宫内感染与早产儿脑损伤的研究进展
Research Progress on Intrauterine Infection and Brain Injury in Premature Infants
DOI: 10.12677/acm.2024.14112865, PDF, HTML, XML,   
作者: 郑元瑞, 李奇聪, 张引红, 付 涛:西安医学院第一附属医院全科医学科,陕西 西安;西安医学院研究生处,陕西 西安;李亚军*:西北妇女儿童医院,陕西 西安
关键词: 宫内感染早产儿脑损伤炎症发病机制干预措施Intrauterine Infection Premature Infant Brain Injury Inflammation Pathogenesis Intervention Measures
摘要: 宫内感染是导致早产儿脑损伤的重要因素之一,近年来的研究揭示了其在导致早产儿脑损伤中的关键作用。宫内感染通过多种机制对早产儿的大脑发育造成影响,包括炎症反应、氧化应激和血脑屏障的破坏。现研究对宫内感染机制的深入理解,以及早期诊断和干预策略的探索显示通过抗感染、亚低温、促红细胞生成素、高压氧以及干细胞靶向治疗等可能有助于减少宫内感染对早产儿的负面影响。未来的研究需要进一步探索宫内感染与早产儿脑损伤之间的复杂关系,并研制更有效的干预措施,以改善早产儿的长期神经发育预后。
Abstract: Intrauterine infection is one of the important factors leading to brain damage in premature infants, and recent studies have revealed its key role in causing brain damage in premature infants. Intrauterine infection affects the brain development of premature infants through various mechanisms, including inflammatory response, oxidative stress, and disruption of the blood-brain barrier. The in-depth understanding of the mechanism of intrauterine infection and the exploration of early diagnosis and intervention strategies have shown that anti-infection, hypothermia, erythropoietin, hyperbaric oxygen, and targeted stem cell therapy may help reduce the negative impact of intrauterine infection on premature infants. Future research needs to further explore the complex relationship between intrauterine infection and brain injury in premature infants, and develop more effective intervention measures to improve the long-term neurodevelopmental prognosis of premature infants.
文章引用:郑元瑞, 李奇聪, 张引红, 付涛, 李亚军. 宫内感染与早产儿脑损伤的研究进展[J]. 临床医学进展, 2024, 14(11): 203-210. https://doi.org/10.12677/acm.2024.14112865

1. 引言

早产是一个重大的全球健康挑战,其是指在妊娠37周之前发生的分娩,分娩的胎儿称之为早产儿。早产是导致新生儿以及5岁以下儿童死亡的主要风险之一,其中大多数早产儿死亡发生在新生儿期[1]。依据对2020年全球194个国家和地区的早产情况进行统计显示,全球每年约有1500万早产儿,全球早产率约为10%,我国新生儿早产率约为6.1%,每年大约有7万早产儿出生,其排名位居世界前5名[2]。与足月出生的新生儿相比,早产儿出现不良后果的风险要高得多。死亡和发病的风险根据早产程度而增加,极早产(妊娠 < 28周)的婴儿风险最高,其次是极早产(28周至32周)的婴儿,然后是中晚期早产(32周至37周)的婴儿[3]-[5]。尽管目前早产病因仍不清楚,但现已提出多种因素可引发早产,例如基因遗传、免疫炎症、微生物、精神心理机制、环境、内分泌、机械刺激、血管功能失调等均存在联系。早产是一种多因素综合征,是体内多种生物学活动交互作用的结果[6]

1955年,Eastman等人首次提出早产、炎症、脑损伤和脑瘫之间的关系。研究观察到,脑瘫与早产有关,而且产时母亲有发热后分娩的胎儿患有脑瘫的可能性是非发热对照组的七倍[7]。目前,临床和流行病学调查报告与动物实验相结合,依然表明母体与胎儿炎症、早产和后续脑损伤之间存在密切关系[8] [9]。有学者表明约40%的早产归因于宫内上行感染[10],其会引发胎膜早破和绒毛膜羊膜炎。在胎膜早破中,炎症反应有利于膜损伤,从而导致妊娠37周前羊水流失,导致将近24%的早产。在绒毛膜羊膜炎中,炎症反应可能会影响脐带和绒毛膜血管,引起绳索炎和绒毛膜血管炎[11]。有研究提出接触过组织学或临床绒毛膜羊膜炎的早产儿患脑瘫或囊性脑室周围白质软化症(cPVL)的风险比未接触过的早产儿高1.5~3倍,且妊娠22至25周出生的婴儿中,高达70%的婴儿患有组织学绒毛膜羊膜炎[12]。本文将系统综述目前有关宫内感染对早产儿神经发育和脑损伤影响的最新研究进展,探讨其潜在的病理生理机制和未来展望。

