[1]
|
Sanchez-Rodriguez, E., Egea-Zorrilla, A., Plaza-Díaz, J., Aragón-Vela, J., Muñoz-Quezada, S., Tercedor-Sánchez, L., et al. (2020) The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. Nutrients, 12, Article 605. https://doi.org/10.3390/nu12030605
|
[2]
|
刘明波, 何新叶, 杨晓红, 等. 《中国心血管健康与疾病报告2023》要点解读[J]. 中国心血管杂志, 2024, 29(4): 305-324.
|
[3]
|
Tang, W.H.W., Kitai, T. and Hazen, S.L. (2017) Gut Microbiota in Cardiovascular Health and Disease. Circulation Research, 120, 1183-1196. https://doi.org/10.1161/circresaha.117.309715
|
[4]
|
Chen, Y., Zhou, J. and Wang, L. (2021) Role and Mechanism of Gut Microbiota in Human Disease. Frontiers in Cellular and Infection Microbiology, 11, Article 625913. https://doi.org/10.3389/fcimb.2021.625913
|
[5]
|
Barko, P.C., McMichael, M.A., Swanson, K.S. and Williams, D.A. (2017) The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine, 32, 9-25. https://doi.org/10.1111/jvim.14875
|
[6]
|
Sender, R., Fuchs, S. and Milo, R. (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14, e1002533. https://doi.org/10.1371/journal.pbio.1002533
|
[7]
|
Emoto, T., Yamashita, T., Kobayashi, T., Sasaki, N., Hirota, Y., Hayashi, T., et al. (2016) Characterization of Gut Microbiota Profiles in Coronary Artery Disease Patients Using Data Mining Analysis of Terminal Restriction Fragment Length Polymorphism: Gut Microbiota Could Be a Diagnostic Marker of Coronary Artery Disease. Heart and Vessels, 32, 39-46. https://doi.org/10.1007/s00380-016-0841-y
|
[8]
|
Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R. and Gordon, J.I. (2006) An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature, 444, 1027-1031. https://doi.org/10.1038/nature05414
|
[9]
|
Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R. and Gordon, J.I. (2009) The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Science Translational Medicine, 1, 6ra14. https://doi.org/10.1126/scitranslmed.3000322
|
[10]
|
朱琳, 蒯铮, 宋乐, 等. 清除肠道共生菌群对ApoE~(-/-)小鼠动脉粥样硬化的影响[J]. 复旦学报(医学版), 2023, 50(6): 820-828.
|
[11]
|
Kozarov, E.V., Dorn, B.R., Shelburne, C.E., Dunn, W.A. and Progulske-Fox, A. (2005) Human Atherosclerotic Plaque Contains Viable Invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, e17-e18. https://doi.org/10.1161/01.atv.0000155018.67835.1a
|
[12]
|
Mitra, S., Drautz-Moses, D.I., Alhede, M., Maw, M.T., Liu, Y., Purbojati, R.W., et al. (2015) In Silico Analyses of Metagenomes from Human Atherosclerotic Plaque Samples. Microbiome, 3, Article No. 38. https://doi.org/10.1186/s40168-015-0100-y
|
[13]
|
Jonsson, A.L. and Bäckhed, F. (2016) Role of Gut Microbiota in Atherosclerosis. Nature Reviews Cardiology, 14, 79-87. https://doi.org/10.1038/nrcardio.2016.183
|
[14]
|
Yu, H., Li, L., Deng, Y., Zhang, G., Jiang, M., Huang, H., et al. (2022) The Relationship between the Number of Stenotic Coronary Arteries and the Gut Microbiome in Coronary Heart Disease Patients. Frontiers in Cellular and Infection Microbiology, 12, Article 903828. https://doi.org/10.3389/fcimb.2022.903828
|
[15]
|
Lerner, A. (2021) Feed Your Microbiome and Your Heart: The Gut-Heart Axis. Frontiers in Bioscience, 26, 468-477. https://doi.org/10.2741/4902
|
[16]
|
Fan, Y. and Pedersen, O. (2020) Gut Microbiota in Human Metabolic Health and Disease. Nature Reviews Microbiology, 19, 55-71. https://doi.org/10.1038/s41579-020-0433-9
|
[17]
|
de Vos, W.M., Tilg, H., Van Hul, M. and Cani, P.D. (2022) Gut Microbiome and Health: Mechanistic Insights. Gut, 71, 1020-1032. https://doi.org/10.1136/gutjnl-2021-326789
|
[18]
|
Wang, C., Ma, Q. and Yu, X. (2023) Bile Acid Network and Vascular Calcification-Associated Diseases: Unraveling the Intricate Connections and Therapeutic Potential. Clinical Interventions in Aging, 18, 1749-1767. https://doi.org/10.2147/cia.s431220
|
[19]
|
Jiang, C., Xie, C., Li, F., Zhang, L., Nichols, R.G., Krausz, K.W., et al. (2014) Intestinal Farnesoid X Receptor Signaling Promotes Nonalcoholic Fatty Liver Disease. Journal of Clinical Investigation, 125, 386-402. https://doi.org/10.1172/jci76738
|
[20]
|
王一华, 蒋玉娇, 门冰欣, 等. 短链脂肪酸与动脉粥样硬化关系的研究进展[J]. 临床心血管病杂志, 2024, 40(8): 675-680.
