[1]
|
贺湘茗, 李久盛. 用于骨关节炎治疗的丝素蛋白基载镁润滑水凝胶微球的摩擦学性能[J/OL]. 润滑与密封, 2024: 1-7. http://kns.cnki.net/kcms/detail/44.1260.TH.20240305.1457.002.html, 2024-07-16.
|
[2]
|
谢利, 阳婷, 张锐涛, 等. 载细胞微球在牙髓再生研究中的进展及展望[J]. 口腔生物医学, 2021, 12(4): 267-272.
|
[3]
|
Ji, Q., Zheng, Y., Zhang, G., et al. (2019) Single-Cell RNA-Seq Analysis Reveals the Progression of Human Osteoarthritis. Annals of the Rheumatic Diseases, 78, 100-110. https://doi.org/10.1136/annrheumdis-2017-212863
|
[4]
|
Chen, Y., Yu, Y., Wen, Y., et al. (2022) A High-Resolution Route Map Reveals Distinct Stages of Chondrocyte Dedifferentiation for Cartilage Regeneration. Bone Research, 10, Article No. 38. https://doi.org/10.1038/s41413-022-00209-w
|
[5]
|
李鹏飞. 载干细胞水凝胶微球的制备及治疗大鼠脊髓损伤的研究[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2022.
|
[6]
|
元小慧. 旁分泌细胞载体型凝胶微球的构建及其用于创伤修复中炎症调控的研究[D]: [硕士学位论文]. 扬州: 扬州大学, 2022.
|
[7]
|
王琦. 间充质干细胞在海藻酸钠水凝胶中生长、分化及其与软骨细胞共培养的研究[D]: [硕士学位论文]. 上海: 华东理工大学, 2014.
|
[8]
|
郑雅之. 基于台阶乳化微流控技术的水凝胶微球制备及应用[D]: [硕士学位论文]. 南京: 东南大学, 2022.
|
[9]
|
张弩, 吴宇. 温敏性壳聚糖水凝胶复合细胞因子修复兔关节软骨缺损[J]. 中国组织工程研究, 2012, 16(34): 6298-6302.
|
[10]
|
Goa, K.L. and Benfield, P. (1994) Hyaluronic Acid: A Review of its Pharmacology and Use as a Surgical Aid in Ophthalmology, and Its Therapeutic Potential in Joint Disease and Wound Healing. Drugs, 47, 536-566. https://doi.org/10.2165/00003495-199447030-00009
|
[11]
|
Akimoto, J., Nakayama, M., Sakai, K. and Okano, T. (2009) Temperature-Induced Intracellular Uptake of Thermoresponsive Polymeric Micelles. Biomacromolecules, 10, 1331-1336. https://doi.org/10.1021/bm900032r
|
[12]
|
Inoue, H., Inoue, H., Takeda, H., Takahashi, T., Yamamoto, H., Miura, H., et al. (2011) Fibronectin Regulates Proteoglycan Production Balance in Transforming Growth Factor-β1-Induced Chondrogenesis. International Journal of Molecular Medicine, 28, 829-834. https://doi.org/10.3892/ijmm.2011.766
|
[13]
|
Zhou, J., Yu, G., Cao, C., Pang, J. and Chen, X. (2010) Bone Morphogenetic Protein-7 Promotes Chondrogenesis in Human Amniotic Epithelial Cells. International Orthopaedics, 35, 941-948. https://doi.org/10.1007/s00264-010-1116-3
|
[14]
|
黄忠名. SDF-1/IGF-1缓释温敏型水凝胶修复兔关节软骨缺损的研究[D]: [博士学位论文]. 杭州: 浙江大学, 2015.
|
[15]
|
李敏慧. 海藻酸钠/壳聚糖核壳微球用于活性因子的顺序释放研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2020.
|
[16]
|
于炜婷, 郑国爽, 刘袖洞, 李诚. 一种含有类软骨陷窝结构的硬度可调水凝胶支架[P]. 中国专利, CN202111170675.7, 2021-12-21.
