Q值引导FS-LASIK与SMILE对眼高阶像差的影响
Effects of Q Value Guided FS-LASIK and SMILE on Ocular Higher-Older Aberration
DOI: 10.12677/acm.2024.14112901, PDF, HTML, XML,   
作者: 郭海怡, 何政瑾:暨南大学附属爱尔眼科医院,广东 广州;马代金*:长沙爱尔眼科医院屈光手术科,湖南 长沙
关键词: 高阶像差小切口角膜基质透镜取出术准分子激光原位角膜磨镶术Higher Order Aberrations Small Incision Lenticule Extraction Excimer Laser in Situ Keratomileusis
摘要: 目的:比较Q值引导飞秒激光辅助的准分子激光原位角膜磨镶术(Femtosecond laser-assisted excimer laser in situ keratomileusis, FS-LASIK)与小切口角膜基质透镜取出术(Small incision lenticule extraction, SMILE)对眼高阶像差的影响,为屈光手术方式的选择提供参考。方法:回顾性非随机对照研究。选取2022年7月至2022年10月接受飞秒激光屈光手术的近视患者72例(138眼)。按手术方式分为Q值引导FS-LASIK组42例(78眼),SMILE组30例(60眼)。Q值引导的FS-LASIK采用Custom Q切削模式。术后随访3个月,比较2组患者术后3个月水平彗差、垂直彗差、三叶草、总球差、总彗差以及总高阶像差。采用独立样本t检验进行分析。结果:术后3个月SMILE组患者水平彗差高于Q值引导FS-LASIK组(t = −3.598, P = 0),而全眼总高阶像差(t = 3.373, P = 0.001)、总彗差(t = 4.101, P = 0)、总球差(t = 2.229, P = 0.028)均低于Q值引导FS-LASIK组,差异有统计学意义;两组患者垂直彗差与总三叶草无统计学差异。结论:两种手术相比,SMILE会引起更多水平彗差,Q值引导FS-LASIK引起更多总彗差,总球差以及总高阶像差。
Abstract: Objective: To study the effects of Q value guided FS-LASIK and SMILE on the higher-order aberrations of the eye, and to provide a reference for the choice of refractive surgery. Methods: A retrospective non-randomized controlled study was conducted. 72 patients (138 eyes) with myopia and astigmatism who underwent femtosecond laser refractive surgery from July 2022 to October 2022 at Refractive Centre were selected. They were divided into 42 cases (78 eyes) in the Q value guided FS-LASIK group and 30 cases (60 eyes) in the SMILE group according to the surgical modality chosen by the patients. The patients in the 2 groups were followed up for 3 months after surgery, and the horizontal coma, the vertical coma, the trefoil, the overall spherical aberrations, the overall coma aberrations, and the overall higher-order aberrations of the whole eye were compared between the 2 groups at 3 months after surgery. Independent samples t-test was used for analysis. Results: The horizontal Coma of patients in the SMILE group was higher than that of the Q value guided FS-LASIK group at 3 months postoperatively (t = −3.598, P = 0) whereas the overall higher-order aberration of the whole eye (t = 3.373, P = 0.001), the overall Coma (t = 4.101, P = 0), and the overall SA (t = 2.229, P = 0.028) were lower than those of the Q value guided group, and the difference was statistically significant; there was no statistically significant difference in vertical Coma and total Trefoil between the two groups. Conclusions: Compared with the two surgeries, SMILE caused more horizontal coma, and Q value guided FS-LASIK caused more overall coma, overall spherical aberrations, and overall higher-order aberrations.
文章引用:郭海怡, 何政瑾, 马代金. Q值引导FS-LASIK与SMILE对眼高阶像差的影响[J]. 临床医学进展, 2024, 14(11): 458-463. https://doi.org/10.12677/acm.2024.14112901