2. 宫内感染概述

宫内感染(Intrauterine infection, IAI),指各种病原微生物进入宫腔,引起孕母宫腔内羊水、胎膜、胎盘等组织的感染性疾病[13],中性粒细胞在胎盘组织内不同程度的浸润为其病理特点,绒毛膜羊膜炎(Chorioamnionitis, CA)为其病理学诊断。根据母亲产前是否存在发热、心率增快、子宫压痛、白细胞升高等临床表现,将CA分为临床绒毛膜羊膜炎(Clinical chorioamnionitis, CCA)与组织学绒毛膜羊膜炎(Histological chorioamnionitis, HCA),后者无典型临床表现,占宫内感染的90%,故仅以临床表现判断孕妇是否存在IAI漏诊率高,胎盘病理检查见HCA为发生IAI提供了诊断的“金标准”[13] [14]。IAI不仅对孕妇下生殖道有影响,微生物还可通过胎盘垂直传播,引起胎儿先天性感染[15]。IAI可能会以不同的方式发生,例如血源性感染或进行羊膜穿刺术期间等。病原微生物在下生殖道定植会影响较多的未足月胎膜早孕[16]和CA [17],比如由支原体、解脲支原体、动支链菌、拟杆菌、B族链球菌、大肠杆菌、粪肠球菌、白色念珠菌、肺炎克雷伯菌和阴道加德纳菌引发的上行感染[17]

许多动物研究证实IAI与早产存在因果关系[18] [19]。动物模型还表明,维持完整的宿主炎症反应对于感染引起的早产至关重要,通过抑制对细菌炎症反应至关重要的分子途径(例如阻断Toll样受体4 (TLR4)或其下游效应器),接种的动物能够免受早产的影响[20]-[22]。综合所有证据表明,感染导致的早产很可能是由于炎症反应干扰了母体胎儿的耐受性,导致产程过早启动[23]

当孕妇存在IAI时,病原微生物及其代谢产物、自身免疫产物等导致宫腔内炎细胞聚集,使胎儿暴露于炎症环境。其不仅与早产有关,还与胎儿炎症反应综合征(Fetal Inflammatory Response Syndrome, FIRS)、脑室周围白质软化(Periventricular leukomalacia, PVL)和支气管肺发育不良(Bronchopulmonary dysplasia, BPD)等多种并发症有关[24] [25]。实验室分析表明,在CA中,支原体和解脲支原体是胎盘膜和羊水中的主要定植菌[24];同样有研究报告显示,在妊娠第23周至第32周期间进行的351次分娩中,有23%的脐带血培养呈解脲支原体和人型支原体阳性;与指示性早产相比,自发性早产的发生率更高[25]

3. 早产儿脑损伤的病因和发病机制

在大多数情况下,常见的损伤途径是由最初的缺氧引起的–缺血性或炎症性损伤,引发一系列事件,加剧围产期脑损伤[26]

足月胎儿中存在的适应性生理机制,使其能够对氧合受损或全身性低血压时期作出反应。当含氧血液供应有限时,胎儿通过将更高浓度的氧与血红蛋白结合、优先将含氧血液分流至缺氧损伤风险最大的组织以及限制耗氧量来满足其代谢需求[27]

与足月胎儿的适应机制不同,早产儿脑血管自动调节系统不成熟,表现为压力被动循环。当面临缺氧期或全身性低血压时,早产儿无法维持增加的脑灌注,更容易发生缺氧缺血和神经损伤。初始缺氧缺血性损伤是神经元损伤的主要机制,细胞无法满足其代谢需[26]。大脑中代谢需求最大的区域–感觉运动皮层、丘脑、小脑和脑干最容易受伤[28]。在初始损伤和脑组织再灌注后,细胞代谢功能有短暂的恢复,然而这一阶段过后是葡萄糖代谢的二次减少和高能磷酸盐的缺乏,从而导致兴奋性氨基酸、细胞凋亡、活性氧和炎症的二次损伤,随着时间的推移,炎症导致大部分脑损伤[29] [30]

