[1]
|
Feng, Y., Lu, J., Jiang, J., Wang, M., Guo, K. and Lin, S. (2024) Berberine: Potential Preventive and Therapeutic Strategies for Human Colorectal Cancer. Cell Biochemistry and Function, 42, e4033. https://doi.org/10.1002/cbf.4033
|
[2]
|
Ashkenazi-Preiser, H., Reuven, O., Uzan-Yulzari, A., Komisarov, S., Cirkin, R., Turjeman, S., et al. (2024) The Cross-Talk between Intestinal Microbiota and Mdscs Fuels Colitis-Associated Cancer Development. Cancer Research Communications, 4, 1063-1081. https://doi.org/10.1158/2767-9764.crc-23-0421
|
[3]
|
Liu, D., Jiang, X., Zhou, L., Song, J. and Zhang, X. (2016) Effects of Probiotics on Intestinal Mucosa Barrier in Patients with Colorectal Cancer after Operation: Meta-Analysis of Randomized Controlled Trials. Medicine, 95, e3342. https://doi.org/10.1097/md.0000000000003342
|
[4]
|
Yue, F., Zeng, X., Wang, Y., Fang, Y., Yue, M., Zhao, X., et al. (2024) Bifidobacterium Longum SX-1326 Ameliorates Gastrointestinal Toxicity after Irinotecan Chemotherapy via Modulating the P53 Signaling Pathway and Brain-Gut Axis. BMC Microbiology, 24, Article No. 8. https://doi.org/10.1186/s12866-023-03152-w
|
[5]
|
Che, Y., Chen, G., Guo, Q., Duan, Y., Feng, H. and Xia, Q. (2023) Gut Microbial Metabolite Butyrate Improves Anticancer Therapy by Regulating Intracellular Calcium Homeostasis. Hepatology, 78, 88-102. https://doi.org/10.1097/hep.0000000000000047
|
[6]
|
何敏均. 2000-2019年中国早发型胃癌和晚发型胃癌流行病学趋势分析[J]. 中华流行病学杂志, 2023, 44(8): 1198-1202.
|
[7]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[8]
|
Fu, C., Chien, W., Chen, Y., Yang, M., Chen, J., Ke, T., et al. (2024) Impacts of Matrix Metalloproteinase-8 Genotypes, Smoking, Alcohol Drinking, And Helicobacter pylori Infection on Gastric Cancer. Anticancer Research, 44, 4225-4232. https://doi.org/10.21873/anticanres.17253
|
[9]
|
Chen, Z., Dong, Y., Wang, N., Liang, H., Du, Y., Ye, X., et al. (2014) A Novel Tri-Allelic Insertion/deletion Polymorphism in the Promoter of p21Waf1/Cip1 and the Association with Gastric Cancer. Genetic Testing and Molecular Biomarkers, 18, 112-116. https://doi.org/10.1089/gtmb.2013.0375
|
[10]
|
Zhou, C., Bisseling, T.M., van der Post, R.S. and Boleij, A. (2024) The Influence of Helicobacter pylori, Proton Pump Inhibitor, and Obesity on the Gastric Microbiome in Relation to Gastric Cancer Development. Computational and Structural Biotechnology Journal, 23, 186-198. https://doi.org/10.1016/j.csbj.2023.11.053
|
[11]
|
Sasaki, A., Takeshima, H., Yamashita, S., Ichita, C., Kawachi, J., Naito, W., et al. (2024) Severe Induction of Aberrant DNA Methylation by Nodular Gastritis in Adults. Journal of Gastroenterology, 59, 442-456. https://doi.org/10.1007/s00535-024-02094-y
|
[12]
|
Ilic, M. and Ilic, I. (2023) Cancer of Colon, Rectum and Anus: The Rising Burden of Disease Worldwide from 1990 to 2019. Journal of Public Health, 46, 20-29. https://doi.org/10.1093/pubmed/fdad197
|
[13]
|
Zhu, Z., Li, J., Fa, Z., Xu, X., Wang, Y., Zhou, J., et al. (2024) Functional Gene Signature Offers a Powerful Tool for Characterizing Clinicopathological Features and Depicting Tumor Immune Microenvironment of Colorectal Cancer. BMC Cancer, 24, Article No. 1199. https://doi.org/10.1186/s12885-024-12996-y
|
[14]
|
