰度增加,可能介导了IRT5的抗炎作用[43]。当在预防环境下进行测试时,IRT5仍然被证明可以有效地增加泪液的产生,但没有改善眼部炎症标志物,这表明需要更多的研究来建立最佳的干预方案并揭示其作用机制[45]。除IRT5外,干眼诱导小鼠口服两歧双歧杆菌和植物乳杆菌也获得了令人满意的结果[46]。除了增加泪液产生,这种治疗还与杯状细胞密度增加和眼部炎症参数改善有关(通过降低TNF-α、IL-1β和髓过氧化物酶水平来测量,有利于提高IL-10的表达) [46]。益生菌处理小鼠的转基因多样性与对照组相似,在科水平上Muribaculaceae和Lactobacillaceae的含量增加,而放线菌门和Verrucomicrobia的含量则减少[46]。然而,需要进行人体研究来验证这些临床前研究结果。

总的来说,临床前研究的结果是有希望的。然而,由于临床证据不足,需要进行大规模队列随机对照试验来验证益生菌在眼病中的预防和治疗作用[47]。除了肠眼轴,还需要研究益生菌对眼表微生物群调节的直接作用。迄今为止,只有一项随机对照试验将益生菌的功效与眼表微生物群的组成联系起来[48]。在这项研究中,60名个体随机接受滴眼液单独或联合使用由屎肠球菌和博氏酵母组成的益生菌混合物。虽然益生菌组干眼症状的改善与OSM稳态重建的趋势有关,但原位给药益生菌对疾病改善的直接作用仍有待充分阐明[48]。未来的研究应确定以眼细菌为目标的可行性,作为更常见的转基因调制的替代和附加策略。

3.2. 益生元和共生菌

益生元是一种富含纤维的不可消化的碳水化合物质,可作为肠道微生物的食物,对宿主有益[49]。益生元的例子包括但不限于半乳糖低聚糖、果聚糖、菊糖、葡萄糖衍生的低聚糖和淀粉[50]。由于益生元具有选择性地促进有益抗炎细菌生长的能力,部分研究调查表明了益生元在眼部疾病中的潜力[51] [52]。从肠眼轴这个理论来看,有证据表明有利于丁酸生成细菌生长的饮食可以减轻Sjögren综合征患者的干眼症状[53]。由于水通道蛋白5在干眼症中上调,其作用机制似乎涉及水通道蛋白5的靶向作用[54],但仍需要更多的数据来阐明GM调节和症状改善之间的复杂关系。同样,在一项对41名干眼症患者进行的随机对照试验中,同时摄入益生菌混合物(含有乳酸菌、双歧杆菌和链球菌)和益生元NutriKane D (甘蔗 + 果胶)可增加泪液分泌,改善眼表特征[55]。最简单的配方,由乳酸双歧杆菌、两歧双歧杆菌和低聚果糖组成,在40名随机接受共生菌或安慰剂治疗的患者中进行了为期1个月的试验,也减轻了干眼症状[56]。总的来说,尽管进行的研究很少,但已全面报道了积极的结果。

3.3. 粪便微生物群移植

粪便微生物群移植(FMT)包括将健康供体的新鲜或冷冻粪便物质转移到患者肠道以恢复益生菌[57]。尽管结肠镜下移植仍是首选途径,但其固有的侵入性和手术相关的风险最近导致人们考虑使用灌肠、鼻胃给药或口服药物作为替代移植技术[58] [59]。FMT的有益作用包括重新建立益生菌[60],降低炎症水平[61] [62],增加SCFA的数量[61],以及预防肠上皮屏障渗漏[62]。鉴于这些益处,新兴研究已经研究了FMT作为肠眼轴调节剂的潜力,特别关注自身免疫性葡萄膜炎和Sjögren综合征[63] [64]。据报道,无菌小鼠和抗生素治疗小鼠的角膜屏障破坏增强,杯状细胞密度降低,泪腺淋巴细胞(特别是CD4+ IFN-γ + T细胞)浸润增加,促炎细胞因子(即IL-12和IFN-γ)水平升高,因此与Sjögren综合征患者观察到的干眼表型相似[19] [22] [64]。值得注意的是,野生型C57BL/6J小鼠的FMT足以减少CD4+ IFN-γ + T细胞浸润并恢复干眼表型,表明该方法在眼相关疾病背景下的可行性[18] [19]。在10名干燥综合征患者中进行的开放性非随机临床试验结果显示,在3个月的随访中,间隔1周的两次FMT给药改善了50%患者的干眼症状,无不良事件报告[65]

