[1]
|
Batten, S.R., Champness, N.R., Chen, X., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., et al. (2012) Coordination Polymers, Metal-Organic Frameworks and the Need for Terminology Guidelines. CrystEngComm, 14, 3001-3004. https://doi.org/10.1039/c2ce06488j
|
[2]
|
Furukawa, H., Cordova, K.E., O’Keeffe, M. and Yaghi, O.M. (2013) The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, Article 1230444. https://doi.org/10.1126/science.1230444
|
[3]
|
Batten, S.R., Champness, N.R., Chen, X., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., et al. (2013) Terminology of Metal-Organic Frameworks and Coordination Polymers (IUPAC Recommendations 2013). Pure and Applied Chemistry, 85, 1715-1724. https://doi.org/10.1351/pac-rec-12-11-20
|
[4]
|
Batten, S.R. and Murray, K.S. (2003) Structure and Magnetism of Coordination Polymers Containing Dicyanamide and Tricyanomethanide. Coordination Chemistry Reviews, 246, 103-130. https://doi.org/10.1016/s0010-8545(03)00119-x
|
[5]
|
Du, M., Li, C., Liu, C. and Fang, S. (2013) Design and Construction of Coordination Polymers with Mixed-Ligand Synthetic Strategy. Coordination Chemistry Reviews, 257, 1282-1305. https://doi.org/10.1016/j.ccr.2012.10.002
|
[6]
|
Umemura, A., Diring, S., Furukawa, S., Uehara, H., Tsuruoka, T. and Kitagawa, S. (2011) Morphology Design of Porous Coordination Polymer Crystals by Coordination Modulation. Journal of the American Chemical Society, 133, 15506-15513. https://doi.org/10.1021/ja204233q
|
[7]
|
Lu, X., Tang, Y., Yang, G. and Wang, Y. (2023) Multifunctional Lanthanide MOFs with Active Sites as New Platforms for Smart Sensing of Methylmalonic Acid and Anti-Counterfeiting Applications. Journal of Materials Chemistry C, 11, 2328-2335. https://doi.org/10.1039/d2tc04978c
|
[8]
|
Xue, D., Cairns, A.J., Belmabkhout, Y., Wojtas, L., Liu, Y., Alkordi, M.H., et al. (2013) Tunable Rare-Earth Fcu-MOFs: A Platform for Systematic Enhancement of CO2 Adsorption Energetics and Uptake. Journal of the American Chemical Society, 135, 7660-7667. https://doi.org/10.1021/ja401429x
|
[9]
|
Xue, J., Wang, Y., Yang, G. and Wang, Y. (2024) Energy Transfer, Anticounterfeiting, White Light Emission and Sensing in Fine-Regulating Series of Lanthanide Metal-Organic Frameworks. Journal of Rare Earths, 42, 446-454. https://doi.org/10.1016/j.jre.2023.02.016
|
[10]
|
Ren, J., Niu, Z., Ye, Y., Tsai, C., Liu, S., Liu, Q., et al. (2021) Second‐Sphere Interaction Promoted Turn‐on Fluorescence for Selective Sensing of Organic Amines in a TbIII‐Based Macrocyclic Framework. Angewandte Chemie International Edition, 60, 23705-23712. https://doi.org/10.1002/anie.202107436
|
[11]
|
Wei, H., Zhao, Z., Wei, C., Yu, G., Liu, Z., Zhang, B., et al. (2016) Antiphotobleaching: A Type of Structurally Rigid Chromophore Ready for Constructing Highly Luminescent and Highly Photostable Europium Complexes. Advanced Functional Materials, 26, 2085-2096. https://doi.org/10.1002/adfm.201505040
|
[12]
|
Jin, J., Jia, M., Peng, Y., Hou, Q., Yu, J. and Xu, J. (2010) 4-Carboxylphthalhydrazidate-Bridged Layered Pb(II) Coordination Polymers. CrystEngComm, 12, 1850-1855. https://doi.org/10.1039/b922767a
|
[13]
|