|
[17]
|
潘骏. 基于金表面微图案化的PEG水凝胶和生长因子促进MAPCs向关节软骨细胞分化[Z]. 2015-12-19.
|
[18]
|
潘西满. 功能化明胶/丝素蛋白复合冷冻水凝胶支架的制备及其骨软骨修复性能研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2021.
|
[19]
|
黄晨光. 负载鹿茸多肽温敏胶原基水凝胶调控软骨缺损修复的研究[D]: [硕士学位论文]. 福州: 福州大学, 2020.
|
[20]
|
姚俊. 软骨细胞外基质水凝胶负载蜂毒肽在骨关节炎中的作用及机制探究[D]: [硕士学位论文]. 沈阳: 中国医科大学, 2023.
|
[21]
|
Wang, Z., Zhao, Y. and Su, T. (2015) Extraction and Antioxidant Activity of Polysaccharides from Rana Chensinensis Skin. Carbohydrate Polymers, 115, 25-31. https://doi.org/10.1016/j.carbpol.2014.08.082
|
[22]
|
冀璇. 水凝胶/核壳微球复合支架缓释林蛙胶原蛋白肽促进伤口修复的研究[D]: [硕士学位论文]. 长春: 吉林大学, 2021.
|
[23]
|
Brugnano, J.L., Chan, B.K., Seal, B.L. and Panitch, A. (2011) Cell-Penetrating Peptides Can Confer Biological Function: Regulation of Inflammatory Cytokines in Human Monocytes by MK2 Inhibitor Peptides. Journal of Controlled Release, 155, 128-133. https://doi.org/10.1016/j.jconrel.2011.05.007
|
[24]
|
秦晓平, 李涛, 陈诚, 等. 负载抗炎肽的锆-金属有机框架封装于水凝胶促进软骨细胞外基质生成[J]. 陆军军医大学学报, 2022, 44(7): 673-683.
|
[25]
|
Han, Y., Yang, J., Zhao, W., Wang, H., Sun, Y., Chen, Y., et al. (2021) Biomimetic Injectable Hydrogel Microspheres with Enhanced Lubrication and Controllable Drug Release for the Treatment of Osteoarthritis. Bioactive Materials, 6, 3596-3607. https://doi.org/10.1016/j.bioactmat.2021.03.022
|
[26]
|
焦海胜. 可注射型透明质酸钠温敏水凝胶负载倍他米松微球治疗骨关节炎的研究[Z]. 兰州: 兰州大学第二医院, 2017-12-14.
|
[27]
|
桑亚男. 纤维素/壳聚糖复合载药微球的制备及其缓释性能研究[D]: [硕士学位论文]. 咸宁: 湖北科技学院, 2023.
|
[28]
|
扶晓明. BMSCs-庆大霉素-藻酸钙三维缓释微球修复兔膝关节软骨缺损的实验研究[D]: [博士学位论文]. 上海: 第二军医大学, 2012.
|
[29]
|
任朋. 金属-有机骨架-锚定水凝胶微球介导衣康酸细胞内给药治疗骨关节炎[D]: [硕士学位论文]. 蚌埠: 蚌埠医学院, 2023.
