脂肪酸代谢促进乳腺癌转移
Fatty Acid Metabolism Promotes Breast Cancer Metastasis
DOI: 10.12677/acm.2024.14112889, PDF, HTML, XML,    科研立项经费支持
作者: 张 研, 王怡娉, 赵俊豪, 李佩瑶, 马玉华, 曲少华*:暨南大学附属第一医院乳腺外科,广东 广州;杨 眉:暨南大学附属第一医院乳腺外科,广东 广州;江门市妇幼保健院乳腺外科,广东 江门
关键词: 脂代谢乳腺癌癌症相关脂肪细胞脂肪酸合成转移机制靶向治疗Lipid Metabolism Breast Cancer Cancer-Associated Adipocytes Fatty Acid Synthesis Metastatic Mechanisms Targeted Therapy
摘要: 脂代谢在乳腺癌转移过程中发挥着重要作用。癌症相关脂肪细胞(cancer-associated adipocyte, CAA)通过分泌游离脂肪酸(FA)和脂质代谢产物,直接参与乳腺癌细胞的脂肪酸代谢,提供能量支持并增强肿瘤的侵袭能力。CAA还分泌多种脂肪因子和炎症因子,激活信号通路,进一步推动乳腺癌的侵袭和转移。与此同时,乳腺癌细胞通过上调脂肪酸合成和氧化的关键酶,增强其侵袭性和转移能力。脂肪酸代谢不仅在原发性肿瘤中起到促进癌细胞侵袭的作用,还在脑、肺等远处转移部位中促进乳腺癌细胞的定植和扩展。本文综述了脂代谢在乳腺癌转移进展中的重要作用,并探讨了脂代谢相关的潜在治疗靶点,为乳腺癌的个性化治疗提供了新的思路。
Abstract: Lipid metabolism plays an important role in breast cancer metastasis. Cancer-associated adipocyte (CAA) is directly involved in fatty acid metabolism of breast cancer cells by secreting free fatty acids (FA) and lipid metabolites, which provide energy support and enhance tumor invasion. CAA also secretes a variety of adipokines and inflammatory factors that activate signaling pathways that further promote breast cancer invasion and metastasis. At the same time, breast cancer cells enhance their invasiveness and metastatic ability by upregulating key enzymes for fatty acid synthesis and oxidation. Fatty acid metabolism plays a role in promoting cancer cell invasion not only in primary tumors, but also in colonization and expansion of breast cancer cells in distant metastatic sites such as brain and lung. This paper reviews the important role of lipid metabolism in the metastatic progression of breast cancer and discusses the potential therapeutic targets related to lipid metabolism, which provides new ideas for personalized treatment of breast cancer.
文章引用:张研, 杨眉, 王怡娉, 赵俊豪, 李佩瑶, 马玉华, 曲少华. 脂肪酸代谢促进乳腺癌转移[J]. 临床医学进展, 2024, 14(11): 366-375. https://doi.org/10.12677/acm.2024.14112889

1. 癌症相关脂肪细胞与乳腺癌细胞之间的信息串扰

肿瘤微环境中的脂肪细胞(癌症相关脂肪细胞,CAA)与乳腺癌细胞之间的复杂相互作用在乳腺癌的生长和侵袭中起着关键作用。近年来,生物活性脂质作为这种细胞间串联的重要媒介,越来越受到关注[1]

1.1. 癌相关脂肪细胞–乳腺癌与游离FA的相互作用

乳腺癌细胞(如MCF7和MDA-MB-231)与CAA共同培养时,乳腺癌细胞中PGK1表达显著上调,且脂肪细胞的脂滴数量和大小减少,表明乳腺癌细胞能显著影响脂肪细胞的代谢[2] [3]。乳腺癌细胞通过激活ATGL和HSL促进脂肪分解,释放更多游离脂肪酸,这些脂肪酸通过CD36受体进入乳腺癌细胞后储存在脂滴中以防脂毒性[4]-[6]。在细胞内,游离脂肪酸通过ATGL依赖的途径进入线粒体进行氧化(FAO),伴随CPT1A水平上升,提升氧化效率[6]。尽管FAO与ATP的产生脱钩,但导致AMP/ATP比率上升,从而激活AMPK通路,促进乳腺癌细胞的代谢重编程和侵袭性转移[3]。此外,游离脂肪酸还能为肿瘤细胞提供生长能量。肥胖模型中,CAA分泌的肌酸通过SLC27A4进入乳腺癌细胞,促使磷酸肌酸合成,即使缺氧条件下也能为癌症进展提供能量,加速乳腺癌恶化[7] [8]

1.2. 癌相关脂肪细胞–乳腺癌与游离FA的相互作用

CAA不仅通过游离脂肪酸(FA)与乳腺癌细胞进行代谢交互,还通过分泌多种脂肪因子(如瘦素和脂联素)和炎症因子(如白细胞介素-6 (IL-6))来调节肿瘤微环境,促进乳腺癌的进展和转移。

1.2.1. 脂肪因子的作用

瘦素和脂联素是脂肪细胞分泌的主要脂肪因子,在乳腺癌进展中扮演重要角色。瘦素通过Ob-Rb受体激活多条信号通路,如JAK/STAT和PI3K/AKT通路,促进乳腺癌细胞增殖和迁移[9] [10]。瘦素水平升高与乳腺癌的侵袭性及不良预后密切相关[10]。相反,脂联素通常被认为具有抗癌作用。脂联素通过AdipoR1和AdipoR2激活AMPK和PPAR通路,抑制乳腺癌细胞增殖并促进其凋亡[11] [12]。脂联素还通过STK11/LKB1介导的AMPK-ULK1轴诱导自噬[11]。然而,乳腺癌患者中脂联素水平较低,削弱了其抗肿瘤作用[10]