Chen, J., Zhang, Q., Liu, Z., Wang, S., Xiao, Y., Li, R., et al. (2015) Color Tunable and Near White-Light Emission of Two Solvent-Induced 2D Lead(II) Coordination Networks Based on a Rigid Ligand 1-Tetrazole-4-Imidazole-Benzene. Dalton Transactions, 44, 10089-10096. https://doi.org/10.1039/c5dt00929d
|
[14]
|
Li, Z., Yao, Z., Feng, R., Sun, M., Shan, X., Su, Z., et al. (2021) A Highly Stable Terbium Metal-Organic Framework for Efficient Detection of Picric Acid in Water. Chinese Chemical Letters, 32, 3095-3098. https://doi.org/10.1016/j.cclet.2021.03.008
|
[15]
|
Fu, H. and Zhang, J. (2015) Structural Transformation and Hysteretic Sorption of Light Hydrocarbons in a Flexible Zn-Pyrazole-Adenine Framework. Chemistry—A European Journal, 21, 5700-5703. https://doi.org/10.1002/chem.201406323
|
[16]
|
Ali Akbar Razavi, S. and Morsali, A. (2019) Linker Functionalized Metal-Organic Frameworks. Coordination Chemistry Reviews, 399, Article 213023. https://doi.org/10.1016/j.ccr.2019.213023
|
[17]
|
Choi, H.J., Dincă, M., Dailly, A. and Long, J.R. (2010) Hydrogenstorage in Water-Stable Metal-Organic Frameworks Incorporating 1,3-and 1,4-Benzenedipyrazolate. Energy & Environmental Science, 3, 117-123. https://doi.org/10.1039/b917512a
|
[18]
|
Assumpção, M.H.M.T., Medeiros, R.A., Madi, A. and Fatibello-Filho, O. (2008) Desenvolvimento de um procedimento biamperométrico para determinação de sacarina em produtos dietéticos. Química Nova, 31, 1743-1746. https://doi.org/10.1590/s0100-40422008000700028
|
[19]
|
DeMartino, A.W., Zigler, D.F., Fukuto, J.M. and Ford, P.C. (2017) Carbon Disulfide. Just Toxic or Also Bioregulatory and/or Therapeutic? Chemical Society Reviews, 46, 21-39. https://doi.org/10.1039/c6cs00585c
|
[20]
|
Kivistö, H. (2000) TTCA Measurements in Biomonitoring of Low-Level Exposure to Carbon Disulphide. International Archives of Occupational and Environmental Health, 73, 263-269. https://doi.org/10.1007/s004200050426
|
[21]
|
Rosier, J., Vanhoorne, M., Grosjean, R., Van De Walle, E., Billemont, G. and Van Peteghem, C. (1982) Preliminary Evaluation of Urinary 2-Thio-Thiazolidine-4-Carboxylic-Acid (TTCA) Levels as a Test for Exposure to Carbon Disulfide. International Archives of Occupational and Environmental Health, 51, 159-167. https://doi.org/10.1007/bf00378160
|
[22]
|
Cox, C., Que Hee, S.S. and Lynch, D.W. (1996) Urinary 2-Thiothiazolidine-4-Carboxylic Acid (TTCA) as the Major Urinary Marker of Carbon Disulfide Vapor Exposure in Rats. Toxicology and Industrial Health, 12, 81-92. https://doi.org/10.1177/074823379601200105
|
[23]
|
Du, J., Tang, S., Ling, H., Zheng, H., Xiao, G., et al. (2019) Insights into Periodate Oxidation of Bisphenol a Mediated by Manganese. Chemical Engineering Journal, 369, 1034-1039. https://doi.org/10.1016/j.cej.2019.03.158
|
[24]
|
Zhang, K., Zhang, S., Ye, C., Ou, R., Zeng, H., Yu, X., et al. (2023) Sunlight-Activated Periodate Oxidation: A Novel and Versatile Strategy for Highly Efficient Water Decontamination. Chemical Engineering Journal, 451, Article 138642. https://doi.org/10.1016/j.cej.2022.138642
|
[25]
|
Nacapricha, D., Sangkarn, P., Karuwan, C., Mantim, T., Waiyawat, W., Wilairat, P., et al. (2007) Pervaporation-Flow Injection with Chemiluminescence Detection for Determination of Iodide in Multivitamin Tablets. Talanta, 72, 626-633. https://doi.org/10.1016/j.talanta.2006.11.033