4. 宫内感染导致早产儿脑损伤的机制

在最初阶段,胎儿大脑容易受到炎症的影响,这些炎症会改变其自然发育并选择性地损害脑白质[31],这是早产儿中观察到的最常见的脑损伤类型[32]。少突胶质细胞和少突胶质祖细胞是负责髓鞘形成的关键细胞,非常容易受到氧化应激和炎症的影响,但通常要到妊娠晚期才会发育成熟[26] [33]。正常情况下,皮质髓鞘形成仅在妊娠34周时开始,并持续到生命的最初几年[34]。当少突胶质细胞的成熟和髓鞘形成因炎症事件和(或)缺氧缺血而中断时,可能会发生涉及轴突和少突胶质细胞坏死的局部或弥漫性脑白质损伤(White Matter Injury)。由于免疫细胞上的TLR4受体激活,导致白质成熟不良,随后发生炎症反应,导致全身性炎症反应。低血糖、低灌注以及修饰后的巨噬细胞或小胶质细胞的进一步免疫活化[32] [35]。这可以通过多种细胞和分子机制来实现,包括通过细胞因子和病原体相关分子模式(PAMPS)激活小胶质细胞和星形胶质细胞,从而导致:1) 谷氨酸增加,增强兴奋性毒性,使前少突胶质细胞容易受到损伤;2) 释放破坏性的活性氧和氮(分别为ROS和RNS);3) 抗氧化防御发展延迟;4) 活化的小胶质细胞释放TNF-α,可进一步促进WMI [36]

尽管早产儿的一些神经系统并发症与发育不成熟有关,但有大量证据表明,围产期感染和炎症会损害发育中的大脑[37]-[39]

胎盘炎症是后续脑损伤的重要预测因素,有对极低胎龄新生儿研究表明,即使从胎盘中分离出低毒力微生物,也可以预测随后的新生儿脑部病变和长期手足瘫痪[40]。宫内炎症如何导致胎儿脑损伤的确切机制尚不清楚,但一些动物实验研究表明,无论使用哪种病原体,炎症细胞因子都可能是早产和脑损伤之间的联系[41]-[43]。发育中大脑的正常细胞因子反应失调可能会扰乱神经发育过程,可能是通过母亲产生的细胞因子、胎盘细胞因子或胎儿产生的细胞因子经胎盘传递而发生的[44]

炎症相关的脑损伤可能是由促炎细胞因子对少突胶质细胞和神经元的直接损伤以及促炎细胞因子激活小胶质细胞造成的间接损伤共同引起的(例如,IL-1b已被证明可以在离体大鼠中激活海马小胶质细胞) [45]-[46]。激活的小胶质细胞通过进一步释放促炎细胞因子和兴奋性代谢物(例如具有细胞毒性的谷氨酸)或通过释放氧化自由基来造成损伤[47]-[49]。小胶质细胞激活已被发现与自闭症有关,并被认为会导致早产儿自闭症谱系障碍的高发病率[49]-[51]

总体而言,早有证据表明母体炎症介质,包括趋化因子、细胞因子、前列腺素和活性氧,都可以穿过胎盘,与胎儿免疫系统相互作用并调节胎儿免疫系统,从而最终导致炎症介质跨过未成熟胎儿血脑屏障(BBB)造成局部伤害[52]-[54]。除了这些炎症介质引起的直接神经毒性外,有证据表明,围产期炎症诱导的炎症级联反应使已启动的新生儿大脑对产后损伤敏感,继发于缺氧或感染引起的损伤[55]。比如,绒毛膜羊膜炎会使新生儿容易受到一系列后果的影响,这些后果本身就是对新生儿造成损伤的危险因素,包括PTB、早发性败血症、BPD、早产儿视网膜病变(ROP)和弥漫性WMI [56] [57]

对于胎儿来说,母体炎症级联反应也可引发胎儿炎症反应综合征(FIRS),导致包括中枢神经系统损伤在内的多器官损害。FIRS是母体炎症可能导致的严重后果之一,通常继发于绒毛膜羊膜炎,可在产前开始,但也可影响产后[58]。FIRS对胎儿器官具有广泛的有害影响,可通过缺氧和缺血反复发作,直接损害脑血流,减少氧合,刺激局部和全身细胞因子释放破坏负责靶向血管舒张的一氧化氮合成酶(NOS),并损害兴奋性氨基酸[58]-[60]。对于出生后不久继发于FIRS的新生儿,可能会出现多次损害导致胎儿发生脑损伤以及继发于持续炎症的胎龄依赖性脆弱性可显着改变临床表型。

5. 宫内感染及其所致脑损伤的早期干预措施

1) 抗生素的应用:宫内感染主要由细菌上行感染引发,因此,早期进行抗感染治疗能够有效降低新生儿脑损伤的发生率。在出现绒毛膜羊膜炎时,及时启动抗生素治疗对于预防母体和胎儿的并发症至关重要。有研究表明,及时应用广谱抗生素可以显著减少与绒毛膜羊膜炎相关的母婴并发症。妊娠中期或晚期预防性使用抗生素可有效降低妊娠期细菌性阴道病、分娩前胎膜破裂、产后子宫内膜炎和淋球菌感染的孕妇早产的风险[61]

