[1]
|
Lopes, S., Rocha, G. and Guimarães-Pereira, L. (2023) Artificial Intelligence and Its Clinical Application in Anesthesiology: A Systematic Review. Journal of Clinical Monitoring and Computing, 38, 247-259. https://doi.org/10.1007/s10877-023-01088-0
|
[2]
|
Zaouter, C., Hemmerling, T.M., Lanchon, R., Valoti, E., Remy, A., Leuillet, S., et al. (2016) The Feasibility of a Completely Automated Total IV Anesthesia Drug Delivery System for Cardiac Surgery. Anesthesia & Analgesia, 123, 885-893. https://doi.org/10.1213/ane.0000000000001152
|
[3]
|
Tan, A.L., Chiew, C.J., Wang, S., Abdullah, H.R., Lam, S.S., Ong, M.E., et al. (2019) Risk Factors and Reasons for Cancellation within 24 H of Scheduled Elective Surgery in an Academic Medical Centre: A Cohort Study. International Journal of Surgery, 66, 72-78. https://doi.org/10.1016/j.ijsu.2019.04.009
|
[4]
|
Duncan, D. and Wijeysundera, D.N. (2016) Preoperative Cardiac Evaluation and Management of the Patient Undergoing Major Vascular Surgery. International Anesthesiology Clinics, 54, 1-32. https://doi.org/10.1097/aia.0000000000000091
|
[5]
|
Gebremedhn, E.G. and Nagaratnam, V. (2014) Assessment of Patient Satisfaction with the Preoperative Anesthetic Evaluation. Patient Related Outcome Measures, 5, 105-110. https://doi.org/10.2147/prom.s66737
|
[6]
|
赵雪娇, 胡嘉乐, Beverly, G.G., 等. 成人全麻患者麻醉前评估临床实践指南分析[J]. 临床麻醉学杂志, 2018, 34(5): 463-467.
|
[7]
|
Hussain, A.M. and Khan, F.A. (2005) Anaesthetic Reasons for Cancellation of Elective Surgical Inpatients on the Day of Surgery in a Teaching Hospital. JPMA: The Journal of the Pakistan Medical Association, 55, 374-378.
|
[8]
|
Emanuel, A. and Macpherson, R. (2013) The Anaesthetic Pre-Admission Clinic Is Effective in Minimising Surgical Cancellation Rates. Anaesthesia and Intensive Care, 41, 90-94. https://doi.org/10.1177/0310057x1304100115
|
[9]
|
张旭. 低碳概念下的建筑设计策略运用[J]. 工程管理与技术探讨, 2022, 4(1): 111-113.
|
[10]
|
陈珏, 侯旭敏, 娄洁琼, 等. 胸部疾病专科医院麻醉术前评估中心的建设与思考[J]. 中国医药导报, 2023, 20(6): 185-189.
|
[11]
|
朱斌, 汪云飞, 周祥勇, 等. 中国麻醉质量与患者安全调查[J]. 麻醉安全与质控, 2017, 1(2): 71-76.
|
[12]
|
Apfelbaum, J.L., Connis, R.T., Nickinovich, D.G., et al. (2012) Practice Advisory for Preanesthesia Evaluation: An Updated Report by the American Society of Anesthesiologists Task Force on Preanesthesia Evaluation. Anesthesiology, 116, 522-538.
|
[13]
|
Pastides, P., Tokarczyk, S., Ismail, L., Ahearne, D. and Sarraf, K.M. (2011) Preoperative Blood Tests: An Expensive Tick Box Exercise. Journal of Perioperative Practice, 21, 421-424. https://doi.org/10.1177/175045891102101204
|
[14]
|
Phoenix, G.K., Elliott, T., Chan, J.K. and Das, S.K. (2012) Preoperative Blood Tests in Elective General Surgery: Cost and Clinical Implications. Journal of Perioperative Practice, 22, 282-288. https://doi.org/10.1177/175045891202200902
|
[15]
|
Kouki, P., Matsota, P., Christodoulaki, K., et al. (2012) Greek Surgical Patients’ Satisfaction Related to Perioperative Anesthetic Services in an Academic Institute. Patient Preference and Adherence, 6, 569-578. https://doi.org/10.2147/ppa.s34244
|
[16]
|
Le May, S., Hardy, J., Taillefer, M. and Dupuis, G. (2001) Patient Satisfaction with Anesthesia Services. Canadian Journal of Anaesthesia, 48, 153-161. https://doi.org/10.1007/bf03019728
|
[17]
|
罗猛强, 王英伟. 人工智能麻醉系统的开发与应用[J]. 上海医学, 2023, 46(5): 272-277.
