抗体介导的免疫反应与非酒精性脂肪性肝病:一项双向孟德尔随机化研究
Antibody-Mediated Immune Response and Non-Alcoholic Fatty Liver Disease: A Bidirectional Mendelian Randomization Study
DOI: 10.12677/acm.2024.14112910, PDF, HTML, XML,   
作者: 陈阮昶, 周方正:绍兴文理学院医学院,浙江 绍兴;绍兴市人民医院肝胆胰外科,浙江 绍兴;章佳瑶:绍兴市人民医院肝胆胰外科,浙江 绍兴;浙江大学医学院,浙江 杭州;鲁葆春*:绍兴市人民医院肝胆胰外科,浙江 绍兴
关键词: 孟德尔随机化抗体介导的免疫反应非酒精性脂肪性肝病因果关系Mendelian Randomization Antibody-Mediated Immune Response Non-Alcoholic Fatty Liver Disease Causality
摘要: 背景:先前的研究已将抗体介导的免疫反应与非酒精性脂肪性肝病(NAFLD)联系起来,但其因果关系仍不明确。目的:进一步明确抗体免疫反应与NAFLD之间的因果关系。方法:抗体介导的免疫反应和NAFLD的汇总统计数据来自欧洲人群的全基因组关联研究(GWAS)。研究采用双向孟德尔随机化分析,主要通过逆方差加权法(IVW)评估46种抗体介导的免疫反应与NAFLD之间的因果关系。潜在的多效性使用MR-Egger和MR-PRESSO法进行评估,异质性通过Cochran’s Q检验进行检测,敏感性分析则采用leave-one-out法进行评估。结果:基于IVW的孟德尔随机化分析结果表明,两种抗体介导的免疫反应可能会增加NAFLD的风险:(沙眼衣原体tarp-D F1抗体水平:OR 1.068, 95% CI: 1.006~1.133, P-value = 0.032和幽门螺杆菌UREA抗体水平:OR 1.084, 95% CI: 1.001~1.174, P-value = 0.047)。反向孟德尔随机化显示,随着NAFLD风险的增加,幽门螺杆菌UREA抗体水平和抗单纯疱疹病毒1型IgG血清阳性也增加。相反,抗沙眼衣原体IgG血清阳性和抗多瘤病毒2 IgG血清阳性则呈下降趋势。结论:这项研究证实了抗体介导的免疫反应与NAFLD之间的因果关系,为免疫反应在NAFLD发展中的作用提供了新的证据,对NAFLD的预防和治疗具有重要意义。
Abstract: Background: Previous studies have linked antibody-mediated immune responses to non-alcoholic fatty liver disease (NAFLD), but the causal relationship remains unclear. Aims: To further understand the causal relationship between immune responses and NAFLD. Methods: Summary statistics for antibody-mediated immune response and NAFLD were derived from GWAS data based on European participants. Bidirectional Mendelian randomization mainly applying Inverse variance weighted (IVW) method was employed to assess the causal relationships between 46 antibody-mediated immune responses and NAFLD. Potential pleiotropy was evaluated using MR-Egger and MR-PRESSO methods, heterogeneity was examined with Cochran’s Q test, and sensitivity was assessed through leave-one-out analysis. Results: Based on IVW method, our Mendelian randomization showed that two antibody-mediated immune responses potentially causally increase NAFLD risk (Chlamydia trachomatis tarp-D F1 antibody levels: OR 1.068, 95% CI: 1.006~1.133, P-value = 0.032 and Helicobacter pylori UREA antibody levels: OR 1.084, 95% CI: 1.001~1.174, P-value = 0.047). Reverse Mendelian randomization revealed increased NAFLD risk causally associated with higher Helicobacter pylori UREA antibody levels and Anti-herpes simplex virus 1 IgG seropositivity. Conversely, Anti-Chlamydia trachomatis IgG and Anti-polyomavirus 2 IgG seropositivity showed a decreasing trend. There was no evidence of heterogeneity or horizontal pleiotropy detected. Conclusions: This study confirms causal relationships between antibody-mediated immune response and NAFLD, offering new evidence for the role of immune responses in NAFLD development and presenting significant implications for its prevention and treatment.
文章引用:陈阮昶, 周方正, 章佳瑶, 鲁葆春. 抗体介导的免疫反应与非酒精性脂肪性肝病:一项双向孟德尔随机化研究[J]. 临床医学进展, 2024, 14(11): 522-530. https://doi.org/10.12677/acm.2024.14112910

