46,XY性发育异常研究进展
Research Progress of 46,XY Disorders of Sex Development
DOI: 10.12677/acm.2024.14112861, PDF, HTML, XML,   
作者: 耿荟云, 王馨怡*:西安医学院研究生工作部,陕西 西安
关键词: 46XY性发育异常基因突变46XY Disorders of Sex Development Gene Mutation
摘要: 性发育异常(disorders of sex development, DSD)是一组以染色体核型、性腺表型、性腺解剖结构不一致为特征的先天性疾病。46,XY DSD主要是指染色体核型为46,XY但性腺性别和(或)表型性别与之不相匹配的一类疾病,临床表现异质性大。由于疾病内部的遗传异质性和疾病之间的表型重叠,诊断具有挑战性。
Abstract: Disorders of sex development (DSD) are a group of congenital diseases characterized by inconsistencies in chromosomal karyotype, gonadal phenotype, and gonadal anatomical structure. 46,XY DSD mainly refers to a type of disease in which the chromosomal karyotype is 46,XY but the gonadal sex and/or phenotypic sex do not match it, and the clinical manifestations are highly heterogeneous. Due to the genetic heterogeneity within the disease and the phenotypic overlap between diseases, diagnosis is challenging.
文章引用:耿荟云, 王馨怡. 46,XY性发育异常研究进展[J]. 临床医学进展, 2024, 14(11): 170-175. https://doi.org/10.12677/acm.2024.14112861

1. 引言

性发育异常(disorders of sex development, DSD)是一组以染色体核型、性腺表型、性腺解剖结构不一致为特征的先天性疾病[1]。DSD的发病率约为1/4500 [2]。根据2006年欧洲儿科内分泌协会(ESPE)和劳森威尔金斯儿科内分泌协会(LWPES)提出的新DSD分类方法[3],按照染色体核型分为46,XY DSD、46,XX DSD和染色体异常DSD三类[4]。46,XY DSD主要是指染色体核型为46,XY的个体性腺发育为睾丸,但外生殖器和/或生殖导管出现男性化不全的一类疾,多种遗传因素参与,临床表现异质性大[5]

目前46,XY DSD的分类如下[6]:① 性腺分化发育异常,包括SRY、SOX9、WT1、SF1、DHH等基因异常及睾丸退化综合征等;② 睾酮合成或分泌障碍,包括1) Leyding细胞发育缺如或不全;2) 睾酮的合成过程所涉酶功能异常所致,包括类固醇急性反应蛋白(StAR)、3β-羟类固醇脱氢酶2、17α-羟化酶/17,20-裂解酶等存在先天性缺陷所致;3) 电子转移过程所致类固醇合成过程受损,如P450氧化还原酶(POR)缺陷所致;4) 仅影响睾酮合成过程的缺陷,如17β-羟类固醇脱氢酶3缺陷、单纯性17,20裂解酶缺陷所致;③ 睾酮在靶组织的代谢障碍,主要是指由于SRD5A2基因异常进而5α-还原酶缺陷导致局部组织睾酮转化为双氢睾酮(DHT)障碍的5α-还原酶2型缺乏症(5α-reductase type 2 deficiency, 5α-R2D);④ 雄激素作用缺陷,主要是指AR基因突变导致的雄激素不敏感综合征(Amdrogen Insensitivity Syndrome, AIS);⑤ 苗勒管永存综合征,包括苗勒管抑制激素合成或作用障碍所致;⑥ 其他,如卵睾性DSD、孤立性尿道下裂等。具估计46,XY DSD个体的发病率为每20,000名新生儿中就有1例[7]。然而目前仅有不到一半(43%)的46,XY DSD患者有明确的基因诊断[5],因此明确其遗传学致病因素对于病因诊断、治疗选择和预测恶性肿瘤的风险具有重要的意义[8]