2) 亚低温治疗:亚低温对脑组织的保护机制有降低脑氧代谢率从而有助于神经功能的恢复、对兴奋性氨基酸、内源性毒性产物及自由基的释放有遏制作用、进一步延缓细胞因子(内皮素-1、白三烯)的产生、保护血脑屏障、减少脑血管源性脑水肿以及亚低温对NO合酶CNOS有抑制作用[62]。亚低温可以显著降低脑损伤的发病率,减少神经元的损伤,并保护因脑缺血而受损的神经。

3) 促红细胞生成素:静脉输注促红细胞生成素对脑神经祖细胞的增殖可起到促进作用,同时可以使脑内胶质细胞的再生修复能力进行提升,加快患儿病情康复速度,另外还可以使患儿的脑神经功能得以改善,使其体格发育能力和智力发育能力恢复至正常[63]

4) 干细胞靶向治疗:使用脐带血或脐带组织间充质干细胞和内皮祖细胞进行靶向细胞治疗可能是一种合适而有效的治疗方案。出生后不久在神经炎症的高峰期给予间充质干细胞,随后给予内皮祖细胞诱导血管重构,可能有助于大脑发育正常化和(或)修复绒毛膜羊膜炎造成的损伤。联合使用脐带血内皮祖细胞和脐带组织间充质干细胞作为新生儿脑损伤的治疗方法,从而可以减轻围产期脑损伤的负担[39]

5) 高压氧:在高压氧环境下,血氧含量和血氧分压显著增加,脑血管和脑组织的含氧量也显著提升,同时无氧酵解和酸性物质生成减少,能量生成增加,从而减轻了组织酸中毒,此外高压氧还能够减轻脑水肿并降低颅内压[64]。高压氧治疗脑损伤的分子机制包括增加氧自由基清除能力、阻断细胞钙内流、降低细胞因子水平,以及阻断神经元凋亡等[65]

6. 结论与展望

宫内感染与早产儿脑损伤的关系是一个复杂且多因素影响的研究领域,通过对现有文献的综述,我们发现宫内感染通过多种机制,如炎症反应、免疫激活和血脑屏障破坏等,显著增加早产儿脑损伤的风险。这些机制不仅涉及细胞水平的损伤,还包括分子和基因层面的改变,为脑损伤的发病机制提供了深刻的见解。尽管现有研究在揭示宫内感染导致早产儿脑损伤的机制方面取得了一定进展,但仍存在诸多不明确之处。未来的研究可以进一步研究感染引起的细胞和分子机制,特别是对不同病原体在脑损伤过程中的特异性作用,这有助于精准干预和治疗方案的开发;其次寻找能够早期预测宫内感染及其导致脑损伤的可靠生物标志物,并进行大规模验证,以便实现早期诊断和精准干预;最后基于患者个体的基因和环境因素,发展个体化的预防和治疗策略,以提高干预措施的效果和安全性。希望通过以上研究方向的拓展和深入,将有助于更好地理解宫内感染与早产儿脑损伤的复杂关系,进而推动预防、诊断和治疗水平的提升,最终改善早产儿的预后。