1. 引言

非酒精性脂肪性肝病(Non-alcoholic fatty liver disease, NAFLD)是一个全球性的健康问题,其疾病负担正在日益加重,是全球慢性肝病最常见的原因。先前的流行病学研究报告称,其全球发病率约为24% [1]。NAFLD通常在早期没有明显症状,但是随着疾病的进展,其可导致肝纤维化、肝硬化甚至肝癌[2]。NAFLD与肥胖、糖尿病和高血脂症等代谢性疾病密切相关,被认为是代谢综合征在肝脏中的表现[3]-[5]。然而,NAFLD的发病机制尚不完全明确。

抗体介导的免疫反应反映了病原体暴露后产生的特异性抗体类型和水平。不同的抗体表型,如IgM、IgG和IgA,表明了免疫系统识别并应对抗原的能力[6]。这些反应包括中和病原体、激活补体系统和促进调理作用。通过分析这些抗体表型,我们可以了解免疫反应对疫苗或是感染的强度、持续时间及其保护效应。例如,针对COVID-19疫苗的研究通过分析抗体水平来评估其对病毒的保护效果[7]。一项关于麻疹、腮腺炎、风疹和水痘的横断面研究通过测量抗体水平来调查群体免疫情况,以确保足够的疫苗接种覆盖率[8]。此外,登革热的研究还探讨了抗体依赖性增强效应(ADE),即预先存在的抗体在某些情况下可能加重后续感染[9]

传染性病原体在许多非传染性疾病的发病机制中起到重要作用,包括NAFLD,患者常表现出与感染密切相关的免疫系统改变[10] [11]。在这一背景下,了解抗体介导的免疫反应能够为这些关联背后的机制提供新的见解。Chumak AA等人的研究表明,NAFLD患者中疱疹病毒感染的发生率更高[12]。一项横断面研究显示,幽门螺杆菌感染的患者中NAFLD的患病率较高,并将幽门螺杆菌感染确定为NAFLD的独立危险因素[13]。然而,回顾性研究未能发现幽门螺杆菌感染与NAFLD之间的关联[14] [15]。因此,亟需开展严谨的研究,以明确抗体介导的传染病原体免疫反应与NAFLD之间的因果关系。

孟德尔随机化法(Mendelian Randomization, MR)在揭示因果联系方面开辟了一个大胆的前沿领域,它利用遗传变异作为工具变量来研究暴露因素与疾病结果之间的因果关系[16]。该方法基于孟德尔遗传定律,假设遗传变异与环境因素独立,通过分析遗传变异与疾病的关系,推断暴露因素对疾病的因果效应。这种方法能够减少混杂因素和逆向因果关系的影响,提供更可靠的因果推断。基于此,本研究应用MR分析探索抗体免疫反应与NAFLD之间的潜在因果关系。

2. 材料和方法

2.1. 数据来源

本研究从GWAS catalog中下载了总共46种抗体免疫反应表型的GWAS汇总统计数据(登录号GCST90006884~GCST90006929)。46种抗体免疫反应表型中,15种是血清阳性病例对照表型,31种是定量抗体测量表型[17]。NAFLD患者的遗传数据来源于FinnGen R10 (https://r10.finngen.fi/) [18],其中包含了2568例NAFLD患者和409613例对照,研究对象均为欧洲人群。