|
[26]
|
Zhu, S., Wang, Q., Wang, X., Pan, J., Yang, T., Zhou, X., et al. (2023) A Coordination Polymer for the Fluorescence Turn-On Sensing of Saccharin, 2-Thiazolidinethione-4-Carboxylic Acid, and Periodate. Inorganic Chemistry, 62, 16589-16598. https://doi.org/10.1021/acs.inorgchem.3c02552
|
[27]
|
Yang, D., Li, H. and Li, H. (2024) Recent Advances in the Luminescent Polymers Containing Lanthanide Complexes. Coordination Chemistry Reviews, 514, Article 215875. https://doi.org/10.1016/j.ccr.2024.215875
|
[28]
|
Yu, C., Sun, X., Zou, L., Li, G., Zhang, L. and Liu, Y. (2019) A Pillar-Layered Zn-LMOF with Uncoordinated Carboxylic Acid Sites: High Performance for Luminescence Sensing Fe3+ and TNP. Inorganic Chemistry, 58, 4026-4032. https://doi.org/10.1021/acs.inorgchem.9b00204
|
[29]
|
Li, X., Tang, J., Liu, H., Gao, K., Meng, X., Wu, J., et al. (2019) A Highly Sensitive and Recyclable Ln‐MOF Luminescent Sensor for the Efficient Detection of Fe3+ and CrVI Anions. Chemistry—An Asian Journal, 14, 3721-3727. https://doi.org/10.1002/asia.201900936
|
[30]
|
Yang, C., Ren, H. and Yan, X. (2013) Fluorescent Metal-Organic Framework MIL-53(Al) for Highly Selective and Sensitive Detection of Fe3+ in Aqueous Solution. Analytical Chemistry, 85, 7441-7446. https://doi.org/10.1021/ac401387z
|
[31]
|
Zhou, T., Chen, S., Wang, X., Xie, C. and Zeng, D. (2020) Catalytic Activation of Cobalt Doping Sites in ZIF-71-Coated ZnO Nanorod Arrays for Enhancing Gas-Sensing Performance to Acetone. ACS Applied Materials & Interfaces, 12, 48948-48956. https://doi.org/10.1021/acsami.0c13089
|
[32]
|
Wang, J., Yu, M., Chen, L., Li, Z., Li, S., Jiang, F., et al. (2021) Construction of a Stable Lanthanide Metal-Organic Framework as a Luminescent Probe for Rapid Naked-Eye Recognition of Fe3+ and Acetone. Molecules, 26, Article 1695. https://doi.org/10.3390/molecules26061695
|
[33]
|
Wang, X., He, S., Chen, J., Wei, J., Chen, C., Shi, W., et al. (2024) A Highly Efficient Lanthanide Coordination Polymer Luminescent Material for the Multi-Task Detection of Environmental Pollutants. Dalton Transactions, 53, 276-284. https://doi.org/10.1039/d3dt03218c
|
[34]
|
Reddy, M.L.P., Divya, V. and Bejoymohandas, K.S. (2023) Luminescent Lanthanide Molecular Materials as Potential Probes for the Recognition of Toxic and Biologically Important Cations. Dyes and Pigments, 215, Article 111248. https://doi.org/10.1016/j.dyepig.2023.111248
|
[35]
|
Chen, X., Xu, Y. and Li, H. (2020) Lanthanide Organic/Inorganic Hybrid Systems: Efficient Sensors for Fluorescence Detection. Dyes and Pigments, 178, Article 108386. https://doi.org/10.1016/j.dyepig.2020.108386
|
[36]
|
Yang, Y., Xu, S. and Gai, Y. (2022) Recent Progresses in Lanthanide Metal-Organic Frameworks (Ln-MOFs) as Chemical Sensors for Ions, Antibiotics and Amino Acids. Chinese Journal of Structural Chemistry, 41, 2211045-2211070. https://doi.org/10.14102/j.cnki.0254-5861.2022-0138
|
[37]
|
Yang, Z., Sang, X., Liu, D., Li, Q., Lang, F., Abrahams, B.F., et al. (2023) Photopolymerization‐Driven Macroscopic Mechanical Motions of a Composite Film Containing a Vinyl Coordination Polymer. Angewandte Chemie International Edition, 62, e202302429. https://doi.org/10.1002/anie.202302429
|
[38]
|