NOTES

*通讯作者。

参考文献

[1] (2021) Global, Regional, and National Progress towards Sustainable Development Goal 3.2 for Neonatal and Child Health: All-Cause and Cause-Specific Mortality Findings from the Global Burden of Disease Study 2019. Lancet, 398, 870-905.
[2] Ohuma, E.O., Moller, A., Bradley, E., Chakwera, S., Hussain-Alkhateeb, L., Lewin, A., et al. (2023) National, Regional, and Global Estimates of Preterm Birth in 2020, with Trends from 2010: A Systematic Analysis. The Lancet, 402, 1261-1271.
https://doi.org/10.1016/s0140-6736(23)00878-4
[3] Saigal, S. and Doyle, L.W. (2008) An Overview of Mortality and Sequelae of Preterm Birth from Infancy to Adulthood. The Lancet, 371, 261-269.
https://doi.org/10.1016/s0140-6736(08)60136-1
[4] Teune, M.J., Bakhuizen, S., Gyamfi Bannerman, C., Opmeer, B.C., van Kaam, A.H., van Wassenaer, A.G., et al. (2011) A Systematic Review of Severe Morbidity in Infants Born Late Preterm. American Journal of Obstetrics and Gynecology, 205, 374.e1-374.e9.
https://doi.org/10.1016/j.ajog.2011.07.015
[5] Fernández de Gamarra-Oca, L., Ojeda, N., Gómez-Gastiasoro, A., Peña, J., Ibarretxe-Bilbao, N., García-Guerrero, M.A., et al. (2021) Long-Term Neurodevelopmental Outcomes after Moderate and Late Preterm Birth: A Systematic Review. The Journal of Pediatrics, 237, 168-176.e11.
https://doi.org/10.1016/j.jpeds.2021.06.004
[6] 冉雨鑫, 尹楠林, 漆洪波. 早产发病机制的新进展[J]. 实用妇产科杂志, 2019, 35(7): 481-483.
[7] Eastman, N.J. and DeLeon, M. (1955) The Etiology of Cerebral Palsy. American Journal of Obstetrics and Gynecology, 69, 950-961.
https://doi.org/10.1016/0002-9378(55)90094-6
[8] Bear, J.J. and Wu, Y.W. (2016) Maternal Infections during Pregnancy and Cerebral Palsy in the Child. Pediatric Neurology, 57, 74-79.
https://doi.org/10.1016/j.pediatrneurol.2015.12.018
[9] Strunk, T., Inder, T., Wang, X., Burgner, D., Mallard, C. and Levy, O. (2014) Infection-Induced Inflammation and Cerebral Injury in Preterm Infants. The Lancet Infectious Diseases, 14, 751-762.
https://doi.org/10.1016/s1473-3099(14)70710-8
[10] Lettieri, L., Vintzileos, A.M., Rodis, J.F., Albini, S.M. and Salafia, C.M. (1993) Does “Idiopathic” Preterm Labor Resulting in Preterm Birth Exist? American Journal of Obstetrics and Gynecology, 168, 1480-1485.
https://doi.org/10.1016/s0002-9378(11)90785-6
[11] Romero, R., Espinoza, J., Kusanovic, J., Gotsch, F., Hassan, S., Erez, O., et al. (2006) The Preterm Parturition Syndrome. BJOG: An International Journal of Obstetrics & Gynaecology, 113, 17-42.
https://doi.org/10.1111/j.1471-0528.2006.01120.x
[12] Stoll, B.J., Hansen, N.I., Bell, E.F., Shankaran, S., Laptook, A.R., Walsh, M.C., et al. (2010) Neonatal Outcomes of Extremely Preterm Infants from the NICHD Neonatal Research Network. Pediatrics, 126, 443-456.
https://doi.org/10.1542/peds.2009-2959
[13] 单若冰. 宫内感染与新生儿肺疾病[J]. 中国小儿急救医学, 2016, 23(5): 304-307, 311.
[14] Shatrov, J.G., Birch, S.C.M., Lam, L.T., Quinlivan, J.A., McIntyre, S. and Mendz, G.L. (2010) Chorioamnionitis and Cerebral Palsy. Obstetrics & Gynecology, 116, 387-392.
https://doi.org/10.1097/aog.0b013e3181e90046
[15] Pavlidis, I., Spiller, O.B., Sammut Demarco, G., MacPherson, H., Howie, S.E.M., Norman, J.E., et al. (2020) Cervical Epithelial Damage Promotes Ureaplasma Parvum Ascending Infection, Intrauterine Inflammation and Preterm Birth Induction in Mice. Nature Communications, 11, Article No. 199.
https://doi.org/10.1038/s41467-019-14089-y
[16] Witt, A., Berger, A., Gruber, C.J., Petricevic, L., Apfalter, P., Worda, C., et al. (2005) Increased Intrauterine Frequency of Ureaplasma Urealyticum in Women with Preterm Labor and Preterm Premature Rupture of the Membranes and Subsequent Cesarean Delivery. American Journal of Obstetrics and Gynecology, 193, 1663-1669.
https://doi.org/10.1016/j.ajog.2005.03.067
[17] Seliga-Siwecka, J.P. and Kornacka, M.K. (2013) Neonatal Outcome of Preterm Infants Born to Mothers with Abnormal Genital Tract Colonisation and Chorioamnionitis: A Cohort Study. Early Human Development, 89, 271-275.