4. 总结

尽管越来越多的证据表明存在肠眼轴,肠道微生物成分的改变可能参与眼部疾病的发生和进展,但仍需要进一步的研究来了解肠道微生物与眼睛之间的直接和间接联系以及潜在的分子机制。此外,了解与眼部疾病相关的确切微生物群(肠道微生物群和眼部微生物群)可能是开发新的特异性治疗方法的起点。在这方面,在迄今为止各种微生物群调节方法中,益生菌在眼部疾病的背景下是最有前途的。基于肠眼轴,虽然从益生菌研究中出现了重要的证据,但研究量较小。事实上,在设计临床试验时,独立研究之间广泛的可变性仍然是一个主要限制。因此,迫切需要研究确定最佳益生菌菌株或混合物,最有效的治疗窗口和最佳剂量。

总之,这些关联背后的真相是,一般来说,微生物群是炎症的关键调节剂。当然,炎症过程在眼部疾病的发展中起着关键作用,因此对观察到的微生物群和所描述的疾病之间的关联做出了重要贡献。因此,鼓励进一步的研究,以帮助确定OSM (直接或间接通过转基因)在眼睛稳态中的重要性,以及与眼睛病理发展有关的机制,目的是设计和测试更具体的眼部配方,这些配方能够影响微生物群的组成,从而可能影响眼病的发展/进展。