|
[21]
|
Zhu, Y., Li, Q. and Jiang, H. (2020) Gut Microbiota in Atherosclerosis: Focus on Trimethylamine N‐oxide. APMIS, 128, 353-366. https://doi.org/10.1111/apm.13038
|
[22]
|
Wei, X., Tao, J., Xiao, S., Jiang, S., Shang, E., Zhu, Z., et al. (2018) Xiexin Tang Improves the Symptom of Type 2 Diabetic Rats by Modulation of the Gut Microbiota. Scientific Reports, 8, Article No. 3685. https://doi.org/10.1038/s41598-018-22094-2
|
[23]
|
Zhu, B., Zhai, Y., Ji, M., Wei, Y., Wu, J., Xue, W., et al. (2020) Alisma Orientalis Beverage Treats Atherosclerosis by Regulating Gut Microbiota in ApoE-/- Mice. Frontiers in Pharmacology, 11, Article 570555. https://doi.org/10.3389/fphar.2020.570555
|
[24]
|
袁晓雯, 姜楠, 柏冬, 等. 桂枝汤调控免疫和肠道菌群抗动脉粥样硬化的作用[J]. 中国实验方剂学杂志, 2021, 27(4): 24-29.
|
[25]
|
卢永康, 陈窕圆, 庄贤勉, 等. 基于调节肠道菌群失衡的四君子汤干预心力衰竭大鼠机制研究[J]. 中国中医药信息杂志, 2021, 28(4): 81-87.
|
[26]
|
Liu, F., Wen, J., Hou, J., Zhang, S., Sun, C., Zhou, L., et al. (2021) Gastrodia Remodels Intestinal Microflora to Suppress Inflammation in Mice with Early Atherosclerosis. International Immunopharmacology, 96, Article ID: 107758. https://doi.org/10.1016/j.intimp.2021.107758
|
[27]
|
Liu, J., Yue, S., Yang, Z., Feng, W., Meng, X., Wang, A., et al. (2018) Oral Hydroxysafflor Yellow a Reduces Obesity in Mice by Modulating the Gut Microbiota and Serum Metabolism. Pharmacological Research, 134, 40-50. https://doi.org/10.1016/j.phrs.2018.05.012
|
[28]
|
Liu, S., He, F., Zheng, T., Wan, S., Chen, J., Yang, F., et al. (2021) Ligustrum robustum Alleviates Atherosclerosis by Decreasing Serum TMAO, Modulating Gut Microbiota, and Decreasing Bile Acid and Cholesterol Absorption in Mice. Molecular Nutrition & Food Research, 65, Article ID: 2100014. https://doi.org/10.1002/mnfr.202100014
|
[29]
|
贾艾玲, 张宇航, 刁元元, 等. 刺五加乙酸乙酯部位对ApoE~(-/-)动脉粥样硬化小鼠肠道菌群的影响[J]. 中国实验方剂学杂志, 2022, 28(5): 108-115.
|
[30]
|
王继婷, 吉麟, 范光河, 等. 阿魏酸抗动脉粥样硬化的机制及进展[J]. 现代食品科技, 2023, 39(11): 342-353.
|
[31]
|
付希佳, 左效衢, 王凤志. 脂必泰胶囊对高脂血症合并颈动脉斑块病人肠道菌群的影响[J]. 中西医结合心脑血管病杂志, 2024, 22(15): 2861-2864.
|
[32]
|
芦瑞霞, 林文勇, 靳琪鹏, 等. 灵宝护心丹对动脉粥样硬化小鼠肠道黏膜屏障和肠道菌群的影响[J]. 中草药, 2024, 55(12): 4075-4083.
|
[33]
|
Qi, Y., Liu, W., Yan, X., Zhang, C., Zhang, C., Liu, L., et al. (2022) Tongxinluo May Alleviate Inflammation and Improve the Stability of Atherosclerotic Plaques by Changing the Intestinal Flora. Frontiers in Pharmacology, 13, Article 805266. https://doi.org/10.3389/fphar.2022.805266
|
[34]
|
沈宇平, 陈以国, 成泽东, 等. 基于16S rRNA技术研究电针对动脉粥样硬化兔动脉斑块及肠道菌群科水平的影响[J]. 中华中医药杂志, 2021, 36(3): 1659-1662.
|
[35]
|
Baxter, N.T., Lesniak, N.A., Sinani, H., Schloss, P.D. and Koropatkin, N.M. (2019) The Glucoamylase Inhibitor Acarbose Has a Diet-Dependent and Reversible Effect on the Murine Gut Microbiome. mSphere, 4, e00528-18. https://doi.org/10.1128/msphere.00528-18
|
[36]
|
Liu, B., Zhang, Y., Wang, R., An, Y., Gao, W., Bai, L., et al. (2018) Western Diet Feeding Influences Gut Microbiota Profiles in ApoE Knockout Mice. Lipids in Health and Disease, 17, Article No. 159. https://doi.org/10.1186/s12944-018-0811-8
|