[1]
|
Seo, J., Kim, K.S., Park, J., Cho, J., Chang, H., Fukuda, J., et al. (2021) Metastasis-on-a-Chip Reveals Adipocyte-Derived Lipids Trigger Cancer Cell Migration via HIF-1α Activation in Cancer Cells. Biomaterials, 269, Article 120622. https://doi.org/10.1016/j.biomaterials.2020.120622
|
[2]
|
Lee Isla Crake, R., Phillips, E., Kleffmann, T. and Currie, M.J. (2019) Co-Culture with Human Breast Adipocytes Differentially Regulates Protein Abundance in Breast Cancer Cells. Cancer Genomics-Proteomics, 16, 319-332. https://doi.org/10.21873/cgp.20137
|
[3]
|
Rybinska, I., Mangano, N., Tagliabue, E. and Triulzi, T. (2021) Cancer-Associated Adipocytes in Breast Cancer: Causes and Consequences. International Journal of Molecular Sciences, 22, Article 3775. https://doi.org/10.3390/ijms22073775
|
[4]
|
Balaban, S., Shearer, R.F., Lee, L.S., van Geldermalsen, M., Schreuder, M., Shtein, H.C., et al. (2017) Adipocyte Lipolysis Links Obesity to Breast Cancer Growth: Adipocyte-Derived Fatty Acids Drive Breast Cancer Cell Proliferation and Migration. Cancer & Metabolism, 5, Article No. 1. https://doi.org/10.1186/s40170-016-0163-7
|
[5]
|
Zaoui, M., Morel, M., Ferrand, N., Fellahi, S., Bastard, J., Lamazière, A., et al. (2019) Breast-Associated Adipocytes Secretome Induce Fatty Acid Uptake and Invasiveness in Breast Cancer Cells via CD36 Independently of Body Mass Index, Menopausal Status and Mammary Density. Cancers, 11, Article 2012. https://doi.org/10.3390/cancers11122012
|
[6]
|
Listenberger, L.L., Han, X., Lewis, S.E., Cases, S., Farese, R.V., Ory, D.S., et al. (2003) Triglyceride Accumulation Protects against Fatty Acid-Induced Lipotoxicity. Proceedings of the National Academy of Sciences, 100, 3077-3082. https://doi.org/10.1073/pnas.0630588100
|
[7]
|
Maguire, O.A., Ackerman, S.E., Szwed, S.K., Maganti, A.V., Marchildon, F., Huang, X., et al. (2021) Creatine-Mediated Crosstalk between Adipocytes and Cancer Cells Regulates Obesity-Driven Breast Cancer. Cell Metabolism, 33, 499-512.e6. https://doi.org/10.1016/j.cmet.2021.01.018
|
[8]
|
Munteanu, R., Onaciu, A., Moldovan, C., Zimta, A., Gulei, D., Paradiso, A., et al. (2020) Adipocyte-Based Cell Therapy in Oncology: The Role of Cancer-Associated Adipocytes and Their Reinterpretation as Delivery Platforms. Pharmaceutics, 12, Article 402. https://doi.org/10.3390/pharmaceutics12050402
|
[9]
|
Choi, J., Cha, Y.J. and Koo, J.S. (2018) Adipocyte Biology in Breast Cancer: From Silent Bystander to Active Facilitator. Progress in Lipid Research, 69, 11-20. https://doi.org/10.1016/j.plipres.2017.11.002
|
[10]
|
Sultana, R., Kataki, A.C., Borthakur, B.B., Basumatary, T.K. and Bose, S. (2017) Imbalance in Leptin-Adiponectin Levels and Leptin Receptor Expression as Chief Contributors to Triple Negative Breast Cancer Progression in Northeast India. Gene, 621, 51-58. https://doi.org/10.1016/j.gene.2017.04.021
|
[11]
|
Chung, S.J., Nagaraju, G.P., Nagalingam, A., Muniraj, N., Kuppusamy, P., Walker, A., et al. (2017) ADIPOQ/Adiponectin Induces Cytotoxic Autophagy in Breast Cancer Cells through STK11/LKB1-Mediated Activation of the AMPK-ULK1 Axis. Autophagy, 13, 1386-1403. https://doi.org/10.1080/15548627.2017.1332565
|
[12]
|
Tuna, B.G., Cleary, M. and Dogan, S. (2019) Roles of Adiponectin Signaling Related Proteins in Mammary Tumor Development. Southern Clinics of Istanbul Eurasia, 30, 290-295.