1. 引言

近年来,角膜屈光手术在矫正屈光不正方面得到了广泛应用。随着科技的进步,手术的安全性和有效性已得到了良好保证,但仍有少数人术后存在眩光等视觉质量下降的问题[1],而高阶像差的增加是视觉质量下降的重要原因。患者术后高阶像差的来源包括三个方面,术前存在的高阶像差、术中产生的高阶像差和术后伤口愈合产生的高阶像差[2]。术中产生的高阶像差主要与角膜屈光手术方式、角膜瓣的制作、激光切削模式、光区大小、偏中心切削等因素有关。

目前,主要的角膜屈光手术方式包括飞秒激光辅助的准分子激光原位角膜磨镶术(Femtosecond laser-assisted excimer laser in situ keratomileusis, FS-LASIK)和飞秒激光小切口基质透镜取出术(Small incision lenticule extraction, SMILE)。而采用Custom Q切削模式的Q值引导FS-LASIK,由于优化了激光切削曲线,补偿了眼球旋转和Kappa角,理论上可以减少术后高阶像差的增加。SMILE因为不需制作角膜瓣,可以减少角膜瓣引起的高阶像差,但术中人工定中心,也可能因为偏中心而增加高阶像差。文献已有相关报道,但结果并不一致[3] [4]。本项目通过对Q值引导FS-LASIK、SMILE两种手术方式对眼高阶像差影响的研究,旨在为临床工作中屈光手术方式的选择提供参考。

2. 材料与方法

2.1. 对象

选取2022年7月至2022年10月在接受飞秒激光屈光手术的近视散光患者72例(138眼)。按患者选择的手术方式不同分为Q值引导FS-LASIK组42例,SMILE组30例。所有患者术前检查结果符合角膜屈光手术和眼内屈光手术质量控制标准。本研究遵循赫尔辛基宣言,经伦理委员会同意,术前患者知情并签署知情同意书。纳入标准:① 年龄 ≥ 18岁;② 等效球镜SE ≤ −7.00;③ 经检查后符合角膜屈光手术标准;④ 软性角膜接触镜停戴1周以上,硬性角膜接触镜停戴3周以上,角膜塑形镜停戴3个月以上;⑤ 屈光度稳定两年以上。排除既往有眼病史、眼部手术史、眼部外伤史及全身疾病史患者。

2.2. 检查方法

所有患者进行常规屈光手术术前检查,包括裸 眼视力(UCVA)、裂隙灯显微镜、散瞳检影及综合验光、眼压、超声角膜厚度、波前像差和pentacam角膜地形图检查及散瞳眼底检查等。波前像差检查使用i-Trace分析系统(美国Tracy公司),每眼重复检查3次,筛选出重复性好的最佳图像,记录5 mm瞳孔直径下水平彗差、垂直彗差、三叶草、总球差、总彗差以及全眼总高阶像差。Q值引导FS-LASIK组患者手术当天检查Toplyzer地形图。

2.3. 手术方法

Q值引导FS-LASIK组患者均采用Wavelight FS200准分子激光仪(美国Alcon公司)进行制瓣,角膜瓣厚度110 μm。采用WaveLight EX500准分子激光仪(美国Alcon公司)进行激光切削,光区均为6.5 mm,目标Q值设为默认值。调整设备光源的亮度以保证实时测得的瞳孔直径与术前检测的瞳孔直径趋于一致,选择Custom-Q模式进行角膜基质的切削,并用虹膜识辨技术对眼球旋转和Kappa角进行补偿。SMILE手术采用VisuMax飞秒激光系统(德国Carl Zeiss公司),飞秒激光能量为120 nJ,角膜帽厚度为120 μm,角膜透镜直径6.5 mm,切口宽度为2 mm所有手术均由同一经验丰富医师完成。术前术眼滴用0.3%氧氟沙星滴眼液4次/天,连续3周;术后均使用妥布霉素地塞米松眼液4次/天,连续一周;0.1%玻璃酸钠眼液4次/天,连续3月;小牛血去蛋白提取物滴眼液4次/天,连续1月。