|
[30]
|
Sharafabadi, A.K., Abdellahi, M., Kazemi, A., Khandan, A. and Ozada, N. (2017) A Novel and Economical Route for Synthesizing Akermanite (Ca2MgSi2O7) Nano-Bioceramic. Materials Science and Engineering: C, 71, 1072-1078. https://doi.org/10.1016/j.msec.2016.11.021
|
[31]
|
Najafinezhad, A., Abdellahi, M., Ghayour, H., Soheily, A., Chami, A. and Khandan, A. (2017) A Comparative Study on the Synthesis Mechanism, Bioactivity and Mechanical Properties of Three Silicate Bioceramics. Materials Science and Engineering: C, 72, 259-267. https://doi.org/10.1016/j.msec.2016.11.084
|
[32]
|
Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., et al. (2015) Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genomics, Proteomics & Bioinformatics, 13, 17-24. https://doi.org/10.1016/j.gpb.2015.02.001
|
[33]
|
Zheng, W., Chen, Q., Zhang, Y., Xia, R., Gu, X., Hao, Y., et al. (2019) BMP9 Promotes Osteogenic Differentiation of SMSCs by Activating the JNK/Smad2/3 Signaling Pathway. Journal of Cellular Biochemistry, 121, 2851-2863. https://doi.org/10.1002/jcb.29519
|
[34]
|
Suzuki, S., Muneta, T., Tsuji, K., Ichinose, S., Makino, H., Umezawa, A., et al. (2012) Properties and Usefulness of Aggregates of Synovial Mesenchymal Stem Cells as a Source for Cartilage Regeneration. Arthritis Research & Therapy, 14, Article No. R136. https://doi.org/10.1186/ar3869
|
[35]
|
To, K., Zhang, B., Romain, K., Mak, C. and Khan, W. (2019) Synovium-Derived Mesenchymal Stem Cell Transplantation in Cartilage Regeneration: A PRISMA Review of in Vivo Studies. Frontiers in Bioengineering and Biotechnology, 7, Article 314. https://doi.org/10.3389/fbioe.2019.00314
|
[36]
|
Bernard, N.J. (2019) Controlling Chondrocyte Senescence. Nature Reviews Rheumatology, 15, 319. https://doi.org/10.1038/s41584-019-0227-5
|
[37]
|
Kang, D., Shin, J., Cho, Y., Kim, H., Gu, Y., Kim, H., et al. (2019) Stress-Activated miR-204 Governs Senescent Phenotypes of Chondrocytes to Promote Osteoarthritis Development. Science Translational Medicine, 11, eaar6659. https://doi.org/10.1126/scitranslmed.aar6659
|
[38]
|
Jeon, O.H., Wilson, D.R., Clement, C.C., Rathod, S., Cherry, C., Powell, B., et al. (2019) Senescence Cell-Associated Extracellular Vesicles Serve as Osteoarthritis Disease and Therapeutic Markers. JCI Insight, 4, e125019. https://doi.org/10.1172/jci.insight.125019
|
[39]
|
Zhang, Y., Li, S., Jin, P., Shang, T., Sun, R., Lu, L., et al. (2022) Dual Functions of MicroRNA-17 in Maintaining Cartilage Homeostasis and Protection against Osteoarthritis. Nature Communications, 13, Article No. 2447. https://doi.org/10.1038/s41467-022-30119-8
|
[40]
|
Hu, S., Zhao, X., Mao, G., Zhang, Z., Wen, X., Zhang, C., et al. (2019) MicroRNA-455-3p Promotes TGF-β Signaling and Inhibits Osteoarthritis Development by Directly Targeting PAK2. Experimental & Molecular Medicine, 51, 1-13. https://doi.org/10.1038/s12276-019-0322-3
|
[41]
|
Sun, Y., Wu, Q., Dai, K., You, Y. and Jiang, W. (2021) Generating 3D-Cultured Organoids for Pre-Clinical Modeling and Treatment of Degenerative Joint Disease. Signal Transduction and Targeted Therapy, 6, Article No. 380. https://doi.org/10.1038/s41392-021-00675-4
|
[42]
|