2.2. 研究设计

本研究选取46种抗体免疫反应表型作为暴露因子,使用与这些暴露因子显著相关的单核苷酸多态性(SNPs)作为工具变量(IVs),并以NAFLD作为结局变量。我们采用两样本孟德尔随机化方法,分析46种抗体免疫反应表型与NAFLD之间的潜在因果关系。为了确保结果的稳健性和可靠性,研究进行了异质性检验、多效性检验和敏感性分析。在进行孟德尔随机化分析时,需满足以下三个核心假设:① 遗传变异与暴露直接相关;② 遗传变异与暴露和结局之间的潜在混杂因素无关;③ 遗传变异仅通过暴露影响结局,而不会通过其他途径[19]。采用R软件(版本4.3.2),结合TwoSampleMR包(版本0.5.8)进行数据分析。所有用于本研究的数据均来自不同的独立样本群体,确保了数据之间的独立性及无重叠性。此外,所使用的所有数据均来自公开数据库,因此无需进行额外伦理审查。

2.3. IVs的选择

在研究SNPs与抗体免疫反应和NAFLD的关联时,我们采取了一系列缜密的步骤,以确保结论的真实性、可靠性和准确性。起初,由于符合抗体免疫反应特征全基因组显著性阈值的SNP数量有限,我们在查阅相关文献后将阈值调整为1 × 105 [20]。这一调整作为筛选IVs的标准,旨在确保所选IVs和暴露因子之间的稳健相关性,同时尽可能纳入多的有潜在意义的暴露因子。随后,为了减少连锁不平衡(LD)带来的偏差,我们将阈值设定为r2 = 0.001和Clump距离 > 10,000 kb,其总体目标是提高结果的准确性。对于NAFLD,我们也同样将显著性水平调整为1 × 105。最后,采用F统计量评估SNP与暴露之间相关性的统计强度,以F < 10为阈值来确定弱相关性。随后,系统地排除了这些弱相关SNP。在整个分析过程中,我们仔细考虑了潜在的混杂变量和其他偏差来源,确保我们的结论更加可信。

2.4. 统计分析

为了评估抗体免疫反应与非酒精性脂肪肝之间的因果关系,我们主要采用了逆方差加权法(Inverse variance weighting, IVW),此外还采用weighted median (WM),MR-Egger,simple mode以及weighted mode进行了互补分析[21]。我们将P值的阈值设定为0.05,以发现更多潜在的因果关系。在敏感性分析方面,运用MR-Egger回归法和MR-PRESSO法评估潜在的多效性。运用Cochran’s Q检验评估潜在异质性,若P值 < 0.05,则说明SNPs之间存在显著异质性[22]。最后,运用Leave-one-out分析,逐一剔除SNP,评估单个SNP对结果的敏感性。

3. 结果

3.1. MR分析结果

Figure 1. Main results of MR analysis on antibody-mediated immune responses and NAFLD

1. 抗体免疫反应与NAFLD孟德尔随机化分析的主要结果

使用“TwoSampleMR”(0.5.8版)软件包分析了46种抗体免疫反应与NAFLD之间的潜在因果关系,以IVW结果为主要依据。如图1所示,我们发现2种抗体免疫反应表型与NAFLD之间存在因果关系。分别是Chlamydia trachomatis tarp-D F1 antibody levels:OR 1.068 (95% CI: 1.006~1.133, P-value = 0.032)和Helicobacter pylori UREA antibody levels: OR 1.084 (95% CI: 1.001~1.174, P-value = 0.047)。Chlamydia trachomatis tarp-D F1 antibody levels和Helicobacter pylori UREA antibody levels被认为是NAFLD的危险因素,随着SNPs的影响效应增加,患NAFLD的风险也增加。根据Cochran’s Q、MR-Egger和MR-PRESSO的结果,没有异质性和水平多效性的迹象表1。Leave-one-out敏感性分析表明,逐个消除SNPs对结果没有显著影响。

3.2. 反向MR分析结果

Figure 2. Main results of reverse MR analysis on antibody-mediated immune responses and NAFLD

2. 抗体免疫反应与NAFLD反向孟德尔随机化分析的主要结果

Table 1. The results of heterogeneity and horizontal pleiotropy of antibody-mediated immune responses and NAFLD