https://doi.org/10.1016/j.earlhumdev.2012.10.003
[18] Filipovich, Y., Klein, J., Zhou, Y. and Hirsch, E. (2016) Maternal and Fetal Roles in Bacterially Induced Preterm Labor in the Mouse. American Journal of Obstetrics and Gynecology, 214, 386.e1-386.e9.
https://doi.org/10.1016/j.ajog.2015.10.014
[19] Elovitz, M.A. and Mrinalini, C. (2004) Animal Models of Preterm Birth. Trends in Endocrinology & Metabolism, 15, 479-487.
https://doi.org/10.1016/j.tem.2004.10.009
[20] Wahid, H.H., Chin, P.Y., Sharkey, D.J., Diener, K.R., Hutchinson, M.R., Rice, K.C., et al. (2020) Toll-Like Receptor-4 Antagonist (+)-Naltrexone Protects against Carbamyl-Platelet Activating Factor (cPAF)-Induced Preterm Labor in Mice. The American Journal of Pathology, 190, 1030-1045.
https://doi.org/10.1016/j.ajpath.2020.01.008
[21] Deng, W., Yuan, J., Cha, J., Sun, X., Bartos, A., Yagita, H., et al. (2019) Endothelial Cells in the Decidual Bed Are Potential Therapeutic Targets for Preterm Birth Prevention. Cell Reports, 27, 1755-1768.e4.
https://doi.org/10.1016/j.celrep.2019.04.049
[22] Bakardjiev, A. (2015) Stillbirth Prevented by Signal Blockade. Nature, 520, 627-628.
https://doi.org/10.1038/520627a
[23] Green, E.S. and Arck, P.C. (2020) Pathogenesis of Preterm Birth: Bidirectional Inflammation in Mother and Fetus. Seminars in Immunopathology, 42, 413-429.
https://doi.org/10.1007/s00281-020-00807-y
[24] Nadeau, H.C.G., Subramaniam, A. and Andrews, W.W. (2016) Infection and Preterm Birth. Seminars in Fetal and Neonatal Medicine, 21, 100-105.
https://doi.org/10.1016/j.siny.2015.12.008
[25] Pararas, M.V., Skevaki, C.L. and Kafetzis, D.A. (2006) Preterm Birth Due to Maternal Infection: Causative Pathogens and Modes of Prevention. European Journal of Clinical Microbiology & Infectious Diseases, 25, 562-569.
https://doi.org/10.1007/s10096-006-0190-3
[26] Khwaja, O. and Volpe, J.J. (2007) Pathogenesis of Cerebral White Matter Injury of Prematurity. Archives of Disease in Childhood-Fetal and Neonatal Edition, 93, F153-F161.
https://doi.org/10.1136/adc.2006.108837
[27] Giussani, D.A. (2016) The Fetal Brain Sparing Response to Hypoxia: Physiological Mechanisms. The Journal of Physiology, 594, 1215-1230.
https://doi.org/10.1113/jp271099
[28] Chugani, H.T. and Phelps, M.E. (1986) Maturational Changes in Cerebral Function in Infants Determined by 18FDG Positron Emission Tomography. Science, 231, 840-843.
https://doi.org/10.1126/science.3945811
[29] Galluzzi, L., Blomgren, K. and Kroemer, G. (2009) Mitochondrial Membrane Permeabilization in Neuronal Injury. Nature Reviews Neuroscience, 10, 481-494.
https://doi.org/10.1038/nrn2665
[30] Burd, I., Welling, J., Kannan, G. and Johnston, M.V. (2016) Excitotoxicity as a Common Mechanism for Fetal Neuronal Injury with Hypoxia and Intrauterine Inflammation. Advances in Pharmacology, 76, 85-101.
https://doi.org/10.1016/bs.apha.2016.02.003
[31] Miller, S.P. and Ferriero, D.M. (2009) From Selective Vulnerability to Connectivity: Insights from Newborn Brain Imaging. Trends in Neurosciences, 32, 496-505.
https://doi.org/10.1016/j.tins.2009.05.010
[32] Back, S.A. and Miller, S.P. (2014) Brain Injury in Premature Neonates: A Primary Cerebral Dysmaturation Disorder? Annals of Neurology, 75, 469-486.
https://doi.org/10.1002/ana.24132
[33] van Tilborg, E., de Theije, C.G.M., van Hal, M., Wagenaar, N., de Vries, L.S., Benders, M.J., et al. (2017) Origin and Dynamics of Oligodendrocytes in the Developing Brain: Implications for Perinatal White Matter Injury. Glia, 66, 221-238.
https://doi.org/10.1002/glia.23256
[34] Batalle, D., O'Muircheartaigh, J., Makropoulos, A., Kelly, C.J., Dimitrova, R., Hughes, E.J., et al. (2019) Different Patterns of Cortical Maturation before and after 38 Weeks Gestational Age Demonstrated by Diffusion MRI in Vivo. NeuroImage, 185, 764-775.
https://doi.org/10.1016/j.neuroimage.2018.05.046