NOTES

*通讯作者。

参考文献

[1] Tsubota, K., Pflugfelder, S.C., Liu, Z., Baudouin, C., Kim, H.M., Messmer, E.M., et al. (2020) Defining Dry Eye from a Clinical Perspective. International Journal of Molecular Sciences, 21, Article 9271.
https://doi.org/10.3390/ijms21239271
[2] Craig, J.P., Nichols, K.K., Akpek, E.K., Caffery, B., Dua, H.S., Joo, C., et al. (2017) TFOS DEWS II Definition and Classification Report. The Ocular Surface, 15, 276-283.
https://doi.org/10.1016/j.jtos.2017.05.008
[3] Gipson, I.K. (2013) Age-related Changes and Diseases of the Ocular Surface and Cornea. Investigative Opthalmology & Visual Science, 54, ORSF48-ORSF53.
https://doi.org/10.1167/iovs.13-12840
[4] Jaiswal, S., Asper, L., Long, J., Lee, A., Harrison, K. and Golebiowski, B. (2019) Ocular and Visual Discomfort Associated with Smartphones, Tablets and Computers: What We Do and Do Not Know. Clinical and Experimental Optometry, 102, 463-477.
https://doi.org/10.1111/cxo.12851
[5] Vrancken, G., Gregory, A.C., Huys, G.R.B., Faust, K. and Raes, J. (2019) Synthetic Ecology of the Human Gut Microbiota. Nature Reviews Microbiology, 17, 754-763.
https://doi.org/10.1038/s41579-019-0264-8
[6] Hou, K., Wu, Z., Chen, X., Wang, J., Zhang, D., Xiao, C., et al. (2022) Microbiota in Health and Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 135.
https://doi.org/10.1038/s41392-022-00974-4
[7] Aragona, P., Baudouin, C., Benitez del Castillo, J.M., Messmer, E., Barabino, S., Merayo-Lloves, J., et al. (2021) The Ocular Microbiome and Microbiota and Their Effects on Ocular Surface Pathophysiology and Disorders. Survey of Ophthalmology, 66, 907-925.
https://doi.org/10.1016/j.survophthal.2021.03.010
[8] Graham, J.E., Moore, J.E., Jiru, X., Moore, J.E., Goodall, E.A., Dooley, J.S.G., et al. (2007) Ocular Pathogen or Commensal: A PCR-Based Study of Surface Bacterial Flora in Normal and Dry Eyes. Investigative Opthalmology & Visual Science, 48, 5616-5623.
https://doi.org/10.1167/iovs.07-0588
[9] Dong, Q., Brulc, J.M., Iovieno, A., Bates, B., Garoutte, A., Miller, D., et al. (2011) Diversity of Bacteria at Healthy Human Conjunctiva. Investigative Opthalmology & Visual Science, 52, 5408-5412.
https://doi.org/10.1167/iovs.10-6939
[10] Zhou, Y., Holland, M.J., Makalo, P., Joof, H., Roberts, C.H., Mabey, D.C., et al. (2014) The Conjunctival Microbiome in Health and Trachomatous Disease: A Case Control Study. Genome Medicine, 6, Article No. 99.
https://doi.org/10.1186/s13073-014-0099-x
[11] Doan, T., Akileswaran, L., Andersen, D., Johnson, B., Ko, N., Shrestha, A., et al. (2016) Paucibacterial Microbiome and Resident DNA Virome of the Healthy Conjunctiva. Investigative Opthalmology & Visual Science, 57, 5116-5126.
https://doi.org/10.1167/iovs.16-19803
[12] Li, Z., Gong, Y., Chen, S., Li, S., Zhang, Y., Zhong, H., et al. (2019) Comparative Portrayal of Ocular Surface Microbe with and without Dry Eye. Journal of Microbiology, 57, 1025-1032.
https://doi.org/10.1007/s12275-019-9127-2
[13] Ozkan, J., Nielsen, S., Diez-Vives, C., Coroneo, M., Thomas, T. and Willcox, M. (2017) Temporal Stability and Composition of the Ocular Surface Microbiome. Scientific Reports, 7, Article No. 9880.
https://doi.org/10.1038/s41598-017-10494-9
[14] Baim, A.D., Movahedan, A., Farooq, A.V. and Skondra, D. (2018) The Microbiome and Ophthalmic Disease. Experimental Biology and Medicine, 244, 419-429.
https://doi.org/10.1177/1535370218813616
[15] Kugadas, A., Wright, Q., Geddes-McAlister, J. and Gadjeva, M. (2017) Role of Microbiota in Strengthening Ocular Mucosal Barrier Function through Secretory IGA. Investigative Opthalmology & Visual Science, 58, 4593-4600.
https://doi.org/10.1167/iovs.17-22119
[16] Sheppard, J., Lee, B.S. and Periman, L.M. (2023) Dry Eye Disease: Identification and Therapeutic Strategies for Primary Care Clinicians and Clinical Specialists. Annals of Medicine, 55, 241-252.