1.2.2. 炎症因子的作用

CAA可分泌多种炎症因子,如IL-6、TNF-和MCP-1,这些因子通过改变肿瘤微环境促进乳腺癌进展[13] [14]。IL-6通过与IL-6R结合,激活JAK/STAT3通路,促进乳腺癌细胞存活、增殖和迁移[13]。IL-6不仅作用于癌细胞,还通过与癌前病变细胞相互作用,推动肿瘤进展[13]。TNF-通过激活NF-κB通路促进癌细胞增殖和存活,增强其侵袭能力[14]。MCP-1主要通过招募单核细胞和巨噬细胞进入肿瘤微环境,增强炎症反应和肿瘤生长[14]

1.3. 癌相关脂肪细胞–乳腺癌与游离FA的相互作用

CAA在乳腺癌的微环境中扮演着重要角色,其表型变化显著影响乳腺癌的进展和转移。CAA在乳腺癌组织中表现出高度的可塑性,能够响应肿瘤微环境中的多种信号而改变其功能特性[15]。这些变化不仅促进肿瘤细胞的生长和侵袭,还通过多种机制影响乳腺癌的转移潜能。

1.3.1. CAA的形态和功能变化

CAA的表型变化主要包括脂质代谢的重编程和分泌谱的改变。研究表明,CAA会经历脂肪细胞去分化过程,表现出较低的脂滴含量和较高的趋化因子、细胞因子和基质降解酶(如MMPs)的分泌[16] [17]。这种去分化状态使CAA更容易与乳腺癌细胞相互作用,支持肿瘤的生长和转移。

1.3.2. CAA在脂质代谢中的角色

脂质代谢的重编程是CAA表型变化的一个关键特征。Hilvo等人的研究指出,乳腺癌的进展伴随着膜脂质代谢的显著变化,这为癌细胞提供了必要的能量和构建细胞膜的原料[18]。此外,Hosokawa等研究发现,复发性三阴性乳腺癌组织中含有较高量的磷脂酰胆碱(32:1),这可能与CAA活性有关[19]

1.3.3. CAA与肿瘤细胞的相互作用

CAA通过分泌多种脂肪因子和炎症因子,直接影响乳腺癌细胞的行为。Koundouros和Poulogiannis的研究表明,癌症微环境中的脂肪酸代谢重编程可以促进肿瘤细胞的侵袭和转移[16]。Monaco的研究进一步指出,不同亚型的乳腺癌在脂肪酸代谢方面存在显著差异,这表明CAA可能通过特定的代谢途径影响不同类型乳腺癌的进展[17]

1.3.4. CAA与乳腺癌转移

CAA在乳腺癌转移过程中起着重要作用。Li等的研究显示,抑制乳腺脂肪生成的化合物如萝卜硫素可以有效阻止乳腺癌的进展[20]。此外,Teufelsbauer等人发现,二甲双胍能够影响脂肪来源的间质细胞与乳腺癌细胞的相互作用,从而抑制肿瘤生长和转移[21]

2. 原发灶浸润性乳腺癌细胞的脂肪酸代谢

2.1. 脂肪酸合成促进乳腺癌侵袭

脂肪酸代谢在乳腺癌的进展中扮演着至关重要的角色,尤其是在原发部位浸润性乳腺癌细胞中,脂肪酸合成途径被高度激活[22]。脂肪酸合成酶(FASN)是这一途径中的关键酶,其在乳腺癌细胞中的高表达与侵袭性和转移性显著相关。研究表明,抑制FASN的活性可以有效减缓乳腺癌的生长和转移,提示脂肪酸合成在乳腺癌进展中具有重要的促进作用[23]

在乳腺癌微环境中,癌相关脂肪细胞(CAA)通过分泌脂肪酸和脂质代谢产物,直接影响乳腺癌细胞的脂肪酸代谢[24]。CAA分泌的游离脂肪酸(FA)被乳腺癌细胞摄取后,可以作为重要的能量来源,并参与膜脂质的合成,从而促进细胞的增殖和侵袭[24]。此外,CAA通过旁分泌作用释放多种脂肪因子和炎症因子,这些因子可以激活乳腺癌细胞中的脂肪酸代谢途径,进一步增强其侵袭性。例如,炎症因子如肿瘤坏死因子-α (TNF-)和白细胞介素-6 (IL-6)可以通过激活信号转导和转录激活因子3 (STAT3)途径,促进FASN的表达和活性,从而增加脂肪酸的合成[25]

脂肪酸代谢的重编程不仅提供了乳腺癌细胞生长所需的能量,还通过生成多种代谢产物,影响细胞信号传导和基因表达[24] [26]。例如,脂肪酸合成过程中生成的脂肪酸衍生物如丙二醛(MDA)和4-羟基壬醛(4-HNE)可以通过形成共价修饰,改变蛋白质的功能并影响细胞信号传导,进而促进肿瘤的侵袭和转移。