[35] Hagberg, H., Peebles, D. and Mallard, C. (2002) Models of White Matter Injury: Comparison of Infectious, Hypoxic‐ischemic, and Excitotoxic Insults. Mental Retardation and Developmental Disabilities Research Reviews, 8, 30-38.
https://doi.org/10.1002/mrdd.10007
[36] Volpe, J.J., Kinney, H.C., Jensen, F.E. and Rosenberg, P.A. (2011) The Developing Oligodendrocyte: Key Cellular Target in Brain Injury in the Premature Infant. International Journal of Developmental Neuroscience, 29, 423-440.
https://doi.org/10.1016/j.ijdevneu.2011.02.012
[37] Migale, R., Herbert, B.R., Lee, Y.S., Sykes, L., Waddington, S.N., Peebles, D., et al. (2015) Specific Lipopolysaccharide Serotypes Induce Differential Maternal and Neonatal Inflammatory Responses in a Murine Model of Preterm Labor. The American Journal of Pathology, 185, 2390-2401.
https://doi.org/10.1016/j.ajpath.2015.05.015
[38] Elovitz, M.A., Brown, A.G., Breen, K., Anton, L., Maubert, M. and Burd, I. (2011) Intrauterine Inflammation, Insufficient to Induce Parturition, Still Evokes Fetal and Neonatal Brain Injury. International Journal of Developmental Neuroscience, 29, 663-671.
https://doi.org/10.1016/j.ijdevneu.2011.02.011
[39] Paton, M.C.B., McDonald, C.A., Allison, B.J., Fahey, M.C., Jenkin, G. and Miller, S.L. (2017) Perinatal Brain Injury as a Consequence of Preterm Birth and Intrauterine Inflammation: Designing Targeted Stem Cell Therapies. Frontiers in Neuroscience, 11, Article 200.
https://doi.org/10.3389/fnins.2017.00200
[40] Leviton, A., Allred, E.N., Kuban, K.C.K., Hecht, J.L., Onderdonk, A.B., O'Shea, T.M., et al. (2010) Microbiologic and Histologic Characteristics of the Extremely Preterm Infant's Placenta Predict White Matter Damage and Later Cerebral Palsy. The ELGAN Study. Pediatric Research, 67, 95-101.
https://doi.org/10.1203/pdr.0b013e3181bf5fab
[41] Nadeau-Vallée, M., Chin, P., Belarbi, L., Brien, M., Pundir, S., Berryer, M.H., et al. (2017) Antenatal Suppression of IL-1 Protects against Inflammation-Induced Fetal Injury and Improves Neonatal and Developmental Outcomes in Mice. The Journal of Immunology, 198, 2047-2062.
https://doi.org/10.4049/jimmunol.1601600
[42] Bell, M.J. and Hallenbeck, J.M. (2002) Effects of Intrauterine Inflammation on Developing Rat Brain. Journal of Neuroscience Research, 70, 570-579.
https://doi.org/10.1002/jnr.10423
[43] Bell, M.J., Hallenbeck, J.M. and Gallo, V. (2004) Determining the Fetal Inflammatory Response in an Experimental Model of Intrauterine Inflammation in Rats. Pediatric Research, 56, 541-546.
https://doi.org/10.1203/01.pdr.0000139407.89883.6b
[44] Meyer, U., Nyffeler, M., Engler, A., Urwyler, A., Schedlowski, M., Knuesel, I., et al. (2006) The Time of Prenatal Immune Challenge Determines the Specificity of Inflammation-Mediated Brain and Behavioral Pathology. The Journal of Neuroscience, 26, 4752-4762.
https://doi.org/10.1523/jneurosci.0099-06.2006
[45] Burd, I., Balakrishnan, B. and Kannan, S. (2012) Models of Fetal Brain Injury, Intrauterine Inflammation, and Preterm Birth. American Journal of Reproductive Immunology, 67, 287-294.
https://doi.org/10.1111/j.1600-0897.2012.01110.x
[46] Vogt, C., Hailer, N.P., Ghadban, C., Korf, H. and Dehghani, F. (2008) Successful Inhibition of Excitotoxic Neuronal Damage and Microglial Activation after Delayed Application of Interleukin‐1 Receptor Antagonist. Journal of Neuroscience Research, 86, 3314-3321.
https://doi.org/10.1002/jnr.21792
[47] Dommergues, M., Plaisant, F., Verney, C. and Gressens, P. (2003) Early Microglial Activation Following Neonatal Excitotoxic Brain Damage in Mice: A Potential Target for Neuroprotection. Neuroscience, 121, 619-628.
https://doi.org/10.1016/s0306-4522(03)00558-x
[48] Li, J., Baud, O., Vartanian, T., Volpe, J.J. and Rosenberg, P.A. (2005) Peroxynitrite Generated by Inducible Nitric Oxide Synthase and NADPH Oxidase Mediates Microglial Toxicity to Oligodendrocytes. Proceedings of the National Academy of Sciences of the United States of America, 102, 9936-9941.