[17] Marsh, P. and Pflugfelder, S.C. (1999) Topical Nonpreserved Methylprednisolone Therapy for Keratoconjunctivitis Sicca in Sjögren Syndrome. Ophthalmology, 106, 811-816.
https://doi.org/10.1016/s0161-6420(99)90171-9
[18] Wang, C., Zaheer, M., Bian, F., Quach, D., Swennes, A., Britton, R., et al. (2018) Sjögren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice. International Journal of Molecular Sciences, 19, Article 565.
https://doi.org/10.3390/ijms19020565
[19] Zaheer, M., Wang, C., Bian, F., Yu, Z., Hernandez, H., de Souza, R.G., et al. (2018) Protective Role of Commensal Bacteria in Sjögren Syndrome. Journal of Autoimmunity, 93, 45-56.
https://doi.org/10.1016/j.jaut.2018.06.004
[20] Wang, C., Schaefer, L., Bian, F., Yu, Z., Pflugfelder, S.C., Britton, R.A., et al. (2019) Dysbiosis Modulates Ocular Surface Inflammatory Response to Liposaccharide. Investigative Opthalmology & Visual Science, 60, 4224-4233.
https://doi.org/10.1167/iovs.19-27939
[21] Liu, J., Wu, M., He, J., Xiao, C., Xue, Y., Fu, T., et al. (2018) Antibiotic-induced Dysbiosis of Gut Microbiota Impairs Corneal Nerve Regeneration by Affecting CCR2-Negative Macrophage Distribution. The American Journal of Pathology, 188, 2786-2799.
https://doi.org/10.1016/j.ajpath.2018.08.009
[22] de Paiva, C.S., Jones, D.B., Stern, M.E., Bian, F., Moore, Q.L., Corbiere, S., et al. (2016) Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome. Scientific Reports, 6, Article No. 23561.
https://doi.org/10.1038/srep23561
[23] Floyd, J.L. and Grant, M.B. (2020) The Gut–eye Axis: Lessons Learned from Murine Models. Ophthalmology and Therapy, 9, 499-513.
https://doi.org/10.1007/s40123-020-00278-2
[24] Arboleya, S., Watkins, C., Stanton, C. and Ross, R.P. (2016) Gut Bifidobacteria Populations in Human Health and Aging. Frontiers in Microbiology, 7, Article 1204.
https://doi.org/10.3389/fmicb.2016.01204
[25] Devi, T.B., Devadas, K., George, M., Gandhimathi, A., Chouhan, D., Retnakumar, R.J., et al. (2021) Low Bifidobacterium Abundance in the Lower Gut Microbiota Is Associated with Helicobacter Pylori-Related Gastric Ulcer and Gastric Cancer. Frontiers in Microbiology, 12, Article 631140.
https://doi.org/10.3389/fmicb.2021.631140
[26] Heeney, D.D., Gareau, M.G. and Marco, M.L. (2018) Intestinal Lactobacillus in Health and Disease, a Driver or Just along for the Ride? Current Opinion in Biotechnology, 49, 140-147.
https://doi.org/10.1016/j.copbio.2017.08.004
[27] Wang, W., Chen, L., Zhou, R., Wang, X., Song, L., Huang, S., et al. (2014) Increased Proportions of Bifidobacterium and the Lactobacillus Group and Loss of Butyrate-Producing Bacteria in Inflammatory Bowel Disease. Journal of Clinical Microbiology, 52, 398-406.
https://doi.org/10.1128/jcm.01500-13
[28] Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C. and Gil, A. (2012) Probiotic Mechanisms of Action. Annals of Nutrition and Metabolism, 61, 160-174.
https://doi.org/10.1159/000342079
[29] Liu, Y., Wang, J. and Wu, C. (2022) Modulation of Gut Microbiota and Immune System by Probiotics, Pre-Biotics, and Post-Biotics. Frontiers in Nutrition, 8, Article 634894.
https://doi.org/10.3389/fnut.2021.634897
[30] Nagpal, R., Wang, S., Ahmadi, S., Hayes, J., Gagliano, J., Subashchandrabose, S., et al. (2018) Human-Origin Probiotic Cocktail Increases Short-Chain Fatty Acid Production via Modulation of Mice and Human Gut Microbiome. Scientific Reports, 8, Article No. 12649.
https://doi.org/10.1038/s41598-018-30114-4
[31] Thomas, C.M. and Versalovic, J. (2010) Probiotics-Host Communication: Modulation of Signaling Pathways in the Intestine. Gut Microbes, 1, 148-163.
https://doi.org/10.4161/gmic.1.3.11712
[32] Aghamohammad, S., Sepehr, A., Miri, S.T., Najafi, S., Rohani, M. and Pourshafiea, M.R. (2022) The Effects of the Probiotic Cocktail on Modulation of the NF-κB and JAK/STAT Signaling Pathways Involved in the Inflammatory Response in Bowel Disease Model. BMC Immunology, 23, Article No. 8.