46,XY DSD临床表现外生殖器可呈完全女性化,甚至完全男性化。男性外生殖器型可伴小阴茎、隐睾、阴囊中线不融合或尿道下裂、乳房发育、无胡须等特点,女性外生殖器型伴有或无子宫、性腺发育不全、青春期男性化等。性发育异常对患儿身心及患儿家属心理的危害较大,可导致患儿及其家长出现相应心理问题,部分患儿成年后性生活满意度下降,生育能力下降或出现不孕/不育,严重影响患儿的生活质量[9]。随着认识的加深及相关检测技术的发展,为明确病因诊断带来了很大的方便,但目前仍有部分患儿不能进行明确的病因诊断,有待人们进一步深入研究。目前我国性发育异常相关的研究多为区域性及单个病例报道,其中以成人为主,对于儿童性发育异常的研究相对较少。

目前已经发现60多个与46,XY DSD相关的基因[10] [11],包括:与睾丸发育相关基因、与雄激素合成和作用相关的基因、以及综合征性46,XY DSD。1) 睾丸发育相关基因:超过15种基因的变异与睾丸决定/发育有关,并在非综合征性性腺发育不良患者中得到证实,例如:NR5A1,SRY,DHX37,MAP3K1,GATA4,ZNRF3,WNT4,DMRT1,MAMLD1,ZFPM2,CBX2,NR0B1,BMP2,BMP4,BMP7。SRY,NR5A1,MAP3K1,DHX37是最普遍的四种致病基因,可解释约40%的46,XY性腺发育不全。2) 雄激素合成和作用相关基因:超过14个基因的致病变异与类固醇激素的合成/激活有关,是46,XY DSD患者最常见的潜在原因,例如:AR,SRD5A2,HSD17B3,DHCR7,LHCGR,STAR,CYP11A1,CYP17A1,CYB5A,HSD3B2,AMH,AMHR2,AKR1C2,AKR1C4。3) 综合征性46,XY DSD相关基因与综合征性46、XY DSD相关的变异可导致多个器官的发育畸形,已知有30多个基因与综合征性46,XY DSD相关,包括:WT1,SOX9,DHH,ARX,XH2,SOS2,BBS2,PCNT,SCKL1,GLI3,OCRL,TSPYL1,DHCR7,CDKN1C,CEP290,SOX2,NDN,SNRPN,DMPK,SAMD9,HHAT,HOXA13,FGFR2,PPP1R12A,RSPO1,PTPN11,PPP1CB,MYRF,FGD1,PPP2R3C。在中国,AR、SRD5A2、NR5A1是46,XY DSD最常见的致病基因[12]。以下着重分析雄激素不敏感综合征与5α-还原酶2型缺乏症的特点。

1.1. 雄激素不敏感综合征(AIS)

AIS是染色体核型为46,XY的最常见的性分化障碍之一,在某队列研究中占比为60% [13]。AIS是一种遗传性X连锁疾病,由雄激素受体(AR)基因异常引起这些异常导致受体表达无法在宫内和出生后向靶组织传递雄激素信号[14]。根据残留AR活性,产生的表型可能存在很大差异,从完全女性化到完全男性化,并伴有不育等轻微表现。AIS分为3种表型:1) 完全表型(CAIS),外生殖器为典型女性;2) 部分表型(PAIS),外生殖器部分而非完全男性化;3) 轻度表型(MAIS),当外生殖器完全男性化时,但他们通常表现为男性化不足的迹象,包括青春期面部和体毛稀疏和男性乳房发育[15]

CAIS患儿具有46,XY的核型和正常功能的睾丸,由于出生前由支持细胞产生的抗苗勒管激素(AMH)的正常作用,导致苗勒管结构(子宫、子宫颈和近端阴道)退化,内生殖器缺失(“空骨盆综合征”)。此外,Wolffian结构不会因为睾酮抵抗而分化,睾丸可以位于腹部、腹股沟管或大阴唇,导致双侧腹股沟疝或阴唇肿胀。这些发现是青春期前女孩中怀疑CAIS最常见的临床症状[16]。由于Y染色体的存在,CAIS患者的最终身高通常比健康女性要高[17]。PAIS临床表现差异较大,取决于外生殖器对雄激素的敏感程度。典型表现为小阴茎、严重尿道下裂、有或无睾丸的对裂阴囊,甚至是仅伴有阴蒂肿大的CAIS表型,部分患者青春期可出现乳房发育[18]。除了不育症,关于MAIS的临床表现的信息很少,大多数病例是在男性因素不育调查期间发现的[15]