https://doi.org/10.1073/pnas.0502552102
[49] Vargas, D.L., Nascimbene, C., Krishnan, C., Zimmerman, A.W. and Pardo, C.A. (2004) Neuroglial Activation and Neuroinflammation in the Brain of Patients with Autism. Annals of Neurology, 57, 67-81.
https://doi.org/10.1002/ana.20315
[50] Zerrate, M.C., Pletnikov, M., Connors, S.L., Vargas, D.L., Seidler, F.J., Zimmerman, A.W., et al. (2007) Neuroinflammation and Behavioral Abnormalities after Neonatal Terbutaline Treatment in Rats: Implications for Autism. Journal of Pharmacology and Experimental Therapeutics, 322, 16-22.
https://doi.org/10.1124/jpet.107.121483
[51] Lyall, K., Croen, L., Daniels, J., Fallin, M.D., Ladd-Acosta, C., Lee, B.K., et al. (2017) The Changing Epidemiology of Autism Spectrum Disorders. Annual Review of Public Health, 38, 81-102.
https://doi.org/10.1146/annurev-publhealth-031816-044318
[52] Dudley, D.J., Trautman, M.S. and Mitchell, M.D. (1993) Inflammatory Mediators Regulate Interleukin-8 Production by Cultured Gestational Tissues: Evidence for a Cytokine Network at the Chorio-Decidual Interface. The Journal of Clinical Endocrinology & Metabolism, 76, 404-410.
https://doi.org/10.1210/jcem.76.2.8432783
[53] Kim, C.J., Yoon, B.H., Park, S., Kim, M.H. and Chi, J.G. (2001) Acute Funisitis of Preterm but Not Term Placentas Is Associated with Severe Fetal Inflammatory Response. Human Pathology, 32, 623-629.
https://doi.org/10.1053/hupa.2001.24992
[54] Nussler, A.K., Wittel, U.A., Nussler, N.C. and Beger, H.G. (1999) Leukocytes, the Janus Cells in Inflammatory Disease. Langenbeck's Archives of Surgery, 384, 222-232.
https://doi.org/10.1007/s004230050196
[55] Malaeb, S. and Dammann, O. (2009) Fetal Inflammatory Response and Brain Injury in the Preterm Newborn. Journal of Child Neurology, 24, 1119-1126.
https://doi.org/10.1177/0883073809338066
[56] Anblagan, D., Pataky, R., Evans, M.J., Telford, E.J., Serag, A., Sparrow, S., et al. (2016) Association between Preterm Brain Injury and Exposure to Chorioamnionitis during Fetal Life. Scientific Reports, 6, Article No. 37932.
https://doi.org/10.1038/srep37932
[57] Stoll, B.J., Hansen, N.I., Sánchez, P.J., Faix, R.G., Poindexter, B.B., Van Meurs, K.P. and Higgins, R.D. (2011) Early Onset Neonatal Sepsis: The Burden of Group B Streptococcal and E. coli Disease Continues. Pediatrics, 127, 817-826.
[58] Jung, E., Romero, R., Yeo, L., Diaz-Primera, R., Marin-Concha, J., Para, R., et al. (2020) The Fetal Inflammatory Response Syndrome: The Origins of a Concept, Pathophysiology, Diagnosis, and Obstetrical Implications. Seminars in Fetal and Neonatal Medicine, 25, Article ID: 101146.
https://doi.org/10.1016/j.siny.2020.101146
[59] Fanaroff, J.M. and Donn, S.M. (2020) Medico-Legal Implications of the Fetal Inflammatory Response Syndrome. Seminars in Fetal and Neonatal Medicine, 25, Article ID: 101127.
https://doi.org/10.1016/j.siny.2020.101127
[60] Gilles, F.H. and Leviton, A. (2020) Neonatal White Matter Damage and the Fetal Inflammatory Response. Seminars in Fetal and Neonatal Medicine, 25, Article ID: 101111.
https://doi.org/10.1016/j.siny.2020.101111
[61] Thinkhamrop, J., Hofmeyr, G.J., Adetoro, O., Lumbiganon, P. and Ota, E. (2015) Antibiotic Prophylaxis during the Second and Third Trimester to Reduce Adverse Pregnancy Outcomes and Morbidity. Cochrane Database of Systematic Reviews, No. 6, CD002250.
[62] 张蕾, 周小小, 余海芳. 头部亚低温对新生儿缺氧缺血时脑组织的氧化应激和炎症因子的影响[J]. 医学研究杂志, 2013, 42(5): 176-179.
[63] Tian, S., Yang, H., Xiao, D., Huang, Y., He, G., Ma, H., et al. (2013) Mechanisms of Neuroprotection from Hypoxia-Ischemia (HI) Brain Injury by Up-Regulation of Cytoglobin (CYGB) in a Neonatal Rat Model. Journal of Biological Chemistry, 288, 15988-16003.
https://doi.org/10.1074/jbc.m112.428789
[64] 侯丽敏, 种玉飞, 陈红, 曾非, 尤春景. 高压氧对成年大鼠脑梗死后神经干细胞增殖及分化的影响[J]. 中华物理医学与康复杂志, 2013, 35(11): 839-842.
[65] 董文静, 张伟伟, 朱雅琴. 高压氧对新生儿脑损伤的早期综合康复治疗效果的影响[J]. 武警医学, 2019, 30(11): 945-947, 951.