2.2. 胆固醇合成促进乳腺癌转移

2.2.1. 胆固醇的代谢与乳腺癌

胆固醇在乳腺癌细胞中的代谢重编程同样是促进其进展和转移的重要因素之一。胆固醇不仅是细胞膜的重要组成部分,还参与多种生物学过程,包括信号传导、膜蛋白定位和细胞间相互作用。研究表明,乳腺癌细胞中胆固醇合成途径的活性显著增强,合成酶如3-羟基-3-甲基戊二酸单酰辅酶A还原酶(HMGCR)的表达水平显著升高,这与癌细胞的高侵袭性和转移性密切相关[22]

2.2.2. 循环中的胆固醇代谢

CAA通过多种机制影响乳腺癌细胞的胆固醇代谢。首先,CAA分泌的细胞因子和趋化因子,如白细胞介素-6 (IL-6)和肿瘤坏死因子-α (TNF-α),可激活Janus激酶/信号转导及转录激活因子(JAK/STAT)通路,从而增强乳腺癌细胞的胆固醇合成[27]。此外,CAA释放的脂质代谢产物可直接提供胆固醇前体物质,这些前体物质被乳腺癌细胞摄取后可进一步转化为胆固醇,增强其膜结构和功能,从而促进癌细胞在血液中的存活和循环[24]

2.2.3. 种植中的胆固醇代谢

在乳腺癌细胞转移到远端器官(如脑、肺)并进行种植时,胆固醇代谢也发挥了关键作用。胆固醇代谢过程中生成的生物活性产物如氧化胆固醇(oxysterol)可以作为转录因子LXR (肝X受体)的配体,激活LXR信号通路,调控下游基因的表达,从而促进癌细胞在新环境中的侵袭和种植[28]。研究发现,氧化胆固醇可以通过增强细胞外基质的降解和重塑,促进肿瘤细胞的迁移和种植[29]

2.2.4. 靶向胆固醇代谢的治疗策略

鉴于胆固醇代谢在乳腺癌进展和转移中的重要作用,靶向这一代谢途径的治疗策略具有潜在的临床应用前景。抑制HMGCR的药物如他汀类药物已经在心血管疾病中广泛应用,并显示出一定的抗癌潜力。临床前研究表明,他汀类药物可以显著抑制乳腺癌细胞的生长和转移,提示其在乳腺癌治疗中的潜在应用[30]。此外,靶向氧化胆固醇生成和LXR信号通路的药物也正在被开发,有望为乳腺癌的治疗提供新的方向[31]

2.3. 脂肪酸氧化过程促进乳腺癌侵袭

脂肪酸氧化(FAO),作为细胞代谢的关键路径之一,在乳腺癌侵袭和转移中发挥着至关重要的作用。研究表明,乳腺癌细胞通过增强脂肪酸氧化能力,可以获得更多的能量和代谢中间产物,从而促进其侵袭和转移。首先,脂肪酸氧化过程为乳腺癌细胞提供了大量的ATP,这种能量供应不仅满足了快速增殖的需求,还支持了细胞的迁移和侵袭活动。此外,FAO生成的NADPH和其他还原当量,有助于维持细胞内的氧化还原平衡,并参与脂质合成和抗氧化反应,这对于肿瘤细胞在氧化压力下的生存具有重要意义[32]

2.3.1. 循环中的FAO作用

脂肪酸氧化过程在癌细胞的循环过程中尤为重要。乳腺癌细胞通过增强FAO获得足够的能量来维持细胞的存活,并使其能够在血液循环中保持活力,从而增加其在远端器官中的种植几率。脂肪酸氧化限速酶——肉碱棕榈酰转移酶1 (CPT1)在侵袭性乳腺癌中高度表达,研究表明,抑制CPT1的活性可有效减少乳腺癌细胞的迁移和侵袭能力[33]。这种抑制作用验证了FAO在癌细胞循环和存活中的关键作用。

2.3.2. 种植中的FAO作用

乳腺癌细胞在转移到远端器官进行种植时,脂肪酸氧化继续为其提供能量支持,保障细胞存活并增强其种植能力。通过FAO生成的能量和代谢物,乳腺癌细胞能够适应新的微环境,促进癌细胞的种植和侵袭。研究表明,FAO在这种过程中不仅仅为乳腺癌细胞提供能量,还通过维持抗氧化平衡,帮助肿瘤细胞在高压的转移环境中存活[34]

2.3.3. 对抗免疫的FAO作用

FAO通过影响肿瘤微环境中的免疫细胞,间接增强了乳腺癌细胞的侵袭性。尤其是在免疫抑制的建立过程中,FAO在M2型巨噬细胞极化中起着关键作用。M2型巨噬细胞能够分泌抗炎因子,促进组织修复并抑制免疫反应,从而支持肿瘤的进展[35]。FAO的增强使M2型巨噬细胞代谢活性增加,进一步帮助其在肿瘤微环境中建立免疫抑制状态,削弱了免疫系统对肿瘤的监视作用[36]

2.4. 脂肪酸不饱和促进乳腺癌的侵袭

脂肪酸不饱和(Fatty Acid Desaturation)是乳腺癌细胞代谢中的一个关键过程,通过改变细胞膜的流动性和信号传导,影响癌细胞的侵袭和转移能力。研究表明,脂肪酸不饱和酶,如脂肪酸去饱和酶-1 (Stearoyl-CoA Desaturase-1, SCD1),在乳腺癌细胞中的高表达与肿瘤侵袭性和预后不良密切相关[37]