2.4. 统计学方法

数据分析采用SPSS 25.0软件。符合正态分布的计量资料以均数 ± 标准差表示,两组间比较采用独立样本t检验。以p < 0.05为差异有统计学意义。

3. 结果

3.1. 一般资料

共纳入近视患者72例(138眼),其中女40例,男32例,年龄18~37 (23.69 ± 5.27)岁。Q值引导FS-LASIK组42例,年龄(22.76 ± 5.05)岁,等效球镜(−4.68 ± 1.34) D,球差(0.45~−0.11)中位数为0.11;SMILE组30例,年龄(25.00 ± 5.38)岁,等效球镜(−4.30 ± 1.09)D,球差(0.45~−0.19)中位数为0.09。两组患者年龄、等效球镜、水平彗差、垂直彗差、三叶草、总球差、总彗差以及全眼总高阶像差均无统计学差异,见表1

Table 1. Comparison of higher-order aberrations before surgery between the two groups of patients

1. 两组患者手术前高阶像差比较

组别

垂直彗差

水平彗差

总高阶像差

总彗差

总球差

总三叶草

FS-LASIK组

0.14 ± 0.22

−0.03 ± 0.13

0.42 ± 0.22

0.24 ± 0.17

0.12 ± 0.12

0.19 ± 0.17

SMILE组

0.21 ± 0.19

0.02 ± 0.15

0.41 ± 0.19

0.27 ± 0.17

0.10 ± 0.12

0.16 ± 0.10

t

−1.966

−1.81

0.383

−1.245

0.935

1.265

p

0.051

0.073

0.703

0.215

0.352

0.208

3.2. 两组患者手术后高阶像差比较

Q值引导FS-LASIK组术后球差(0.72~−0.37)中位数为0.07,SMILE组术后球差(0.36~−0.19)中位数为0.05。两组患者垂直彗差与总三叶草无统计学差异。SMILE组患者水平彗差高于Q值引导FS-LASIK组,全眼总高阶像差、总彗差、总球差均低于Q值引导FS-LASIK组,差异有统计学意义(p < 0.05),见表2

Table 2. Comparison of higher-order aberrations at 3 months after surgery between the two groups of patients

2. 两组患者手术后3个月高阶像差比较

组别

垂直彗差

水平彗差

总高阶像差

总彗差

总球差

总三叶草

FS-LASIK组

−0.07 ± 0.29

−0.10 ± 0.21

0.45 ± 0.27

0.31 ± 0.22

0.12 ± 0.17

0.17 ± 0.13

SMILE组

−0.01 ± 0.16

0.02 ± 0.16

0.33 ± 0.14

0.19 ± 0.12

0.06 ± 0.11

0.15 ± 0.11

t

−1.634

−3.598

3.373

4.101

2.229

0.096

p

0.105

0

0.001

0

0.028

0.339

4. 讨论

随着近视患病率逐年上升,世界卫生组织对近视越来越重视,屈光矫正手术也是全球最常用的眼科手术之一[5]-[7]。激光角膜屈光手术历经多年的发展其有效性和安全性已经得到了大量的论证,并发症发生率较低[8]-[10],主要存在的问题是视觉质量的下降。如何保证手术的质量,进一步提高患者术后视觉质量引起广泛的关注。对比敏感度、近距离视力、明暗条件下的表现以及大脑对感觉器官输入信息的解读,都是影响患者视觉质量的因素,其中高阶像差也是重要的因素之一[11]。人眼屈光介质并不是一个理想的光学系统,所以光线通过时并不是理想状态的折射,而像差就是指光学系统无法产生良好图像而产生的一种光学现象。人眼主要像差可分为低阶像差(近视、远视、散光)和高阶像差(球差、彗差、三叶草等),其中低阶像差是决定视力的主要因素,而高阶像差是影响视觉质量的重要原因,已有研究表明术后患者视觉质量的下降与眼高阶像差的改变密切相关[12],而手术过程中角膜切削不规则、偏中心切削、角膜瓣移位、角膜组织愈合不均匀等诸多因素均有可能引发术后高阶像差的增加。