|
[13]
|
Kim, H.S., Jung, M., Choi, S.K., Woo, J., Piao, Y.J., Hwang, E.H., et al. (2018) IL-6-Mediated Cross-Talk between Human Preadipocytes and Ductal Carcinoma in Situ in Breast Cancer Progression. Journal of Experimental & Clinical Cancer Research, 37, Article No. 200. https://doi.org/10.1186/s13046-018-0867-3
|
[14]
|
Bochet, L., Lehuédé, C., Dauvillier, S., Wang, Y.Y., Dirat, B., Laurent, V., et al. (2013) Adipocyte-Derived Fibroblasts Promote Tumor Progression and Contribute to the Desmoplastic Reaction in Breast Cancer. Cancer Research, 73, 5657-5668. https://doi.org/10.1158/0008-5472.can-13-0530
|
[15]
|
Mukherjee, A., Bilecz, A.J. and Lengyel, E. (2022) The Adipocyte Microenvironment and Cancer. Cancer and Metastasis Reviews, 41, 575-587. https://doi.org/10.1007/s10555-022-10059-x
|
[16]
|
Koundouros, N. and Poulogiannis, G. (2019) Reprogramming of Fatty Acid Metabolism in Cancer. British Journal of Cancer, 122, 4-22. https://doi.org/10.1038/s41416-019-0650-z
|
[17]
|
Monaco, M.E. (2017) Fatty Acid Metabolism in Breast Cancer Subtypes. Oncotarget, 8, 29487-29500. https://doi.org/10.18632/oncotarget.15494
|
[18]
|
Hilvo, M., Denkert, C., Lehtinen, L., Müller, B., Brockmöller, S., Seppänen-Laakso, T., et al. (2011) Novel Theranostic Opportunities Offered by Characterization of Altered Membrane Lipid Metabolism in Breast Cancer Progression. Cancer Research, 71, 3236-3245. https://doi.org/10.1158/0008-5472.can-10-3894
|
[19]
|
Hosokawa, Y., Masaki, N., Takei, S., Horikawa, M., Matsushita, S., Sugiyama, E., et al. (2017) Recurrent Triple-Negative Breast Cancer (TNBC) Tissues Contain a Higher Amount of Phosphatidylcholine (32:1) than Non-Recurrent TNBC Tissues. PLOS ONE, 12, e0183724. https://doi.org/10.1371/journal.pone.0183724
|
[20]
|
Li, Q., Xia, J., Yao, Y., Gong, D., Shi, H. and Zhou, Q. (2013) Sulforaphane Inhibits Mammary Adipogenesis by Targeting Adipose Mesenchymal Stem Cells. Breast Cancer Research and Treatment, 141, 317-324. https://doi.org/10.1007/s10549-013-2672-1
|
[21]
|
Teufelsbauer, M., Rath, B., Plangger, A., Staud, C., Nanobashvili, J., Huk, I., et al. (2020) Effects of Metformin on Adipose-Derived Stromal Cell (ADSC)—Breast Cancer Cell Lines Interaction. Life Sciences, 261, Article 118371. https://doi.org/10.1016/j.lfs.2020.118371
|
[22]
|
Sonnenblick, A., Agbor-Tarh, D., Bradbury, I., Di Cosimo, S., Azim, H.A., Fumagalli, D., et al. (2017) Impact of Diabetes, Insulin, and Metformin Use on the Outcome of Patients with Human Epidermal Growth Factor Receptor 2-Positive Primary Breast Cancer: Analysis from the ALTTO Phase III Randomized Trial. Journal of Clinical Oncology, 35, 1421-1429. https://doi.org/10.1200/jco.2016.69.7722
|
[23]
|
Gruslova, A., McClellan, B., Balinda, H.U., Viswanadhapalli, S., Alers, V., Sareddy, G.R., et al. (2021) FASN Inhibition as a Potential Treatment for Endocrine-Resistant Breast Cancer. Breast Cancer Research and Treatment, 187, 375-386. https://doi.org/10.1007/s10549-021-06231-6
|
[24]
|
Zhou, C., He, X., Tong, C., Li, H., Xie, C., Wu, Y., et al. (2022) Cancer-Associated Adipocytes Promote the Invasion and Metastasis in Breast Cancer through LIF/CXCLs Positive Feedback Loop. International Journal of Biological Sciences, 18, 1363-1380. https://doi.org/10.7150/ijbs.65227
|
[25]
|
Liu, Q., Dong, H., Zhao, T., Yao, F., Xu, Y., Chen, B., et al. (2022) Cancer-Associated Adipocytes Release FUCA2 to Promote Aggressiveness in TNBC. Endocrine-Related Cancer, 29, 139-149. https://doi.org/10.1530/erc-21-0243