2.4.1. 循环中的脂肪酸不饱和作用

脂肪酸不饱和通过改变癌细胞膜的流动性和结构,使癌细胞更容易在循环中存活和迁移。SCD1通过催化饱和脂肪酸转化为单不饱和脂肪酸(MUFAs),增加了膜的柔软性和灵活性,增强了癌细胞的迁移能力。这种膜结构变化使得癌细胞在循环中能够更好地适应不同环境,进而促进其侵袭能力[38]

2.4.2. 种植中的脂肪酸不饱和作用

在癌细胞的种植过程中,脂肪酸不饱和通过调控信号通路促进乳腺癌细胞的侵袭性。例如,SCD1通过激活PI3K/AKT和ERK信号通路,增强了乳腺癌细胞的增殖、存活以及迁移能力[39]。这些信号通路还调控了基质金属蛋白酶的表达,从而进一步增强了癌细胞在新环境中的种植和侵袭能力[40]

2.4.3. 对抗免疫的脂肪酸不饱和作用

脂肪酸不饱和过程不仅影响乳腺癌细胞的代谢,还调节了肿瘤微环境中的免疫细胞功能。高表达SCD1的乳腺癌细胞通过分泌细胞因子如IL-6和IL-8,促进肿瘤相关巨噬细胞(TAMs)向M2型极化,进而抑制免疫系统对肿瘤细胞的识别和杀伤[41]。这种免疫逃逸机制进一步帮助癌细胞避免免疫系统的监视,增加其侵袭性[42]

3. 转移性定植过程中的脂肪酸代谢

在乳腺癌转移过程中,癌细胞必须适应并在新的微环境中定植,而脂肪酸代谢在这一过程中起到了至关重要的作用。脂肪酸不仅为癌细胞提供能源,还通过调控细胞信号通路和代谢重编程促进其存活和增殖。在转移定植过程中,脂肪酸代谢的改变对转移癌细胞的适应具有深远的影响[43] [44]

3.1. 脑转移

脑转移是乳腺癌患者预后最差的并发症之一。脑组织中的丰富脂肪酸供应和独特的微环境对癌细胞的定植和生存具有重要影响。脑组织中脂肪酸含量丰富,尤其是长链多不饱和脂肪酸(PUFAs)如花生四烯酸(AA)和二十碳五烯酸(EPA)。这些脂肪酸在维持神经细胞膜结构和功能、信号传导及抗氧化反应中扮演重要角色。乳腺癌细胞通过调节脂肪酸代谢使其适应脑组织微环境,从而促进定植和生存[45] [46]

3.1.1. 脂肪酸合成与脑转移

在脑转移过程中,乳腺癌细胞通常表现出脂肪酸合成能力的增强。脂肪酸合成酶(FASN)是这一过程中的关键酶,研究表明,FASN在脑转移乳腺癌细胞中高表达,并且抑制FASN可以显著减少脑转移的发生率。这表明脂肪酸合成在脑转移过程中起到了促进作用[47]。此外,FASN的活性还与PI3K/AKT信号通路的激活密切相关,这一信号通路在癌细胞存活和增殖中扮演重要角色。

3.1.2. 脂肪酸氧化与脑转移

脂肪酸氧化(FAO)为癌细胞提供ATP和NADPH,支持其在脑中的生存和增殖。研究表明,脑转移乳腺癌细胞中FAO酶的表达显著增加,如肉碱棕榈酰转移酶1 (CPT1)。FAO不仅提供能量,还通过调控氧化还原状态和应激反应,保护癌细胞免受脑微环境中的氧化应激损伤[32]。因此,FAO的增强是乳腺癌细胞在脑组织中成功定植的关键因素之一。

3.1.3. 脂肪酸代谢与免疫逃逸

脑组织中的免疫微环境与脂肪酸代谢密切相关。CAA与乳腺癌细胞相互作用,分泌促炎因子如IL-6、IL-1β和TNF-α,激活JAK/STAT3和PI3K/AKT信号通路,促进癌细胞的免疫逃逸和转移[48]。此外,CAA通过脂肪酸氧化诱导巨噬细胞向M2型极化,抑制抗肿瘤免疫反应,进一步促进脑转移乳腺癌细胞的存活和增殖[49]

3.2. 肺转移

在乳腺癌转移过程中,CAA通过脂肪酸代谢发挥了至关重要的作用,尤其是在肺部的转移过程中。脂肪酸代谢的改变不仅为癌细胞提供能量,还通过多种机制促进癌细胞的存活、增殖和侵袭。

3.2.1. 脂肪酸代谢的重塑

乳腺癌细胞进入肺部微环境后,需要适应新的能量需求和代谢状态。肺部富含脂肪细胞和大量的脂质储备,癌细胞能够利用这些脂质通过β-氧化过程产生能量。β-氧化不仅为癌细胞提供ATP,还生成多种代谢中间产物,这些产物是癌细胞生长和信号传导所必需的[50],这种代谢重塑使得癌细胞能够在新的微环境中迅速适应并繁殖。