人眼视轴与光轴并非重合,其夹角为Kappa角,由于Kappa角的存在,传统的FS-LASIK都存在一定程度的偏中心切削。偏中心切削会引起彗差的增加,还会引起不规则散光的发生,从而降低视觉质量和视敏度。Fang等也证实偏中心切削是角膜屈光手术后彗差增高的主要原因[2]。本研究得出SMILE手术会引起更多水平彗差,这与先前的研究一致[4],分析原因可能在于相比于Q值引导FS-LASIK手术,SMILE手术以患者角膜顶点为手术中心,手术设备缺少自动眼球跟踪系统,切削中心的定位主要靠手术医生的经验和患者的配合,需要根据术前检查以及在角膜上做标记对Kappa角和眼球旋转进行补偿,但难以做到定量[13]。此外,相同等效球镜下SMILE手术需要切削更多角膜厚度,切削的角膜组织越多,对角膜生物力学影响就越大,这可能也是SMILE组彗差高于Q值引导FS-LASIK组的原因之一[14]

现在公认的是任何屈光手术都要充分重视术前和术后角膜的非球面性[15]-[17],角膜中间的曲率比周边高,不是一个完美的球面,因此我们引入了一个q值的概念以数字的形式来描述角膜的非球面性,而屈光手术会改变原有角膜的非球面性[18]。传统的Q值引导FS-LASIK手术可以允许医生在术前设定Q值,将术前检查的Q值设为目标,在一定程度上减少对角膜非球面性的破坏[19]。人随体位变化时眼球也会发生一定程度的旋转,有研究表明屈光手术中观察到的眼球平均旋转角度为3˚ [20],眼球的旋转无疑会影响手术的精确性,从而增加手术源性高阶像差。现在的Q值引导FS-LASIK手术采用Custom Q切削模式,在传统模式的基础上应用了虹膜识别技术,并可根据患者的Kappa角进行个性化切削,从而减少偏中心切削,提高了散光矫正的精确性,也有助于减少术后高阶像差的产生。Zhang J和他的团队一项研究也表明与SMILE手术相比,Q值引导FS-LASIK手术引入了更低的高阶像差,表现出了更好的稳定性[21]。但本研究得出,相较于SMILE手术,Q值引导的FS-LASIK手术会引起更多总高阶像差,其原因可能在于SMILE手术无需制作角膜瓣[22],对角膜生物力学改变较小,更好地保持了角膜结构的完整性,从而减少了高阶像差的引入。其次,术后角膜伤口恢复对高阶像差的影响也不容忽视[23]-[25],SMILE由于切口较小(仅2~4 mm)术后恢复更快,上皮愈合反应较轻[26]。SIMLE术后患者泪膜稳定性优于FS-LASIK,泪膜稳定性差也可导致像差增加[27]。此前有研究表明Q值引导FS-LASIK与SMILE术后均会引起球差的增加[21] [28],但SMILE术后多数是正球差,而Q值引导术后多数为负球差,这可能是本研究中Q值引导FS-LASIK组术后球差增加较多的原因。

本研究主要探讨了Q值引导FS-LASIK与SMILE术后高阶像差的改变,间接反映两种手术方式对术后视觉质量的影响,旨在为患者手术方式的选择提供依据。但本研究样本量较小,随访时间短,需在后续研究中加以改进。