Matsuzaki, T., Alvarez-Garcia, O., Mokuda, S., Nagira, K., Olmer, M., Gamini, R., et al. (2018) FoxO Transcription Factors Modulate Autophagy and Proteoglycan 4 in Cartilage Homeostasis and Osteoarthritis. Science Translational Medicine, 10, eaan0746. https://doi.org/10.1126/scitranslmed.aan0746
|
[43]
|
Kreuser, U., Buchert, J., Haase, A., Richter, W. and Diederichs, S. (2020) Initial WNT/β-Catenin Activation Enhanced Mesoderm Commitment, Extracellular Matrix Expression, Cell Aggregation and Cartilage Tissue Yield from Induced Pluripotent Stem Cells. Frontiers in Cell and Developmental Biology, 8, Article 581331. https://doi.org/10.3389/fcell.2020.581331
|
[44]
|
Kennedy, D., Mnich, K., Oommen, D., Chakravarthy, R., Almeida-Souza, L., Krols, M., et al. (2017) HSPB1 Facilitates ERK-Mediated Phosphorylation and Degradation of BIM to Attenuate Endoplasmic Reticulum Stress-Induced Apoptosis. Cell Death & Disease, 8, e3026-e3026. https://doi.org/10.1038/cddis.2017.408
|
[45]
|
Wei, T., Kulkarni, N.H., Zeng, Q.Q., Helvering, L.M., Lin, X., Lawrence, F., et al. (2010) Analysis of Early Changes in the Articular Cartilage Transcriptisome in the Rat Meniscal Tear Model of Osteoarthritis: Pathway Comparisons with the Rat Anterior Cruciate Transection Model and with Human Osteoarthritic Cartilage. Osteoarthritis and Cartilage, 18, 992-1000. https://doi.org/10.1016/j.joca.2010.04.012
|
[46]
|
Ogata, Y., Mabuchi, Y., Yoshida, M., Suto, E.G., Suzuki, N., Muneta, T., et al. (2015) Purified Human Synovium Mesenchymal Stem Cells as a Good Resource for Cartilage Regeneration. PLOS ONE, 10, e0129096. https://doi.org/10.1371/journal.pone.0129096
|
[47]
|
Rossi, G., Manfrin, A. and Lutolf, M.P. (2018) Progress and Potential in Organoid Research. Nature Reviews Genetics, 19, 671-687. https://doi.org/10.1038/s41576-018-0051-9
|
[48]
|
Garreta, E., Kamm, R.D., Chuva de Sousa Lopes, S.M., Lancaster, M.A., Weiss, R., Trepat, X., et al. (2020) Rethinking Organoid Technology through Bioengineering. Nature Materials, 20, 145-155. https://doi.org/10.1038/s41563-020-00804-4
|
[49]
|
Bock, C., Boutros, M., Camp, J.G., Clarke, L., Clevers, H., Knoblich, J.A., et al. (2020) The Organoid Cell Atlas. Nature Biotechnology, 39, 13-17. https://doi.org/10.1038/s41587-020-00762-x
|
[50]
|
Kazemi, A., Abdellahi, M., Khajeh-Sharafabadi, A., Khandan, A. and Ozada, N. (2017) Study of in Vitro Bioactivity and Mechanical Properties of Diopside Nano-Bioceramic Synthesized by a Facile Method Using Eggshell as Raw Material. Materials Science and Engineering: C, 71, 604-610. https://doi.org/10.1016/j.msec.2016.10.044
|
[51]
|
Yi, S.A., Zhang, Y., Rathnam, C., Pongkulapa, T. and Lee, K. (2021) Bioengineering Approaches for the Advanced Organoid Research. Advanced Materials, 33, Article 2007949. https://doi.org/10.1002/adma.202007949
|
[52]
|
Vicente, R., Noël, D., Pers, Y., Apparailly, F. and Jorgensen, C. (2015) Deregulation and Therapeutic Potential of MicroRNAs in Arthritic Diseases. Nature Reviews Rheumatology, 12, 211-220. https://doi.org/10.1038/nrrheum.2015.162
|
[53]
|
Philipot, D., Guérit, D., Platano, D., Chuchana, P., Olivotto, E., Espinoza, F., et al. (2014) P16INK4a and Its Regulator miR-24 Link Senescence and Chondrocyte Terminal Differentiation-Associated Matrix Remodeling in Osteoarthritis. Arthritis Research & Therapy, 16, Article No. R58. https://doi.org/10.1186/ar4494
|