|
[26]
|
Wu, Q., Li, B., Li, Z., Li, J., Sun, S. and Sun, S. (2019) Cancer-Associated Adipocytes: Key Players in Breast Cancer Progression. Journal of Hematology & Oncology, 12, Article No. 95. https://doi.org/10.1186/s13045-019-0778-6
|
[27]
|
Liu, L., Wu, Y., Zhang, C., Zhou, C., Li, Y., Zeng, Y., et al. (2020) Cancer-Associated Adipocyte-Derived G-CSF Promotes Breast Cancer Malignancy via Stat3 Signaling. Journal of Molecular Cell Biology, 12, 723-737. https://doi.org/10.1093/jmcb/mjaa016
|
[28]
|
King, R.J., Singh, P.K. and Mehla, K. (2022) The Cholesterol Pathway: Impact on Immunity and Cancer. Trends in Immunology, 43, 78-92. https://doi.org/10.1016/j.it.2021.11.007
|
[29]
|
Panaroni, C., Fulzele, K., Mori, T., Siu, K.T., Onyewadume, C., Maebius, A., et al. (2022) Multiple Myeloma Cells Induce Lipolysis in Adipocytes and Uptake Fatty Acids through Fatty Acid Transporter Proteins. Blood, 139, 876-888. https://doi.org/10.1182/blood.2021013832
|
[30]
|
Mazurkiewicz, J., Simiczyjew, A., Dratkiewicz, E., Ziętek, M., Matkowski, R. and Nowak, D. (2021) Stromal Cells Present in the Melanoma Niche Affect Tumor Invasiveness and Its Resistance to Therapy. International Journal of Molecular Sciences, 22, Article 529. https://doi.org/10.3390/ijms22020529
|
[31]
|
Zhao, C., Wu, M., Zeng, N., Xiong, M., Hu, W., Lv, W., et al. (2020) Cancer-Associated Adipocytes: Emerging Supporters in Breast Cancer. Journal of Experimental & Clinical Cancer Research, 39, Article No. 156. https://doi.org/10.1186/s13046-020-01666-z
|
[32]
|
Carracedo, A., Cantley, L.C. and Pandolfi, P.P. (2013) Cancer Metabolism: Fatty Acid Oxidation in the Limelight. Nature Reviews Cancer, 13, 227-232. https://doi.org/10.1038/nrc3483
|
[33]
|
Samudio, I., Fiegl, M. and Andreeff, M. (2009) Mitochondrial Uncoupling and the Warburg Effect: Molecular Basis for the Reprogramming of Cancer Cell Metabolism. Cancer Research, 69, 2163-2166. https://doi.org/10.1158/0008-5472.can-08-3722
|
[34]
|
Wang, T., Fahrmann, J.F., Lee, H., Li, Y., Tripathi, S.C., Yue, C., et al. (2018) JAK/STAT3-Regulated Fatty Acid β-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metabolism, 27, 136-150.e5. https://doi.org/10.1016/j.cmet.2017.11.001
|
[35]
|
Tan, Z., Xiao, L., Tang, M., Bai, F., Li, J., Li, L., et al. (2018) Targeting CPT1A-Mediated Fatty Acid Oxidation Sensitizes Nasopharyngeal Carcinoma to Radiation Therapy. Theranostics, 8, 2329-2347. https://doi.org/10.7150/thno.21451
|
[36]
|
Schafer, Z.T., Grassian, A.R., Song, L., Jiang, Z., Gerhart-Hines, Z., Irie, H.Y., et al. (2009) Antioxidant and Oncogene Rescue of Metabolic Defects Caused by Loss of Matrix Attachment. Nature, 461, 109-113. https://doi.org/10.1038/nature08268
|
[37]
|
Roongta, U.V., Pabalan, J.G., Wang, X., Ryseck, R., Fargnoli, J., Henley, B.J., et al. (2011) Cancer Cell Dependence on Unsaturated Fatty Acids Implicates Stearoyl-CoA Desaturase as a Target for Cancer Therapy. Molecular Cancer Research, 9, 1551-1561. https://doi.org/10.1158/1541-7786.mcr-11-0126
|
[38]
|
Luo, X., Cheng, C., Tan, Z., Li, N., Tang, M., Yang, L., et al. (2017) Emerging Roles of Lipid Metabolism in Cancer Metastasis. Molecular Cancer, 16, Article No. 76. https://doi.org/10.1186/s12943-017-0646-3
|
[39]
|
Igal, R.A. (2011) Roles of StearoylCoA Desaturase-1 in the Regulation of Cancer Cell Growth, Survival and Tumorigenesis. Cancers, 3, 2462-2477. https://doi.org/10.3390/cancers3022462