1. 抗体免疫反应和NAFLD的异质性和水平多效性的结果

Exposure

Outcome

Heterogeneity test

Pleiotropy test

MR-PRESSO

Cochran’s Q test (P value) IVW

MR-Egger intercept (P value)

Outlier- corrected

Global Test (P value)

Chlamydia trachomatis tarp-D F1 antibody levels

NAFLD

0.524

0.228

NA

0.548

Helicobacter pylori UREA antibody levels

NAFLD

0.299

0.750

NA

0.312

NAFLD

Anti-Chlamydia trachomatis IgG seropositivity

0.567

0.543

NA

0.581

NAFLD

Helicobacter pylori UREA antibody levels

0.834

0.177

NA

0.813

NAFLD

Anti-herpes simplex virus 1 IgG seropositivity

0.159

0.352

NA

0.181

NAFLD

Anti-polyomavirus 2 IgG seropositivity

0.830

0.065

NA

0.847

为了评估是否存在反向因果关系,我们将NAFLD作为暴露,46种抗体免疫反应作为结局进行反向MR分析。反向MR分析的主要结果见图2Chlamydia trachomatis tarp-D F1 antibody levels与NAFLD之间没有反向因果关系。Helicobacter pylori UREA antibody levels与NAFLD之间存在反向因果关系(OR = 1.081, 95% CI: 1.009~1.158, P-value = 0.026)。另外,研究发现NAFLD风险越高与Anti-herpes simplex virus 1 IgG seropositivity升高有因果关系(OR = 1.101, 95% CI: 1.009~1.200, P-value = 0.030)。与Anti-polyomavirus 2 IgG seropositivity (OR = 0.907, 95% CI: 0.845~0.974, P-value = 0.008)和Anti-Chlamydia trachomatis IgG seropositivity (OR = 0.913, 95% CI: 0.835~0.998, P-value = 0.046)下降有因果关系。根据Cochran’s Q、MR-Egger和MR-PRESSO的结果,没有异质性和水平多效性的迹象表1。Leave-one-out敏感性分析表明,逐个消除SNPs对结果没有显著影响。

4. 讨论

本研究利用全基因组关联数据集和双向孟德尔随机化分析,探讨了46种抗体免疫反应与NAFLD之间的因果关系。研究发现,Chlamydia trachomatis tarp-D F1 antibody levels和Helicobacter pylori UREA antibody levels与NAFLD的风险增加相关。此外,随着NAFLD风险的升高,Helicobacter pylori UREA antibody levels和Anti-herpes simplex virus 1 IgG seropositivity也呈上升趋势,而Anti-polyomavirus 2 IgG seropositivity和Anti-Chlamydia trachomatis IgG seropositivity则呈下降趋势。这些发现强调了抗体免疫反应水平与NAFLD的发生和发展之间的重要关系。

沙眼衣原体是一种常见的细菌感染,通常通过性接触传播[23]。TARP (Translocated Actin-Recruiting Phosphoprotein)是由沙眼衣原体分泌的一种蛋白质,参与该细菌进入宿主细胞的过程[24]Chlamydia trachomatis tarp-D F1 antibody是针对TARP蛋白的特异性抗体,用于研究沙眼衣原体感染和宿主免疫反应的标志物。目前尚无沙眼衣原体和NAFLD的研究。Chlamydia trachomatis tarp-D F1 antibody levels越高,患NAFLD的可能越大,可能与沙眼衣原体感染可以引起慢性炎症反应,而慢性炎症是NAFLD发展的一个重要因素。长期的炎症反应可能促进肝脏脂肪的积累和纤维化[25]。有趣的是,反向MR研究表明,在NAFLD患者中,Anti-Chlamydia trachomatis IgG seropositivity却越低。这可能与NAFLD早期的先天免疫驱动有关,使得患者感染沙眼衣原体的几率较低。