1.2. AR (Androgen Receptor)基因

为单拷贝基因,由定位在Xq11-12上,包含8个外显子和7个内含子,编码雄激素受体,由920个氨基酸组成[19]。包含四个功能结构域[20]-[22]:1) N末端结构域(NTD);2) DNA结合结构域(DBD);3) 配体结合结构域(LBD);4) 铰链区。尽管雄激素受体突变数据库(http://androgendb.mcgill.ca/)中已报告了 600多种与AIS相关的突变,大多数导致AIS的突变都位于激素结合域中,但仍有许多AR突变尚未被识别[14]。在CAIS及PAIS患者中,变异最常发生于LBD,其次是DBD。MAIS虽占AIS的一小部分,但其变异多与NTD中的错义突变相关[23]。我国一项关于28例雄激素不敏感综合征患者的研究显示:在CAIS患者中发现的突变中,6个(66.7%)为单核苷酸错义突变,6个(66.7%)位于AR配体结合域(LBD),在PAIS患者中发现的突变中,有15个(93.8%)发生错义,11个(68.8%)发生在LBD [24]。发生在铰链区的突变则罕见[18]。Liu等[25]的研究提示:LBD组的外部男性化评分(EMS)显著低于非LBD组(P = 0.013),提示LBD组的表型更严重。Zhou等人[26]证实了一种新的AR错义突变(c.2118 T > A, p.Asn706Lys)会降低mRNA转录、蛋白质表达和蛋白质稳定性。此外,内含子突变也可能发挥作用,正如Zhang等人的研究中所强调的那样,他们发现CAIS患者的AR内含子1和7存在突变[27]

2. 5α-还原酶2型缺乏症(5α-R2D)

该病于1974年在达拉斯的两个兄弟姐妹和多米尼加共和国的一个大家族中首次报道[28] [29],它是由类固醇5α-还原酶2 (SRD5A2)基因变异引起的,占46,XY DSD病例的12%至15.5% [30]。通常,患者出生时外生殖器与女性相似,因为双氢睾酮(DHT)是产前外生殖器男性化所必需的,但在青春期出现男性化(临床和心理),因为它依赖于睾酮(T)水平而不是DHT,没有男性乳房发育的证据。将这种综合征描述为一种具有常染色体隐性遗传模式的遗传病,原因是无法将T转化为最有效的雄激素DHT [31]。5α-还原酶缺乏症患者通常表现出外生殖器男性化不足,这些患者的临床表现高度多样化,外生殖器可以从完整的女性表型到小阴茎,伴或不伴隐睾、不同程度的尿道下裂或双裂阴囊[32]。生殖器男性化会影响性别分配,但不会影响性别变化,后者受各国文化因素的影响。分子诊断会影响性别分配,在5α-还原酶2型缺乏症的新生儿中,更倾向于进行男性性别分配[33]

SRD5A2基因定位于2号染色体(2p23),由5个外显子和4个内含子组成,编码254个氨基酸的蛋白质,即类固醇5α-还原酶2型,催化睾酮(T)转化为二氢睾酮(DHT) [31]。SRD5A2基因N末端与雄激素结合,C末端为还原型辅酶II (NADPH)结合区。有研究表明,保守结构域主要位于氨基酸序列中部和C末端[34]。NADPH配体区域的等位基因变异导致男性化程度较低[33],但某项韩国研究提示[35]属于NADPH结合残基突变类别的p.R227Q变异表现出比其他变异更男性化的表型(外部男性化评分更高),这与p.R227Q的复合杂合突变减轻了表型严重程度有关。