3.2.2. CAA与脂肪酸氧化

CAA在转移过程中通过分泌多种脂肪因子(如脂肪酸结合蛋白4 (FABP4))和炎症因子(如肿瘤坏死因子-α (TNF-α)和白细胞介素-6 (IL-6)),促进乳腺癌细胞的脂肪酸氧化。这些因子通过激活癌细胞内的AMPK和信号通路,增强脂肪酸氧化的效率。此外,IL-6通过JAK/STAT3信号通路,进一步增强癌细胞对脂肪酸氧化的依赖性,从而促进肿瘤细胞在肺部的定植和扩散[51]

3.2.3. CAA的促血管生成作用

CAA通过分泌IL-8等促血管生成因子,直接促进肿瘤周围的血管生成。新生血管为快速增殖的肿瘤细胞提供氧气和营养,同时也为癌细胞的扩散提供通道。特别是在肺部,丰富的血管网络能够更好地支持肿瘤细胞的生长需求[52]。此外,CAA通过分泌高水平的脂肪酸结合蛋白(FABP)和其他脂肪因子,进一步增强了肿瘤细胞的脂肪酸氧化能力。

3.2.4. CAA与炎症反应

CAA分泌的炎症因子(如IL-1β和TNF-α)能够诱导局部炎症反应,激活肺部纤维母细胞和内皮细胞,导致基质重塑和血管新生。这种炎症反应不仅为癌细胞提供了更有利的生长环境,还通过抑制局部免疫监视功能,促进肿瘤免疫逃逸[41]。此外,CAA分泌的脂肪因子和炎症因子能够改变肿瘤微环境中免疫细胞的极化状态,进一步支持癌细胞的存活和扩散。

3.2.5. 免疫调控与CAA

CAA通过调控肿瘤微环境中的免疫细胞,特别是巨噬细胞的极化状态,影响乳腺癌细胞的肺部转移。CAA分泌的脂肪酸和腺苷能够诱导巨噬细胞向M2型表型极化,这种表型的巨噬细胞具有抗炎和免疫抑制作用,能够抑制T细胞的活化,促进肿瘤免疫逃逸[53]。此外,CAA还能够通过分泌脂肪酸和其他脂质分子,影响自然杀伤细胞(NK细胞)和T细胞的功能,进一步削弱免疫系统对癌细胞的杀伤能力。

4. 总结与展望

本综述探讨了脂代谢在乳腺癌转移中的关键作用,重点分析了癌症相关脂肪细胞(CAA)与乳腺癌细胞之间的串扰,以及乳腺癌细胞通过脂代谢重编程推动侵袭和转移的机制。CAA通过释放游离脂肪酸(FA)和分泌脂肪因子,增强乳腺癌细胞的能量供应及侵袭性。乳腺癌细胞通过激活脂肪酸合成、胆固醇合成和脂肪酸氧化等途径提高存活能力。脂肪酸合成酶(FASN)与癌细胞侵袭性密切相关,而胆固醇在细胞膜和信号传导中的作用促进了癌细胞的转移。脂肪酸氧化为乳腺癌细胞提供能量并支持其免疫逃逸能力,而脂肪酸不饱和增强了细胞膜的流动性,进一步促进癌细胞的侵袭。在乳腺癌的脑和肺转移中,脂代谢适应了不同器官的微环境,增强了癌细胞的定植能力。未来研究应集中开发针对脂代谢关键酶的抑制剂,并结合个性化治疗策略,干预肿瘤微环境,为乳腺癌精准治疗提供新方向。