|
[18]
|
邵海军, 胡天然, 徐怡琼, 等. 人工智能与麻醉[J]. 上海医学, 2023, 46(5): 265-267.
|
[19]
|
Zhang, L., Fabbri, D., Lasko, T.A., Ehrenfeld, J.M. and Wanderer, J.P. (2018) A System for Automated Determination of Perioperative Patient Acuity. Journal of Medical Systems, 42, Article No. 123. https://doi.org/10.1007/s10916-018-0977-7
|
[20]
|
Wongtangman, K., Aasman, B., Garg, S., Witt, A.S., Harandi, A.A., Azimaraghi, O., et al. (2023) Development and Validation of a Machine Learning Asa-Score to Identify Candidates for Comprehensive Preoperative Screening and Risk Stratification. Journal of Clinical Anesthesia, 87, Article ID: 111103. https://doi.org/10.1016/j.jclinane.2023.111103
|
[21]
|
Liu, R., Stone, T.A.D., Raje, P., Mather, R.V., Santa Cruz Mercado, L.A., Bharadwaj, K., et al. (2024) Development and Multicentre Validation of the FLEX Score: Personalised Preoperative Surgical Risk Prediction Using Attention-Based ICD-10 and Current Procedural Terminology Set Embeddings. British Journal of Anaesthesia, 132, 607-615. https://doi.org/10.1016/j.bja.2023.11.039
|
[22]
|
朱丹红, 郑辉哲, 何斌杰. 基于BP神经网络的肿瘤手术麻醉风险评估模型[J]. 中国现代医药杂志, 2019, 21(6): 10-12.
|
[23]
|
Bihorac, A., Ozrazgat-Baslanti, T., Ebadi, A., Motaei, A., Madkour, M., Pardalos, P.M., et al. (2019) Mysurgeryrisk: Development and Validation of a Machine-Learning Risk Algorithm for Major Complications and Death after Surgery. Annals of Surgery, 269, 652-662. https://doi.org/10.1097/sla.0000000000002706
|
[24]
|
Asai, T., Koga, K. and Vaughan, R.S. (1998) Respiratory Complications Associated with Tracheal Intubation and Extubation. British Journal of Anaesthesia, 80, 767-775. https://doi.org/10.1093/bja/80.6.767
|
[25]
|
Apfelbaum, J.L., Hagberg, C.A., Caplan, R.A., Blitt, C.D., Connis, R.T., Nickinovich, D.G., et al. (2013) Practice Guidelines for Management of the Difficult Airway. Anesthesiology, 118, 251-270. https://doi.org/10.1097/aln.0b013e31827773b2
|
[26]
|
Tobias, J.D. (2018) Preoperative Anesthesia Evaluation. Seminars in Pediatric Surgery, 27, 67-74. https://doi.org/10.1053/j.sempedsurg.2018.02.002
|
[27]
|
Apfelbaum, J.L., Hagberg, C.A., Connis, R.T., Abdelmalak, B.B., Agarkar, M., Dutton, R.P., et al. (2021) 2022 American Society of Anesthesiologists Practice Guidelines for Management of the Difficult Airway. Anesthesiology, 136, 31-81. https://doi.org/10.1097/aln.0000000000004002
|
[28]
|
Burgess, M.B., Schauer, S.G., Hood, R.L. and De Lorenzo, R.A. (2022) The Difficult Airway Redefined. Prehospital and Disaster Medicine, 37, 723-726. https://doi.org/10.1017/s1049023x22001455
|
[29]
|
Tavolara, T.E., Gurcan, M.N., Segal, S. and Niazi, M.K.K. (2021) Identification of Difficult to Intubate Patients from Frontal Face Images Using an Ensemble of Deep Learning Models. Computers in Biology and Medicine, 136, Article ID: 104737. https://doi.org/10.1016/j.compbiomed.2021.104737
|
[30]
|
Wang, G., Li, C., Tang, F., Wang, Y., Wu, S., Zhi, H., et al. (2023) A Fully-Automatic Semi-Supervised Deep Learning Model for Difficult Airway Assessment. Heliyon, 9, e15629. https://doi.org/10.1016/j.heliyon.2023.e15629
|
[31]
|
Xia, M., Jin, C., Zheng, Y., Wang, J., Zhao, M., Cao, S., et al. (2023) Deep Learning‐based Facial Analysis for Predicting Difficult Videolaryngoscopy: A Feasibility Study. Anaesthesia, 79, 399-409. https://doi.org/10.1111/anae.16194
|