NOTES

*通讯作者。

参考文献

[1] 王勤美, 黄锦海. 深化对角膜屈光手术视觉质量重要性的认识[J]. 中华眼视光学与视觉科学杂志, 2014, 16(1): 1-4.
[2] 王雁, 赵堪兴. 角膜屈光手术后的高阶像差与视觉质量[J]. 中华眼科杂志, 2011, 47(7): 664-668.
[3] Xia, F., Shen, Y., Han, T., Zhao, J., Xu, H. and Zhou, X. (2020) Small Incision Lenticule Extraction (SMILE) for Moderate and High Myopia: Seven-Year Outcomes of Refraction, Corneal Tomography, and Wavefront Aberrations. Journal of Ophthalmology, 2020, 1-7.
https://doi.org/10.1155/2020/3825864
[4] Tian, H., Gao, W., Xu, C. and Wang, Y. (2023) Clinical Outcomes and Higher Order Aberrations of Wavefront-Guided Lasik versus Smile for Correction of Myopia: A Systemic Review and Meta-Analysis. Acta Ophthalmologica, 101, 606-618.
https://doi.org/10.1111/aos.15638
[5] Lou, L., Yao, C., Jin, Y., Perez, V. and Ye, J. (2016) Global Patterns in Health Burden of Uncorrected Refractive Error. Investigative Opthalmology & Visual Science, 57, Article 6271.
https://doi.org/10.1167/iovs.16-20242
[6] Ferraz, F.H., Corrente, J.E., Opromolla, P. and Schellini, S.A. (2014) Influence of Uncorrected Refractive Error and Unmet Refractive Error on Visual Impairment in a Brazilian Population. BMC Ophthalmology, 14, Article No. 84.
https://doi.org/10.1186/1471-2415-14-84
[7] Naidoo, K.S., Leasher, J., Bourne, R.R., Flaxman, S.R., Jonas, J.B., Keeffe, J., et al. (2016) Global Vision Impairment and Blindness Due to Uncorrected Refractive Error, 1990-2010. Optometry and Vision Science, 93, 227-234.
https://doi.org/10.1097/opx.0000000000000796
[8] Na, K., Chung, S., Kim, J.K., Jang, E.J., Lee, N.R. and Joo, C. (2012) Comparison of LASIK and Surface Ablation by Using Propensity Score Analysis: A Multicenter Study in Korea. Investigative Opthalmology & Visual Science, 53, Article 7116.
https://doi.org/10.1167/iovs.12-9826
[9] 谭倩, 马代金. SMILE的研究进展[J]. 中华眼视光学与视觉科学杂志, 2017, 19(4): 251-256.
[10] Kim, T., Alió del Barrio, J.L., Wilkins, M., Cochener, B. and Ang, M. (2019) Refractive Surgery. The Lancet, 393, 2085-2098.
https://doi.org/10.1016/s0140-6736(18)33209-4
[11] Nakajima, M., Hiraoka, T., Hirohara, Y., Oshika, T. and Mihashi, T. (2015) Verification of the Lack of Correlation between Age and Longitudinal Chromatic Aberrations of the Human Eye from the Visible to the Infrared. Biomedical Optics Express, 6, Article 2676.
https://doi.org/10.1364/boe.6.002676
[12] Brown, S.M., Bradley, J.C., Xu, K.T., Chadwick, A.A. and McCartney, D.L. (2005) Visual Field Changes after Laser in Situ Keratomileusis. Journal of Cataract and Refractive Surgery, 31, 687-693.
https://doi.org/10.1016/j.jcrs.2004.09.036
[13] Liang, C. and Yan, H. (2023) Methods of Corneal Vertex Centration and Evaluation of Effective Optical Zone in Small Incision Lenticule Extraction. Ophthalmic Research, 66, 717-726.
https://doi.org/10.1159/000529922
[14] Wu, W. and Wang, Y. (2015) The Correlation Analysis between Corneal Biomechanical Properties and the Surgically Induced Corneal High-Order Aberrations after Small Incision Lenticule Extraction and Femtosecond Laser in Situ Keratomileusis. Journal of Ophthalmology, 2015, 1-10.
https://doi.org/10.1155/2015/758196
[15] Patel, S., Marshall, J. and Fitzke, F.W. (1993) Model for Predicting the Optical Performance of the Eye in Refractive Surgery. Journal of Refractive Surgery, 9, 366-375.
https://doi.org/10.3928/1081-597x-19930901-08