https://doi.org/10.1186/s12865-022-00484-6
[33] Clemente, J.C., Manasson, J. and Scher, J.U. (2018) The Role of the Gut Microbiome in Systemic Inflammatory Disease. BMJ, 360, j5145.
https://doi.org/10.1136/bmj.j5145
[34] Mendez, R., Watane, A., Farhangi, M., Cavuoto, K.M., Leith, T., Budree, S., et al. (2020) Gut Microbial Dysbiosis in Individuals with Sjögren’s Syndrome. Microbial Cell Factories, 19, Article No. 90.
https://doi.org/10.1186/s12934-020-01348-7
[35] Mazziotta, C., Tognon, M., Martini, F., Torreggiani, E. and Rotondo, J.C. (2023) Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells, 12, Article 184.
https://doi.org/10.3390/cells12010184
[36] Yan, F. and Polk, D.B. (2011) Probiotics and Immune Health. Current Opinion in Gastroenterology, 27, 496-501.
https://doi.org/10.1097/mog.0b013e32834baa4d
[37] Fedorak, R.N. (2010) Probiotics in the Management of Ulcerative Colitis. Gastroenterology & Hepatology, 6, 688-690.
[38] Li, B., Liang, L., Deng, H., Guo, J., Shu, H. and Zhang, L. (2020) Efficacy and Safety of Probiotics in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 11, Article 332.
https://doi.org/10.3389/fphar.2020.00332
[39] Liu, Y., Alookaran, J.J. and Rhoads, J.M. (2018) Probiotics in Autoimmune and Inflammatory Disorders. Nutrients, 10, Article 1537.
https://doi.org/10.3390/nu10101537
[40] Śliżewska, K., Markowiak-Kopeć, P. and Śliżewska, W. (2020) The Role of Probiotics in Cancer Prevention. Cancers, 13, Article 20.
https://doi.org/10.3390/cancers13010020
[41] Wallace, C.J.K. and Milev, R. (2017) The Effects of Probiotics on Depressive Symptoms in Humans: A Systematic Review. Annals of General Psychiatry, 16, Article No. 14.
https://doi.org/10.1186/s12991-017-0138-2
[42] Bai, X., Xu, Q., Zhang, W. and Wang, C. (2022) The Gut-Eye Axis: Correlation between the Gut Microbiota and Autoimmune Dry Eye in Individuals with Sjögren Syndrome. Eye & Contact Lens: Science & Clinical Practice, 49, 1-7.
https://doi.org/10.1097/icl.0000000000000953
[43] Choi, S.H., Oh, J.W., Ryu, J.S., Kim, H.M., Im, S., Kim, K.P., et al. (2020) IRT5 Probiotics Changes Immune Modulatory Protein Expression in the Extraorbital Lacrimal Glands of an Autoimmune Dry Eye Mouse Model. Investigative Opthalmology & Visual Science, 61, 42.
https://doi.org/10.1167/iovs.61.3.42
[44] Kim, J., Choi, S., Kim, Y., Jeong, H., Ryu, J., Lee, H., et al. (2017) Clinical Effect of IRT-5 Probiotics on Immune Modulation of Autoimmunity or Alloimmunity in the Eye. Nutrients, 9, Article 1166.
https://doi.org/10.3390/nu9111166
[45] Moon, J., Ryu, J.S., Kim, J.Y., Im, S. and Kim, M.K. (2020) Effect of IRT5 Probiotics on Dry Eye in the Experimental Dry Eye Mouse Model. PLOS ONE, 15, e0243176.
https://doi.org/10.1371/journal.pone.0243176
[46] Yun, S., Son, Y., Lee, D., Shin, Y., Han, M.J. and Kim, D. (2021) Lactobacillus plantarum and Bifidobacterium bifidum Alleviate Dry Eye in Mice with Exorbital Lacrimal Gland Excision by Modulating Gut Inflammation and Microbiota. Food & Function, 12, 2489-2497.
https://doi.org/10.1039/d0fo02984j
[47] Russell, M.W., Muste, J.C., Kuo, B.L., Wu, A.K. and Singh, R.P. (2023) Clinical Trials Targeting the Gut-Microbiome to Effect Ocular Health: A Systematic Review. Eye, 37, 2877-2885.
https://doi.org/10.1038/s41433-023-02462-7
[48] Chisari, G., Chisari, E.M., Borzi, A.M. and Chisari, C.G. (2018) Aging Eye Microbiota in Dry Eye Syndrome in Patients Treated with Enterococcus Faecium and Saccharomyces boulardii. Current Clinical Pharmacology, 12, 99-105.
https://doi.org/10.2174/1574884712666170704145046
[49] Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., et al. (2017) Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nature Reviews Gastroenterology & Hepatology, 14, 491-502.
https://doi.org/10.1038/nrgastro.2017.75
[50] Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S., et al. (2019) Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 8, Article 92.