Wang, H., Li, X., Cheng, H., Li, Y., Song, X. and Wang, L. (2022) Two Luminescent Film Sensors Constructed from New Lanthanide Coordination Polymers for Ratiometric Detection of Zn2+ and NH3 in Water and Their White Emission Properties. Polymer Chemistry, 13, 778-793. https://doi.org/10.1039/d1py01492g
|
[39]
|
Ma, X., Gu, S., Li, Y., Lu, J., Yang, G. and Zhang, K. (2021) Additive‐Free Energetic Film Based on Graphene Oxide and Nanoscale Energetic Coordination Polymer for Transient Microchip. Advanced Functional Materials, 31, Article 2103199. https://doi.org/10.1002/adfm.202103199
|
[40]
|
Yang, H., Yang, G. and Wang, Y. (2024) Robust Lanthanide MOFs as Multifunctional Luminescent Sensors for Intelligent Visualization Monitoring of MEAA and Texture Code Anti-Counterfeiting Applications. Journal of Materials Chemistry C, 12, 6831-6840. https://doi.org/10.1039/d4tc00658e
|
[41]
|
B’Hymer, C., Mathias, P., Krieg, E., Cheever, K.L., Toennis, C.A., Clark, J.C., et al. (2011) (2-Methoxyethoxy)Acetic Acid: A Urinary Biomarker of Exposure for Jet Fuel JP-8. International Archives of Occupational and Environmental Health, 85, 413-420. https://doi.org/10.1007/s00420-011-0687-7
|
[42]
|
B’Hymer, C., Butler, M.A. and Cheever, K.L. (2005) Comparison and Evaluation of Analysis Procedures for the Quantification of (2-Methoxyethoxy)Acetic Acid in Urine. Analytical and Bioanalytical Chemistry, 383, 201-209. https://doi.org/10.1007/s00216-005-0048-z
|
[43]
|
Scortichini, B. (1986) Teratologic Evaluation of Dermally Applied Diethylene Glycol Monomethyl Ether in Rabbits. Fundamental and Applied Toxicology, 7, 68-75. https://doi.org/10.1016/0272-0590(86)90198-3
|
[44]
|
Zhao, Y., Zhang, F. and Zhang, X. (2016) Single Component Lanthanide Hybrids Based on Metal-Organic Framework for Near-Ultraviolet White Light Led. ACS Applied Materials & Interfaces, 8, 24123-24130. https://doi.org/10.1021/acsami.6b07724
|
[45]
|
Wang, Q., Guo, Z., Zhang, Y., Ma, L., Zhang, P., Yang, G., et al. (2022) White Light Emission Phosphor Modulation, Nitrobenzene Sensing Property and Barcode Anti-Counterfeiting via Lanthanides Post-Functionalized Metal-Organic Frameworks. Journal of Solid State Chemistry, 307, Article 122854. https://doi.org/10.1016/j.jssc.2021.122854
|
[46]
|
Kaczmarek, A.M., Liu, Y., Wang, C., Laforce, B., Vincze, L., Van Der Voort, P., et al. (2017) Lanthanide “Chameleon” Multistage Anti‐Counterfeit Materials. Advanced Functional Materials, 27, Article 1700258. https://doi.org/10.1002/adfm.201700258
|
[47]
|
Yoon, B., Lee, J., Park, I.S., Jeon, S., Lee, J. and Kim, J. (2013) Recent Functional Material Based Approaches to Prevent and Detect Counterfeiting. Journal of Materials Chemistry C, 1, 2388-2403. https://doi.org/10.1039/c3tc00818e
|
[48]
|
Wang, J., Song, B., Tang, J., Hu, G., Wang, J., Cui, M., et al. (2020) Multi-Modal Anti-Counterfeiting and Encryption Enabled through Silicon-Based Materials Featuring pH-Responsive Fluorescence and Room-Temperature Phosphorescence. Nano Research, 13, 1614-1619. https://doi.org/10.1007/s12274-020-2781-1
|
[49]
|
Yao, Y., Gao, Z., Lv, Y., Lin, X., Liu, Y., Du, Y., et al. (2019) Heteroepitaxial Growth of Multiblock Ln‐MOF Microrods for Photonic Barcodes. Angewandte Chemie, 131, 13941-13945. https://doi.org/10.1002/ange.201907433
|