致 谢

在此,衷心感谢所有在本文研究过程中给予支持与帮助的同学和导师。特别感谢曲少华教授在论文写作和设计上的宝贵指导,感谢所有参与者为该研究的顺利完成所做出的贡献。

基金项目

本研究得到了广东省基础与应用研究基金(2023A1515010553)、广州市科技计划项目(2023A03J1005)的支持。

NOTES

*通讯作者。

参考文献

[1] Seo, J., Kim, K.S., Park, J., Cho, J., Chang, H., Fukuda, J., et al. (2021) Metastasis-on-a-Chip Reveals Adipocyte-Derived Lipids Trigger Cancer Cell Migration via HIF-1α Activation in Cancer Cells. Biomaterials, 269, Article 120622.
https://doi.org/10.1016/j.biomaterials.2020.120622
[2] Lee Isla Crake, R., Phillips, E., Kleffmann, T. and Currie, M.J. (2019) Co-Culture with Human Breast Adipocytes Differentially Regulates Protein Abundance in Breast Cancer Cells. Cancer Genomics-Proteomics, 16, 319-332.
https://doi.org/10.21873/cgp.20137
[3] Rybinska, I., Mangano, N., Tagliabue, E. and Triulzi, T. (2021) Cancer-Associated Adipocytes in Breast Cancer: Causes and Consequences. International Journal of Molecular Sciences, 22, Article 3775.
https://doi.org/10.3390/ijms22073775
[4] Balaban, S., Shearer, R.F., Lee, L.S., van Geldermalsen, M., Schreuder, M., Shtein, H.C., et al. (2017) Adipocyte Lipolysis Links Obesity to Breast Cancer Growth: Adipocyte-Derived Fatty Acids Drive Breast Cancer Cell Proliferation and Migration. Cancer & Metabolism, 5, Article No. 1.
https://doi.org/10.1186/s40170-016-0163-7
[5] Zaoui, M., Morel, M., Ferrand, N., Fellahi, S., Bastard, J., Lamazière, A., et al. (2019) Breast-Associated Adipocytes Secretome Induce Fatty Acid Uptake and Invasiveness in Breast Cancer Cells via CD36 Independently of Body Mass Index, Menopausal Status and Mammary Density. Cancers, 11, Article 2012.
https://doi.org/10.3390/cancers11122012
[6] Listenberger, L.L., Han, X., Lewis, S.E., Cases, S., Farese, R.V., Ory, D.S., et al. (2003) Triglyceride Accumulation Protects against Fatty Acid-Induced Lipotoxicity. Proceedings of the National Academy of Sciences, 100, 3077-3082.
https://doi.org/10.1073/pnas.0630588100
[7] Maguire, O.A., Ackerman, S.E., Szwed, S.K., Maganti, A.V., Marchildon, F., Huang, X., et al. (2021) Creatine-Mediated Crosstalk between Adipocytes and Cancer Cells Regulates Obesity-Driven Breast Cancer. Cell Metabolism, 33, 499-512.e6.
https://doi.org/10.1016/j.cmet.2021.01.018
[8] Munteanu, R., Onaciu, A., Moldovan, C., Zimta, A., Gulei, D., Paradiso, A., et al. (2020) Adipocyte-Based Cell Therapy in Oncology: The Role of Cancer-Associated Adipocytes and Their Reinterpretation as Delivery Platforms. Pharmaceutics, 12, Article 402.
https://doi.org/10.3390/pharmaceutics12050402
[9] Choi, J., Cha, Y.J. and Koo, J.S. (2018) Adipocyte Biology in Breast Cancer: From Silent Bystander to Active Facilitator. Progress in Lipid Research, 69, 11-20.
https://doi.org/10.1016/j.plipres.2017.11.002
[10] Sultana, R., Kataki, A.C., Borthakur, B.B., Basumatary, T.K. and Bose, S. (2017) Imbalance in Leptin-Adiponectin Levels and Leptin Receptor Expression as Chief Contributors to Triple Negative Breast Cancer Progression in Northeast India. Gene, 621, 51-58.
https://doi.org/10.1016/j.gene.2017.04.021
[11] Chung, S.J., Nagaraju, G.P., Nagalingam, A., Muniraj, N., Kuppusamy, P., Walker, A., et al. (2017) ADIPOQ/Adiponectin Induces Cytotoxic Autophagy in Breast Cancer Cells through STK11/LKB1-Mediated Activation of the AMPK-ULK1 Axis. Autophagy, 13, 1386-1403.
https://doi.org/10.1080/15548627.2017.1332565
[12] Tuna, B.G., Cleary, M. and Dogan, S. (2019) Roles of Adiponectin Signaling Related Proteins in Mammary Tumor Development. Southern Clinics of Istanbul Eurasia, 30, 290-295.
[13] Kim, H.S., Jung, M., Choi, S.K., Woo, J., Piao, Y.J., Hwang, E.H., et al. (2018) IL-6-Mediated Cross-Talk between Human Preadipocytes and Ductal Carcinoma in Situ in Breast Cancer Progression. Journal of Experimental & Clinical Cancer Research, 37, Article No. 200.
https://doi.org/10.1186/s13046-018-0867-3
[14] Bochet, L., Lehuédé, C., Dauvillier, S., Wang, Y.Y., Dirat, B., Laurent, V., et al. (2013) Adipocyte-Derived Fibroblasts Promote Tumor Progression and Contribute to the Desmoplastic Reaction in Breast Cancer. Cancer Research, 73, 5657-5668.
https://doi.org/10.1158/0008-5472.can-13-0530
[15] Mukherjee, A., Bilecz, A.J. and Lengyel, E. (2022) The Adipocyte Microenvironment and Cancer. Cancer and Metastasis Reviews, 41, 575-587.
https://doi.org/10.1007/s10555-022-10059-x
[16] Koundouros, N. and Poulogiannis, G. (2019) Reprogramming of Fatty Acid Metabolism in Cancer. British Journal of Cancer, 122, 4-22.
https://doi.org/10.1038/s41416-019-0650-z
[17] Monaco, M.E. (2017) Fatty Acid Metabolism in Breast Cancer Subtypes. Oncotarget, 8, 29487-29500.