Sugai, T., Uesugi, N., Osakabe, M., Yao, T., Yanagawa, N. and Ajioka, Y. (2024) Characterization of Sessile Serrated Adenomas with Dysplasia Including Intramucosal Adenocarcinoma and Colorectal Carcinoma with a Microsatellite Instability Phenotype. Human Pathology, 145, 9-15. https://doi.org/10.1016/j.humpath.2023.12.007
|
[15]
|
Marginean, E.C. and Melosky, B. (2017) Is There a Role for Programmed Death Ligand-1 Testing and Immunotherapy in Colorectal Cancer with Microsatellite Instability? Part II—The Challenge of Programmed Death Ligand-1 Testing and Its Role in Microsatellite Instability-High Colorectal Cancer. Archives of Pathology & Laboratory Medicine, 142, 26-34. https://doi.org/10.5858/arpa.2017-0041-ra
|
[16]
|
Boccuto, L., Tack, J., Ianiro, G., Abenavoli, L. and Scarpellini, E. (2023) Human Genes Involved in the Interaction between Host and Gut Microbiome: Regulation and Pathogenic Mechanisms. Genes, 14, Article 857. https://doi.org/10.3390/genes14040857
|
[17]
|
Dogra, S.K., Doré, J. and Damak, S. (2020) Gut Microbiota Resilience: Definition, Link to Health and Strategies for Intervention. Frontiers in Microbiology, 11, Article 572921. https://doi.org/10.3389/fmicb.2020.572921
|
[18]
|
Kuziel, G.A. and Rakoff-Nahoum, S. (2022) The Gut Microbiome. Current Biology, 32, R257-R264. https://doi.org/10.1016/j.cub.2022.02.023
|
[19]
|
Ejtahed, H., Angoorani, P., Soroush, A., Siadat, S., Shirzad, N., Hasani-Ranjbar, S., et al. (2020) Our Little Friends with Big Roles: Alterations of the Gut Microbiota in Thyroid Disorders. Endocrine, Metabolic & Immune Disorders—Drug Targets, 20, 344-350. https://doi.org/10.2174/1871530319666190930110605
|
[20]
|
Jin, H. and Zhang, C. (2020) High Fat High Calories Diet (HFD) Increase Gut Susceptibility to Carcinogens by Altering the Gut Microbial Community. Journal of Cancer, 11, 4091-4098. https://doi.org/10.7150/jca.43561
|
[21]
|
Wang, M., Ma, Y., Yu, G., Zeng, B., Yang, W., Huang, C., et al. (2024) Integration of Microbiome, Metabolomics and Transcriptome for In-Depth Understanding of Berberine Attenuates AOM/DSS-Induced Colitis-Associated Colorectal Cancer. Biomedicine & Pharmacotherapy, 179, Article ID: 117292. https://doi.org/10.1016/j.biopha.2024.117292
|
[22]
|
Normile, D. (2024) Eliminating a Gut Microbe Could Slash Gastric Cancers. Science, 385, 585-586. https://doi.org/10.1126/science.ads2943
|
[23]
|
Abedi, A., Tafvizi, F., Jafari, P. and Akbari, N. (2024) The Inhibition Effects of Lentilactobacillus buchneri-Derived Membrane Vesicles on AGS and HT-29 Cancer Cells by Inducing Cell Apoptosis. Scientific Reports, 14, Article No. 3100. https://doi.org/10.1038/s41598-024-53773-y
|
[24]
|
Li, J., Peng, F., Huang, H., Xu, X., Guan, Q., Xie, M., et al. (2024) Characterization, Mechanism and in Vivo Validation of Helicobacter pylori Antagonism by Probiotics Screened from Infants’ Feces and Oral Cavity. Food & Function, 15, 1170-1190. https://doi.org/10.1039/d3fo04592g
|
[25]
|
Wang, F., Huang, Y., Zhang, K., Ji, X., Song, Z., Wu, F., et al. (2023) Butyrate Inhibits Gastric Cancer Cells by Inducing Mitochondriamediated Apoptosis. Combinatorial Chemistry & High Throughput Screening, 26, 630-638. https://doi.org/10.2174/1386207325666220720114642
|
[26]
|
Yue, Q., Han, W. and Liu, Z.L. (2024) Nine-gene Prognostic Signature Related to Gut Microflora for Predicting the Survival in Gastric Cancer Patients. Turkish Journal of Gastroenterology, 35, 102-111. https://doi.org/10.5152/tjg.2024.23063
|
[27]
|