SRD5A2基因中已鉴定出180多种变异(http://www.hgmd.cf.ac.uk),其中错义变异、小片段缺失/插入、无义变异和剪接变异分别占65%、16%、5%和6% [36]。Batista等人[33]对SRD5A2基因突变位置分析显示,1号外显子和4号外显子是热点突变外显子。在一个大型中国队列研究中(n = 190),大多数中国SRD5A2D患者(61.58%)为复合杂合子,尿道下裂为主要表型(66.32%),最常见的变异是c.680G > A (52.37%) [37]

综上所述,46,XY DSD是一种表现差异度大、遗传异质性强的疾病,临床表型与基因型关联尚不一致,许多DSD患者没有得到明确的诊断,这就促使我们应对其进一步研究总结,减少误诊、漏诊,并为遗传咨询提供依据,同时有助于对疾病分子层面更精确的认识。

NOTES

*通讯作者。

参考文献

[1] Moshiri, M., Chapman, T., Fechner, P.Y., Dubinsky, T.J., Shnorhavorian, M., Osman, S., et al. (2012) Evaluation and Management of Disorders of Sex Development: Multidisciplinary Approach to a Complex Diagnosis. RadioGraphics, 32, 1599-1618.
https://doi.org/10.1148/rg.326125507
[2] Lee, P.A., Nordenström, A., Houk, C.P., Ahmed, S.F., Auchus, R., Baratz, A., et al. (2016) Global Disorders of Sex Development Update since 2006: Perceptions, Approach and Care. Hormone Research in Paediatrics, 85, 158-180.
https://doi.org/10.1159/000442975
[3] Hughes, I.A., Nihoul-Fékété, C., Thomas, B. and Cohen-Kettenis, P.T. (2007) Consequences of the ESPE/LWPES Guidelines for Diagnosis and Treatment of Disorders of Sex Development. Best Practice & Research Clinical Endocrinology & Metabolism, 21, 351-365.
https://doi.org/10.1016/j.beem.2007.06.003
[4] Amaral, R.C., Inacio, M., Brito, V.N., Bachega, T.A.S.S., Domenice, S., Arnhold, I.J.P., et al. (2014) Quality of Life of Patients with 46,XX and 46,XY Disorders of Sex Development. Clinical Endocrinology, 82, 159-164.
https://doi.org/10.1111/cen.12561
[5] Kremen, J., Chan, Y. and Swartz, J.M. (2017) Recent Findings on the Genetics of Disorders of Sex Development. Current Opinion in Urology, 27, 1-6.
https://doi.org/10.1097/mou.0000000000000353
[6] Mendonca, B.B., Domenice, S., Arnhold, I.J.P. and Costa, E.M.F. (2009) 46,XY Disorders of Sex Development (DSD). Clinical Endocrinology, 70, 173-187.
https://doi.org/10.1111/j.1365-2265.2007.02993.x-i1
[7] García-Acero, M., Moreno, O., Suárez, F. and Rojas, A. (2020) Disorders of Sexual Development: Current Status and Progress in the Diagnostic Approach. Current Urology, 13, 169-178.
https://doi.org/10.1159/000499274
[8] Xue, M., Wang, X., Li, C., Zhao, M., He, F. and Li, X. (2019) Novel Pathogenic Mutations in Disorders of Sex Development Associated Genes Cause 46,XY Complete Gonadal Dysgenesis. Gene, 718, Article ID: 144072.
https://doi.org/10.1016/j.gene.2019.144072
[9] 栗俊康. 82例性发育异常患儿临床分析[D]: [硕士学位论文]. 新建: 新疆医科大学儿科学院, 2020.
[10] Délot, E.C. and Vilain, E. (2021) Towards Improved Genetic Diagnosis of Human Differences of Sex Development. Nature Reviews Genetics, 22, 588-602.
https://doi.org/10.1038/s41576-021-00365-5
[11] Zhang, W., Mao, J., Wang, X., Zhao, Z., Zhang, X., Sun, B., et al. (2023) The Genetic Spectrum of a Chinese Series of Patients with 46,XY Disorders of the Sex Development. Andrology, 12, 98-108.
https://doi.org/10.1111/andr.13446