https://doi.org/10.3390/foods8030092
[51] Vivero-Lopez, M., Pereira-da-Mota, A.F., Carracedo, G., Huete-Toral, F., Parga, A., Otero, A., et al. (2022) Phosphorylcholine-based Contact Lenses for Sustained Release of Resveratrol: Design, Antioxidant and Antimicrobial Performances, and in Vivo Behavior. ACS Applied Materials & Interfaces, 14, 55431-55446.
https://doi.org/10.1021/acsami.2c18217
[52] Huang, G., Su, L., Zhang, N., Han, R., Leong, W.K., Li, X., et al. (2022) The Prebiotic and Anti-Fatigue Effects of Hyaluronan. Frontiers in Nutrition, 9, Article 977556.
https://doi.org/10.3389/fnut.2022.977556
[53] Rastmanesh, R. (2021) Aquaporin5-targeted Treatment for Dry Eye through Bioactive Compounds and Gut Microbiota. Journal of Ocular Pharmacology and Therapeutics, 37, 464-471.
https://doi.org/10.1089/jop.2021.0029
[54] Ren, Y., Lu, H., Reinach, P.S., Zheng, Q., Li, J., Tan, Q., et al. (2017) Hyperosmolarity-Induced AQP5 Upregulation Promotes Inflammation and Cell Death via JNK1/2 Activation in Human Corneal Epithelial Cells. Scientific Reports, 7, Article No. 4727.
https://doi.org/10.1038/s41598-017-05145-y
[55] Tavakoli, A., Markoulli, M., Papas, E. and Flanagan, J. (2022) The Impact of Probiotics and Prebiotics on Dry Eye Disease Signs and Symptoms. Journal of Clinical Medicine, 11, Article 4889.
https://doi.org/10.3390/jcm11164889
[56] Chisari, G., Chisari, E.M. and Francaviglia, A. (2017) The Mixture of Bifidobacterium Associated with Fructo-Oligosaccharides Reduces the Damage of the Ocular Surface. Clinical Therapeutics, 168, 181-185.
[57] Erdem, B., Kaya, Y., Kıran, T.R. and Yılmaz, S. (2023) An Association between the Intestinal Permeability Biomarker Zonulin and the Development of Diabetic Retinopathy in Type 2 Diabetes Mellitus. Turkish Journal of Ophthalmology, 53, 91-96.
https://doi.org/10.4274/tjo.galenos.2022.70375
[58] Gupta, A. and Khanna, S. (2017) Fecal Microbiota Transplantation. JAMA, 318, 102.
https://doi.org/10.1001/jama.2017.6466
[59] Ramai, D. (2018) Fecal Microbiota Transplantation: Donor Relation, Fresh or Frozen, Delivery Methods, Cost-effectiveness. Annals of Gastroenterology, 31, 1-9.
https://doi.org/10.20524/aog.2018.0328
[60] Wei, Y., Gong, J., Zhu, W., Guo, D., Gu, L., Li, N., et al. (2015) Fecal Microbiota Transplantation Restores Dysbiosis in Patients with Methicillin Resistant Staphylococcus Aureus Enterocolitis. BMC Infectious Diseases, 15, Article No. 265.
https://doi.org/10.1186/s12879-015-0973-1
[61] Xiao, W., Su, J., Gao, X., Yang, H., Weng, R., Ni, W., et al. (2022) The Microbiota-Gut-Brain Axis Participates in Chronic Cerebral Hypoperfusion by Disrupting the Metabolism of Short-Chain Fatty Acids. Microbiome, 10, Article No. 62.
https://doi.org/10.1186/s40168-022-01255-6
[62] Zhao, Z., Ning, J., Bao, X., Shang, M., Ma, J., Li, G., et al. (2021) Fecal Microbiota Transplantation Protects Rotenone-Induced Parkinson’s Disease Mice via Suppressing Inflammation Mediated by the Lipopolysaccharide-TLR4 Signaling Pathway through the Microbiota-Gut-Brain Axis. Microbiome, 9, Article No. 226.
https://doi.org/10.1186/s40168-021-01107-9
[63] Hardianti Gunardi, T., Paramita Susantono, D., Arus Victor, A. and Sitompul, R. (2021) Atopobiosis and Dysbiosis in Ocular Diseases: Is Fecal Microbiota Transplant and Probiotics a Promising Solution? Journal of Ophthalmic and Vision Research, 16, 631-643.
https://doi.org/10.18502/jovr.v16i4.9754
[64] Choi, R.Y., Asquith, M. and Rosenbaum, J.T. (2018) Fecal Transplants in Spondyloarthritis and Uveitis: Ready for a Clinical Trial? Current Opinion in Rheumatology, 30, 303-309.
https://doi.org/10.1097/bor.0000000000000506
[65] Watane, A., Cavuoto, K.M., Rojas, M., Dermer, H., Day, J.O., Banerjee, S., et al. (2022) Fecal Microbial Transplant in Individuals with Immune-Mediated Dry Eye. American Journal of Ophthalmology, 233, 90-100.
https://doi.org/10.1016/j.ajo.2021.06.022