|
[40]
|
Huang, S.C., Everts, B., Ivanova, Y., O’Sullivan, D., Nascimento, M., Smith, A.M., et al. (2014) Cell-Intrinsic Lysosomal Lipolysis Is Essential for Alternative Activation of Macrophages. Nature Immunology, 15, 846-855. https://doi.org/10.1038/ni.2956
|
[41]
|
Nieman, K.M., Romero, I.L., Van Houten, B. and Lengyel, E. (2013) Adipose Tissue and Adipocytes Support Tumorigenesis and Metastasis. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1831, 1533-1541. https://doi.org/10.1016/j.bbalip.2013.02.010
|
[42]
|
Patsoukis, N., Bardhan, K., Chatterjee, P., Sari, D., Liu, B., Bell, L.N., et al. (2015) PD-1 Alters T-Cell Metabolic Reprogramming by Inhibiting Glycolysis and Promoting Lipolysis and Fatty Acid Oxidation. Nature Communications, 6, Article No. 6692. https://doi.org/10.1038/ncomms7692
|
[43]
|
Marchesini, N., Luberto, C. and Hannun, Y.A. (2003) Biochemical Properties of Mammalian Neutral Sphingomyelinase2 and Its Role in Sphingolipid Metabolism. Journal of Biological Chemistry, 278, 13775-13783. https://doi.org/10.1074/jbc.m212262200
|
[44]
|
Scaglia, N. and Igal, R.A. (2008) Inhibition of Stearoyl-CoA Desaturase 1 Expression in Human Lung Adenocarcinoma Cells Impairs Tumorigenesis. International Journal of Oncology, 33, 839-850.
|
[45]
|
Li, J., Gu, D., Lee, S.S., Song, B., Bandyopadhyay, S., Chen, S., et al. (2016) Abrogating Cholesterol Esterification Suppresses Growth and Metastasis of Pancreatic Cancer. Oncogene, 35, 6378-6388. https://doi.org/10.1038/onc.2016.168
|
[46]
|
Heravi, G., Jang, H., Wang, X., Long, Z., Peng, Z., Kim, S., et al. (2022) Fatty Acid Desaturase 1 (FADS1) Is a Cancer Marker for Patient Survival and a Potential Novel Target for Precision Cancer Treatment. Frontiers in Oncology, 12, Article 942798. https://doi.org/10.3389/fonc.2022.942798
|
[47]
|
Ferraro, G.B., Ali, A., Luengo, A., Kodack, D.P., Deik, A., Abbott, K.L., et al. (2021) Fatty Acid Synthesis Is Required for Breast Cancer Brain Metastasis. Nature Cancer, 2, 414-428. https://doi.org/10.1038/s43018-021-00183-y
|
[48]
|
Quail, D.F. and Joyce, J.A. (2017) The Microenvironmental Landscape of Brain Tumors. Cancer Cell, 31, 326-341. https://doi.org/10.1016/j.ccell.2017.02.009
|
[49]
|
Kiss, M., Van Gassen, S., Movahedi, K., Saeys, Y. and Laoui, D. (2018) Myeloid Cell Heterogeneity in Cancer: Not a Single Cell Alike. Cellular Immunology, 330, 188-201. https://doi.org/10.1016/j.cellimm.2018.02.008
|
[50]
|
Röhrig, F. and Schulze, A. (2016) The Multifaceted Roles of Fatty Acid Synthesis in Cancer. Nature Reviews Cancer, 16, 732-749. https://doi.org/10.1038/nrc.2016.89
|
[51]
|
Pascual, G., Avgustinova, A., Mejetta, S., Martín, M., Castellanos, A., Attolini, C.S., et al. (2016) Targeting Metastasis-Initiating Cells through the Fatty Acid Receptor CD36. Nature, 541, 41-45. https://doi.org/10.1038/nature20791
|
[52]
|
Weng, Y., Tseng, H., Chen, Y., Shen, P., Al Haq, A.T., Chen, L., et al. (2019) MCT-1/miR-34a/IL-6/IL-6R Signaling Axis Promotes EMT Progression, Cancer Stemness and M2 Macrophage Polarization in Triple-Negative Breast Cancer. Molecular Cancer, 18, Article No. 42. https://doi.org/10.1186/s12943-019-0988-0
|
[53]
|
Biswas, S.K. and Mantovani, A. (2010) Macrophage Plasticity and Interaction with Lymphocyte Subsets: Cancer as a Paradigm. Nature Immunology, 11, 889-896. https://doi.org/10.1038/ni.1937
|