https://doi.org/10.18632/oncotarget.15494
[18] Hilvo, M., Denkert, C., Lehtinen, L., Müller, B., Brockmöller, S., Seppänen-Laakso, T., et al. (2011) Novel Theranostic Opportunities Offered by Characterization of Altered Membrane Lipid Metabolism in Breast Cancer Progression. Cancer Research, 71, 3236-3245.
https://doi.org/10.1158/0008-5472.can-10-3894
[19] Hosokawa, Y., Masaki, N., Takei, S., Horikawa, M., Matsushita, S., Sugiyama, E., et al. (2017) Recurrent Triple-Negative Breast Cancer (TNBC) Tissues Contain a Higher Amount of Phosphatidylcholine (32:1) than Non-Recurrent TNBC Tissues. PLOS ONE, 12, e0183724.
https://doi.org/10.1371/journal.pone.0183724
[20] Li, Q., Xia, J., Yao, Y., Gong, D., Shi, H. and Zhou, Q. (2013) Sulforaphane Inhibits Mammary Adipogenesis by Targeting Adipose Mesenchymal Stem Cells. Breast Cancer Research and Treatment, 141, 317-324.
https://doi.org/10.1007/s10549-013-2672-1
[21] Teufelsbauer, M., Rath, B., Plangger, A., Staud, C., Nanobashvili, J., Huk, I., et al. (2020) Effects of Metformin on Adipose-Derived Stromal Cell (ADSC)—Breast Cancer Cell Lines Interaction. Life Sciences, 261, Article 118371.
https://doi.org/10.1016/j.lfs.2020.118371
[22] Sonnenblick, A., Agbor-Tarh, D., Bradbury, I., Di Cosimo, S., Azim, H.A., Fumagalli, D., et al. (2017) Impact of Diabetes, Insulin, and Metformin Use on the Outcome of Patients with Human Epidermal Growth Factor Receptor 2-Positive Primary Breast Cancer: Analysis from the ALTTO Phase III Randomized Trial. Journal of Clinical Oncology, 35, 1421-1429.
https://doi.org/10.1200/jco.2016.69.7722
[23] Gruslova, A., McClellan, B., Balinda, H.U., Viswanadhapalli, S., Alers, V., Sareddy, G.R., et al. (2021) FASN Inhibition as a Potential Treatment for Endocrine-Resistant Breast Cancer. Breast Cancer Research and Treatment, 187, 375-386.
https://doi.org/10.1007/s10549-021-06231-6
[24] Zhou, C., He, X., Tong, C., Li, H., Xie, C., Wu, Y., et al. (2022) Cancer-Associated Adipocytes Promote the Invasion and Metastasis in Breast Cancer through LIF/CXCLs Positive Feedback Loop. International Journal of Biological Sciences, 18, 1363-1380.
https://doi.org/10.7150/ijbs.65227
[25] Liu, Q., Dong, H., Zhao, T., Yao, F., Xu, Y., Chen, B., et al. (2022) Cancer-Associated Adipocytes Release FUCA2 to Promote Aggressiveness in TNBC. Endocrine-Related Cancer, 29, 139-149.
https://doi.org/10.1530/erc-21-0243
[26] Wu, Q., Li, B., Li, Z., Li, J., Sun, S. and Sun, S. (2019) Cancer-Associated Adipocytes: Key Players in Breast Cancer Progression. Journal of Hematology & Oncology, 12, Article No. 95.
https://doi.org/10.1186/s13045-019-0778-6
[27] Liu, L., Wu, Y., Zhang, C., Zhou, C., Li, Y., Zeng, Y., et al. (2020) Cancer-Associated Adipocyte-Derived G-CSF Promotes Breast Cancer Malignancy via Stat3 Signaling. Journal of Molecular Cell Biology, 12, 723-737.
https://doi.org/10.1093/jmcb/mjaa016
[28] King, R.J., Singh, P.K. and Mehla, K. (2022) The Cholesterol Pathway: Impact on Immunity and Cancer. Trends in Immunology, 43, 78-92.
https://doi.org/10.1016/j.it.2021.11.007
[29] Panaroni, C., Fulzele, K., Mori, T., Siu, K.T., Onyewadume, C., Maebius, A., et al. (2022) Multiple Myeloma Cells Induce Lipolysis in Adipocytes and Uptake Fatty Acids through Fatty Acid Transporter Proteins. Blood, 139, 876-888.
https://doi.org/10.1182/blood.2021013832
[30] Mazurkiewicz, J., Simiczyjew, A., Dratkiewicz, E., Ziętek, M., Matkowski, R. and Nowak, D. (2021) Stromal Cells Present in the Melanoma Niche Affect Tumor Invasiveness and Its Resistance to Therapy. International Journal of Molecular Sciences, 22, Article 529.
https://doi.org/10.3390/ijms22020529
[31] Zhao, C., Wu, M., Zeng, N., Xiong, M., Hu, W., Lv, W., et al. (2020) Cancer-Associated Adipocytes: Emerging Supporters in Breast Cancer. Journal of Experimental & Clinical Cancer Research, 39, Article No. 156.
https://doi.org/10.1186/s13046-020-01666-z
[32] Carracedo, A., Cantley, L.C. and Pandolfi, P.P. (2013) Cancer Metabolism: Fatty Acid Oxidation in the Limelight. Nature Reviews Cancer, 13, 227-232.
https://doi.org/10.1038/nrc3483
[33] Samudio, I., Fiegl, M. and Andreeff, M. (2009) Mitochondrial Uncoupling and the Warburg Effect: Molecular Basis for the Reprogramming of Cancer Cell Metabolism. Cancer Research, 69, 2163-2166.
https://doi.org/10.1158/0008-5472.can-08-3722
[34] Wang, T., Fahrmann, J.F., Lee, H., Li, Y., Tripathi, S.C., Yue, C., et al. (2018) JAK/STAT3-Regulated Fatty Acid β-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metabolism, 27, 136-150.e5.