[12] Xia, J., Wu, J., Chen, C., Zhao, Z., Xie, Y., Bai, Z., et al. (2021) Molecular Study and Genotype-Phenotype in Chinese Female Patients with 46,XY Disorders of Sex Development. Gynecological Endocrinology, 37, 934-940.
https://doi.org/10.1080/09513590.2021.1960307
[13] Costagliola, G., Cosci o di Coscio, M., Masini, B., Baldinotti, F., Caligo, M.A., Tyutyusheva, N., et al. (2020) Disorders of Sexual Development with XY Karyotype and Female Phenotype: Clinical Findings and Genetic Background in a Cohort from a Single Centre. Journal of Endocrinological Investigation, 44, 145-151.
https://doi.org/10.1007/s40618-020-01284-8
[14] Delli Paoli, E., Di Chiano, S., Paoli, D., Lenzi, A., Lombardo, F. and Pallotti, F. (2023) Androgen Insensitivity Syndrome: A Review. Journal of Endocrinological Investigation, 46, 2237-2245.
https://doi.org/10.1007/s40618-023-02127-y
[15] Batista, R.L., Craveiro, F.L., Ramos, R.M. and Mendonca, B.B. (2022) Mild Androgen Insensitivity Syndrome: The Current Landscape. Endocrine Practice, 28, 911-917.
https://doi.org/10.1016/j.eprac.2022.05.009
[16] Tyutyusheva, N., Mancini, I., Baroncelli, G.I., D’Elios, S., Peroni, D., Meriggiola, M.C., et al. (2021) Complete Androgen Insensitivity Syndrome: From Bench to Bed. International Journal of Molecular Sciences, 22, Article 1264.
https://doi.org/10.3390/ijms22031264
[17] 沈敏, 张丽, 何玉琴, 等. 完全型雄激素不敏感综合征性腺的盆腔MRI评估[J]. 影像诊断与介入放射学, 2021, 30(2): 111-116.
[18] 吴婷, 朱岷. 雄激素不敏感综合征研究现状[J]. 儿科药学杂志, 2023, 29(4): 59-63.
[19] 中华医学会儿科学分会内分泌遗传代谢学组, 中华儿科杂志编辑委员会, 国家儿童健康与疾病临床医学研究中心. 儿童雄激素不敏感综合征诊断和治疗专家共识(2024) [J]. 中华儿科杂志, 2024, 62(6): 501-508.
[20] Hughes, I.A., Davies, J.D., Bunch, T.I., Pasterski, V., Mastroyannopoulou, K. and MacDougall, J. (2012) Androgen Insensitivity Syndrome. The Lancet, 380, 1419-1428.
https://doi.org/10.1016/s0140-6736(12)60071-3
[21] Gottlieb, B., Beitel, L.K., Nadarajah, A., Paliouras, M. and Trifiro, M. (2012) The Androgen Receptor Gene Mutations Database: 2012 Update. Human Mutation, 33, 887-894.
https://doi.org/10.1002/humu.22046
[22] Gulia, C., Baldassarra, S., Zangari, A., et al. (2018) Androgen Insensitivity Syndrome. European Review for Medical and Pharmacological Sciences, 22, 3873-3887.
[23] 吴婷, 朱岷. 雄激素不敏感综合征临床与遗传学分析[J]. 重庆医科大学学报, 2022, 47(3): 268-272.
[24] Wang, Y., Gong, C., Wang, X. and Qin, M. (2017) AR Mutations in 28 Patients with Androgen Insensitivity Syndrome (Prader Grade 0-3). Science China Life Sciences, 60, 700-706.
https://doi.org/10.1007/s11427-017-9084-9
[25] Liu, Q., Yin, X. and Li, P. (2022) Clinical Characteristics, AR Gene Variants, and Functional Domains in 64 Patients with Androgen Insensitivity Syndrome. Journal of Endocrinological Investigation, 46, 151-158.
https://doi.org/10.1007/s40618-022-01894-4
[26] Zhou, D., Xu, H., Shen, X., Gu, R., Chen, Y., Chen, G., et al. (2022) Complete Androgen Insensitivity Syndrome Caused by a Novel Mutation in the Androgen Receptor Gene and Its Mechanism. Clinica Chimica Acta, 531, 94-99.
https://doi.org/10.1016/j.cca.2022.03.021