[16] Henslee, S.L. and Rowsey, J.J. (1983) New Corneal Shapes in Keratorefractive Surgery. Ophthalmology, 90, 245-250.
https://doi.org/10.1016/s0161-6420(83)34567-x
[17] Anera, R.G., Jiménez, J.R., Jiménez del Barco, L., Bermúdez, J. and Hita, E. (2003) Changes in Corneal Asphericity after Laser in Situ Keratomileusis. Journal of Cataract and Refractive Surgery, 29, 762-768.
https://doi.org/10.1016/s0886-3350(02)01895-3
[18] Tawfik, A., Eid, A.M., Hasanen, R. and Moftah, I.A.N. (2013) Q-value Customized Ablation (Custom-Q) versus Wavefront Optimized Ablation for Primary Myopia and Myopic Astigmatism. International Ophthalmology, 34, 259-262.
https://doi.org/10.1007/s10792-013-9828-1
[19] Stojanovic, A., Wang, L., Jankov, M.R., Nitter, T.A. and Wang, Q. (2008) Wavefront Optimized versus Custom-Q Treatments in Surface Ablation for Myopic Astigmatism with the Wave Light Allegretto Laser. Journal of Refractive Surgery, 24, 779-789.
[20] Mosquera, S.A. and Verma, S. (2015) Effects of Torsional Movements in Refractive Procedures. Journal of Cataract and Refractive Surgery, 41, 1752-1766.
https://doi.org/10.1016/j.jcrs.2015.07.017
[21] Zhang, J., Zheng, L., Zhao, X., Sun, Y., Feng, W. and Yuan, M. (2019) Corneal Aberrations after Small-Incision Lenticule Extraction versus Q Value-Guided Laser-Assisted in Situ Keratomileusis. Medicine, 98, e14210.
https://doi.org/10.1097/md.0000000000014210
[22] Sekundo, W., Kunert, K.S. and Blum, M. (2010) Small Incision Corneal Refractive Surgery Using the Small Incision Lenticule Extraction (SMILE) Procedure for the Correction of Myopia and Myopic Astigmatism: Results of a 6 Month Prospective Study. British Journal of Ophthalmology, 95, 335-339.
https://doi.org/10.1136/bjo.2009.174284
[23] Yu, Y., Zhang, W., Cheng, X., Cai, J. and Chen, H. (2017) Impact of Treatment Decentration on Higher-Order Aberrations after Smile. Journal of Ophthalmology, 2017, 1-7.
https://doi.org/10.1155/2017/9575723
[24] Li, X., Wang, Y. and Dou, R. (2015) Aberration Compensation between Anterior and Posterior Corneal Surfaces after Small Incision Lenticule Extraction and Femtosecond Laser-Assisted Laser In-Situ Keratomileusis. Ophthalmic and Physiological Optics, 35, 540-551.
https://doi.org/10.1111/opo.12226
[25] Wang, J., Ren, Y., Liang, K., Jiang, Z. and Tao, L. (2018) Changes of Corneal High-Order Aberrations after Femtosecond Laser-Assisted in Situ Keratomileusis. Medicine, 97, e0618.
https://doi.org/10.1097/md.0000000000010618
[26] Riau, A.K., Angunawela, R.I., Chaurasia, S.S., Lee, W.S., Tan, D.T. and Mehta, J.S. (2011) Early Corneal Wound Healing and Inflammatory Responses after Refractive Lenticule Extraction (Relex). Investigative Opthalmology & Visual Science, 52, 6213-6221.
https://doi.org/10.1167/iovs.11-7439
[27] Denoyer, A., Rabut, G. and Baudouin, C. (2012) Tear Film Aberration Dynamics and Vision-Related Quality of Life in Patients with Dry Eye Disease. Ophthalmology, 119, 1811-1818.
https://doi.org/10.1016/j.ophtha.2012.03.004
[28] Du, Y., Di, Y., Yang, S., Mo, F., Cui, G., Chen, D., et al. (2024) Differences in Ocular High Order Aberrations before and after Small Incision Lenticule Extraction for Correction of Myopia: A Systematic Review and Meta-Analysis. Frontiers in Medicine, 11, Article 1274101.
https://doi.org/10.3389/fmed.2024.1274101