He, C., Peng, C., Xu, X., Li, N., Ouyang, Y., Zhu, Y., et al. (2022) Probiotics Mitigate Helicobacter pylori‐Induced Gastric Inflammation and Premalignant Lesions in INS‐GAS Mice with the Modulation of Gastrointestinal Microbiota. Helicobacter, 27, e12898. https://doi.org/10.1111/hel.12898
|
[28]
|
Kaźmierczak-Siedlecka, K., Ruszkowski, J., Skonieczna-Żydecka, K., Jędrzejczak, J., Folwarski, M. and Makarewicz, W. (2020) Gastrointestinal Cancers: The Role of Microbiota in Carcinogenesis and the Role of Probiotics and Microbiota in Anti-Cancer Therapy Efficacy. Central European Journal of Immunology, 45, 476-487. https://doi.org/10.5114/ceji.2020.103353
|
[29]
|
Liu, G., Cao, S., Liu, X., Li, Z., Tian, Y., Zhang, X., et al. (2022) Effect of Perioperative Probiotic Supplements on Postoperative Short-Term Outcomes in Gastric Cancer Patients Receiving Neoadjuvant Chemotherapy: A Double-Blind, Randomized Controlled Trial. Nutrition, 96, Article ID: 111574. https://doi.org/10.1016/j.nut.2021.111574
|
[30]
|
Colombo, F., Illescas, O., Noci, S., Minnai, F., Pintarelli, G., Pettinicchio, A., et al. (2022) Gut Microbiota Composition in Colorectal Cancer Patients Is Genetically Regulated. Scientific Reports, 12, Article No. 11424. https://doi.org/10.1038/s41598-022-15230-6
|
[31]
|
Nie, X., Zhang, T., Huang, X., Gu, C., Zuo, W., Fu, L., et al. (2024) Novel Therapeutic Targets: Bifidobacterium-Mediated Urea Cycle Regulation in Colorectal Cancer. Cell Biology and Toxicology, 40, Article No. 64. https://doi.org/10.1007/s10565-024-09889-y
|
[32]
|
Koliarakis, I., Lagkouvardos, I., Vogiatzoglou, K., Tsamandouras, I., Intze, E., Messaritakis, I., et al. (2024) Circulating Bacterial DNA in Colorectal Cancer Patients: The Potential Role of Fusobacterium Nucleatum. International Journal of Molecular Sciences, 25, Article 9025. https://doi.org/10.3390/ijms25169025
|
[33]
|
Chattopadhyay, I., Dhar, R., Pethusamy, K., Seethy, A., Srivastava, T., Sah, R., et al. (2021) Exploring the Role of Gut Microbiome in Colon Cancer. Applied Biochemistry and Biotechnology, 193, 1780-1799. https://doi.org/10.1007/s12010-021-03498-9
|
[34]
|
Rong, J., Liu, S., Hu, C. and Liu, C. (2018) Single Probiotic Supplement Suppresses Colitis‐associated Colorectal Tumorigenesis by Modulating Inflammatory Development and Microbial Homeostasis. Journal of Gastroenterology and Hepatology, 34, 1182-1192. https://doi.org/10.1111/jgh.14516
|
[35]
|
Wierzbicka, A., Mańkowska-Wierzbicka, D., Mardas, M. and Stelmach-Mardas, M. (2021) Role of Probiotics in Modulating Human Gut Microbiota Populations and Activities in Patients with Colorectal Cancer—A Systematic Review of Clinical Trials. Nutrients, 13, Article 1160. https://doi.org/10.3390/nu13041160
|
[36]
|
Li, Y., He, P., Chen, Y., Hu, J., Deng, B., Liu, C., et al. (2024) Microbial Metabolite Sodium Butyrate Enhances the Anti-Tumor Efficacy of 5-Fluorouracil against Colorectal Cancer by Modulating PINK1/Parkin Signaling and Intestinal Flora. Scientific Reports, 14, Article No. 13063. https://doi.org/10.1038/s41598-024-63993-x
|
[37]
|
Liu, G., Su, L., Kong, C., Huang, L., Zhu, X., Zhang, X., et al. (2024) Improved Diagnostic Efficiency of CRC Subgroups Revealed Using Machine Learning Based on Intestinal Microbes. BMC Gastroenterology, 24, Article No. 315. https://doi.org/10.1186/s12876-024-03408-3
|
[38]
|