https://doi.org/10.1016/j.cmet.2017.11.001
[35] Tan, Z., Xiao, L., Tang, M., Bai, F., Li, J., Li, L., et al. (2018) Targeting CPT1A-Mediated Fatty Acid Oxidation Sensitizes Nasopharyngeal Carcinoma to Radiation Therapy. Theranostics, 8, 2329-2347.
https://doi.org/10.7150/thno.21451
[36] Schafer, Z.T., Grassian, A.R., Song, L., Jiang, Z., Gerhart-Hines, Z., Irie, H.Y., et al. (2009) Antioxidant and Oncogene Rescue of Metabolic Defects Caused by Loss of Matrix Attachment. Nature, 461, 109-113.
https://doi.org/10.1038/nature08268
[37] Roongta, U.V., Pabalan, J.G., Wang, X., Ryseck, R., Fargnoli, J., Henley, B.J., et al. (2011) Cancer Cell Dependence on Unsaturated Fatty Acids Implicates Stearoyl-CoA Desaturase as a Target for Cancer Therapy. Molecular Cancer Research, 9, 1551-1561.
https://doi.org/10.1158/1541-7786.mcr-11-0126
[38] Luo, X., Cheng, C., Tan, Z., Li, N., Tang, M., Yang, L., et al. (2017) Emerging Roles of Lipid Metabolism in Cancer Metastasis. Molecular Cancer, 16, Article No. 76.
https://doi.org/10.1186/s12943-017-0646-3
[39] Igal, R.A. (2011) Roles of StearoylCoA Desaturase-1 in the Regulation of Cancer Cell Growth, Survival and Tumorigenesis. Cancers, 3, 2462-2477.
https://doi.org/10.3390/cancers3022462
[40] Huang, S.C., Everts, B., Ivanova, Y., O’Sullivan, D., Nascimento, M., Smith, A.M., et al. (2014) Cell-Intrinsic Lysosomal Lipolysis Is Essential for Alternative Activation of Macrophages. Nature Immunology, 15, 846-855.
https://doi.org/10.1038/ni.2956
[41] Nieman, K.M., Romero, I.L., Van Houten, B. and Lengyel, E. (2013) Adipose Tissue and Adipocytes Support Tumorigenesis and Metastasis. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1831, 1533-1541.
https://doi.org/10.1016/j.bbalip.2013.02.010
[42] Patsoukis, N., Bardhan, K., Chatterjee, P., Sari, D., Liu, B., Bell, L.N., et al. (2015) PD-1 Alters T-Cell Metabolic Reprogramming by Inhibiting Glycolysis and Promoting Lipolysis and Fatty Acid Oxidation. Nature Communications, 6, Article No. 6692.
https://doi.org/10.1038/ncomms7692
[43] Marchesini, N., Luberto, C. and Hannun, Y.A. (2003) Biochemical Properties of Mammalian Neutral Sphingomyelinase2 and Its Role in Sphingolipid Metabolism. Journal of Biological Chemistry, 278, 13775-13783.
https://doi.org/10.1074/jbc.m212262200
[44] Scaglia, N. and Igal, R.A. (2008) Inhibition of Stearoyl-CoA Desaturase 1 Expression in Human Lung Adenocarcinoma Cells Impairs Tumorigenesis. International Journal of Oncology, 33, 839-850.
[45] Li, J., Gu, D., Lee, S.S., Song, B., Bandyopadhyay, S., Chen, S., et al. (2016) Abrogating Cholesterol Esterification Suppresses Growth and Metastasis of Pancreatic Cancer. Oncogene, 35, 6378-6388.
https://doi.org/10.1038/onc.2016.168
[46] Heravi, G., Jang, H., Wang, X., Long, Z., Peng, Z., Kim, S., et al. (2022) Fatty Acid Desaturase 1 (FADS1) Is a Cancer Marker for Patient Survival and a Potential Novel Target for Precision Cancer Treatment. Frontiers in Oncology, 12, Article 942798.
https://doi.org/10.3389/fonc.2022.942798
[47] Ferraro, G.B., Ali, A., Luengo, A., Kodack, D.P., Deik, A., Abbott, K.L., et al. (2021) Fatty Acid Synthesis Is Required for Breast Cancer Brain Metastasis. Nature Cancer, 2, 414-428.
https://doi.org/10.1038/s43018-021-00183-y
[48] Quail, D.F. and Joyce, J.A. (2017) The Microenvironmental Landscape of Brain Tumors. Cancer Cell, 31, 326-341.
https://doi.org/10.1016/j.ccell.2017.02.009
[49] Kiss, M., Van Gassen, S., Movahedi, K., Saeys, Y. and Laoui, D. (2018) Myeloid Cell Heterogeneity in Cancer: Not a Single Cell Alike. Cellular Immunology, 330, 188-201.
https://doi.org/10.1016/j.cellimm.2018.02.008
[50] Röhrig, F. and Schulze, A. (2016) The Multifaceted Roles of Fatty Acid Synthesis in Cancer. Nature Reviews Cancer, 16, 732-749.
https://doi.org/10.1038/nrc.2016.89
[51] Pascual, G., Avgustinova, A., Mejetta, S., Martín, M., Castellanos, A., Attolini, C.S., et al. (2016) Targeting Metastasis-Initiating Cells through the Fatty Acid Receptor CD36. Nature, 541, 41-45.
https://doi.org/10.1038/nature20791
[52] Weng, Y., Tseng, H., Chen, Y., Shen, P., Al Haq, A.T., Chen, L., et al. (2019) MCT-1/miR-34a/IL-6/IL-6R Signaling Axis Promotes EMT Progression, Cancer Stemness and M2 Macrophage Polarization in Triple-Negative Breast Cancer. Molecular Cancer, 18, Article No. 42.
https://doi.org/10.1186/s12943-019-0988-0
[53] Biswas, S.K. and Mantovani, A. (2010) Macrophage Plasticity and Interaction with Lymphocyte Subsets: Cancer as a Paradigm. Nature Immunology, 11, 889-896.
https://doi.org/10.1038/ni.1937