[27] Zhang, D., Yao, F., Tian, T., Deng, S., Luo, M. and Tian, Q. (2021) Clinical Characteristics and Molecular Genetics of Complete Androgen Insensitivity Syndrome Patients: A Series Study of 30 Cases from a Chinese Tertiary Medical Center. Fertility and Sterility, 115, 1270-1279.
https://doi.org/10.1016/j.fertnstert.2020.12.008
[28] Walsh, P.C., Madden, J.D., Harrod, M.J., Goldstein, J.L., MacDonald, P.C. and Wilson, J.D. (1974) Familial Incomplete Male Pseudohermaphroditism, Type 2. New England Journal of Medicine, 291, 944-949.
https://doi.org/10.1056/nejm197410312911806
[29] 初国铭, 李萍萍, 常文婧, 等. SRD5A2基因新型复合杂合突变致类固醇5-α还原酶2型缺乏症的遗传变异分析[J]. 中国当代儿科杂志, 2020, 22(7): 790-795.
[30] Ittiwut, C., Pratuangdejkul, J., Supornsilchai, V., Muensri, S., Hiranras, Y., Sahakitrungruang, T., et al. (2017) Novel Mutations of the SRD5A2 and AR Genes in Thai Patients with 46,XY Disorders of Sex Development. Journal of Pediatric Endocrinology and Metabolism, 30, 19-26.
https://doi.org/10.1515/jpem-2016-0048
[31] Batista, R.L. and Mendonca, B.B. (2022) The Molecular Basis of 5α-Reductase Type 2 Deficiency. Sexual Development, 16, 171-183.
https://doi.org/10.1159/000525119
[32] Liu, Q., Yin, X. and Li, P. (2022) Clinical, Hormonal, and Genetic Characteristics of 5α-Reductase Type 2 Deficiency in 103 Chinese Patients. Endocrine Practice, 28, 859-866.
https://doi.org/10.1016/j.eprac.2022.06.002
[33] Batista, R.L. and Mendonca, B.B. (2020) Integrative and Analytical Review of the 5-α-Reductase Type 2 Deficiency Worldwide. The Application of Clinical Genetics, 13, 83-96.
https://doi.org/10.2147/tacg.s198178
[34] Katharopoulos, E., Sauter, K., Pandey, A.V. and Flück, C.E. (2019) In Silico and Functional Studies Reveal Novel Loss-Of-Function Variants of SRD5A2, But No Variants Explaining Excess 5α-Reductase Activity. The Journal of Steroid Biochemistry and Molecular Biology, 190, 263-272.
https://doi.org/10.1016/j.jsbmb.2019.01.017
[35] Seo, J., Shin, S., Kim, S., Kim, S.J., Lee, M., Song, K., et al. (2023) The Genotype-Phenotype Correlation in Human 5α-Reductase Type 2 Deficiency: Classified and Analyzed from a SRD5A2 Structural Perspective. International Journal of Molecular Sciences, 24, Article 3297.
https://doi.org/10.3390/ijms24043297
[36] Zhang, W., Yu, B., Luo, W., Sun, B., Zhang, X., Wang, X., et al. (2023) In Vitro Functional Study of Fifteen SRD5A2 Variants Found in Chinese Patients and the Relation between the SRD5A2 Genotypes and Phenotypes. The Journal of Steroid Biochemistry and Molecular Biology, 235, Article ID: 106421.
https://doi.org/10.1016/j.jsbmb.2023.106421
[37] Gui, B., Song, Y., Su, Z., Luo, F., Chen, L., Wang, X., et al. (2019) New Insights into 5α-Reductase Type 2 Deficiency Based on a Multi-Centre Study: Regional Distribution and Genotype-Phenotype Profiling of SRD5A2 in 190 Chinese Patients. Journal of Medical Genetics, 56, 685-692.
https://doi.org/10.1136/jmedgenet-2018-105915