Han, S., Zhuang, J., Song, Y., Wu, X., Yu, X., Tao, Y., et al. (2024) Gut Microbial Subtypes and Clinicopathological Value for Colorectal Cancer. Cancer Medicine, 13, e70180. https://doi.org/10.1002/cam4.70180
|
[39]
|
Xu, J., Tian, Y., Zhao, B., Hu, D., Wu, S., Ma, J., et al. (2024) Gut Microbiome Influences Efficacy of Endostatin Combined with PD-1 Blockade against Colorectal Cancer. Molecular Biomedicine, 5, Article No. 37. https://doi.org/10.1186/s43556-024-00200-3
|
[40]
|
Lin, X., Xu, L., Gu, M., Shao, H., Yao, L. and Huang, X. (2024) Gegen Qinlian Decoction Reverses Oxaliplatin Resistance in Colorectal Cancer by Inhibiting YTHDF1-Regulated m6A Modification of GLS1. Phytomedicine, 133, Article ID: 155906. https://doi.org/10.1016/j.phymed.2024.155906
|
[41]
|
Gubatan, J., Holman, D.R., Puntasecca, C.J., Polevoi, D., Rubin, S.J. and Rogalla, S. (2021) Antimicrobial Peptides and the Gut Microbiome in Inflammatory Bowel Disease. World Journal of Gastroenterology, 27, 7402-7422. https://doi.org/10.3748/wjg.v27.i43.7402
|
[42]
|
Liu, J., Wang, H., Zhang, S. and Liu, J. (2024) Identification of Shared and Disease-Specific Intratumoral Microbiome-Host Gene Associations in Gastrointestinal Tumors. Physiological Genomics, 56, 699-710. https://doi.org/10.1152/physiolgenomics.00036.2024
|
[43]
|
Nasr, R., Shamseddine, A., Mukherji, D., Nassar, F. and Temraz, S. (2020) The Crosstalk between Microbiome and Immune Response in Gastric Cancer. International Journal of Molecular Sciences, 21, Article 6586. https://doi.org/10.3390/ijms21186586
|
[44]
|
Yin, T., Zhang, X., Xiong, Y., Li, B., Guo, D., Sha, Z., et al. (2024) Exploring Gut Microbial Metabolites as Key Players in Inhibition of Cancer Progression: Mechanisms and Therapeutic Implications. Microbiological Research, 288, Article ID: 127871. https://doi.org/10.1016/j.micres.2024.127871
|
[45]
|
Wang, S., Kuang, J., Zhang, H., Chen, W., Zheng, X., Wang, J., et al. (2022) Bile Acid-Microbiome Interaction Promotes Gastric Carcinogenesis. Advanced Science, 9, e2200263. https://doi.org/10.1002/advs.202200263
|
[46]
|
Wang, Y., Wang, Y., Han, W., Han, M., Liu, X., Dai, J., et al. (2024) Intratumoral and Fecal Microbiota Reveals Microbial Markers Associated with Gastric Carcinogenesis. Frontiers in Cellular and Infection Microbiology, 14, Article ID: 1397466. https://doi.org/10.3389/fcimb.2024.1397466
|
[47]
|
Wang, B., Wang, S., Zhou, Y., Wang, S., Gao, Y., Liu, H., et al. (2024) Discovery of 2-Aryl-4-Aminoquinazolin-Based LSD1 Inhibitors to Activate Immune Response in Gastric Cancer. Journal of Medicinal Chemistry, 67, 16165-16184. https://doi.org/10.1021/acs.jmedchem.4c00972
|
[48]
|
Ni, H., Chen, Y., Xia, W., Wang, C., Hu, C., Sun, L., et al. (2021) SATB2 Defect Promotes Colitis and Colitis-Associated Colorectal Cancer by Impairing Exchange and Homeostasis of Gut Microbiota. Journal of Crohn’s and Colitis, 15, 2088-2102. https://doi.org/10.1093/ecco-jcc/jjab094
|
[49]
|
Alhinai, E.A., Walton, G.E. and Commane, D.M. (2019) The Role of the Gut Microbiota in Colorectal Cancer Causation. International Journal of Molecular Sciences, 20, Article 5295. https://doi.org/10.3390/ijms20215295
|
[50]
|
Lee, C., Lee, S. and Yoo, W. (2024) Metabolic Interaction between Host and the Gut Microbiota during High-Fat Diet-Induced Colorectal Cancer. Journal of Microbiology, 62, 153-165. https://doi.org/10.1007/s12275-024-00123-2
|