幽门螺杆菌是一种能够在胃黏膜中生存的细菌,通常与胃炎、胃溃疡和胃癌等消化系统疾病有关[26]。先前的研究表明[13],幽门螺杆菌的感染可能会促进患NAFLD的风险。这与我们的研究结果相一致。幽门螺杆菌感染与代谢综合征(如肥胖[27]、糖尿病[28]、高脂血症[29]等)密切相关。代谢综合征是NAFLD的重要风险因素,因此,幽门螺杆菌感染可能通过影响代谢综合征的各个方面,间接促进NAFLD的发生和发展。同时,Stergios A Polyzos的研究表明[30],NAFLD患者感染幽门螺杆菌的概率也更高。但是,之前的一项MR研究表明没有证据显示幽门螺杆菌感染与NAFLD之间存在因果关系[31]。我们通过将幽门螺杆菌感染的抗体免疫反应更加细分化,重新探讨二者之间的关系,从而研究得出Helicobacter pylori UREA antibody levels的增高,可能会使NAFLD的风险增加,反之亦然。

单纯疱疹病毒可分为1型和2型,可引起皮肤、口腔、生殖器和其他部位的感染[32]。作为高度流行的人类病原体,据估计,2016年全球约有37亿人对HSV-1血清呈阳性,全球患病率约为67% [33]。在一项目关于暴露于切尔诺贝利核电站事故NAFLD患者感染疱疹病毒科的病毒情况的研究中,结果显示,无论病史中的辐射影响如何,NAFLD患者疱疹病毒科病毒感染的患病率很高[12]。正好也与我们的研究结果相一致,NAFLD患者中Anti-herpes simplex virus 1 IgG seropositivity可能较高。

多瘤病毒是一类常见的DNA病毒,主要包括JC病毒、BK病毒、Merkel细胞多瘤病毒,其在自然界中广泛存在[34]。polyomavirus 2型又名JC病毒,感染约70%~90%的人类[35]。我们研究发现NAFLD患者中Anti-polyomavirus 2 IgG seropositivity较低。由于相关的研究较少,我们推测,这可能与NAFLD患者的生活环境相关。JC病毒在世界各地的城市污水中含量很高,研究人员怀疑接触污染的水是其典型的感染途径[36]。NAFLD患者可能较少接触污水环境或食用受污染的食物。

本研究仍存在一些局限性。首先,本研究所使用的GWAS数据均来自欧洲人群,因此在其他地区和族群中的适用性受到限制。未来需要更多研究和数据以评估其在不同族群中的相关性。其次,由于所使用的GWAS数据没有按性别和年龄等因素进行分层,本研究无法进行更深入的分层分析。然而,据我们所知,这是第一个关于抗体介导的免疫反应和NAFLD之间关系的系统的、全面的双向孟德尔随机化研究,为潜在的因果关系提供了初步的支持证据。在探索因果关系时,相比于传统的随机对照研究,在实验时间和实验成本上,孟德尔随机化研究有着更加不错的性价比。

5. 结论

综上所述,我们通过双向孟德尔随机分析确立了抗体免疫反应和NAFLD之间的因果关系,为NAFLD的个性化监控与管理提供了依据。然而,目前对抗体免疫反应和NAFLD的实验研究有限,仍需要更多的研究来探索这些抗体介导的传染病原体免疫反应是否可以用作筛查和预防NAFLD的指标。

NOTES

*通讯作者。

参考文献

[1] Younossi, Z., Anstee, Q.M., Marietti, M., Hardy, T., Henry, L., Eslam, M., et al. (2017) Global Burden of NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 15, 11-20.
https://doi.org/10.1038/nrgastro.2017.109
[2] Golabi, P., Owrangi, S. and Younossi, Z.M. (2024) Global Perspective on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis—Prevalence, Clinical Impact, Economic Implications and Management Strategies. Alimentary Pharmacology & Therapeutics, 59, S1-S9.
https://doi.org/10.1111/apt.17833
[3] Fan, J., Kim, S. and Wong, V.W. (2017) New Trends on Obesity and NAFLD in Asia. Journal of Hepatology, 67, 862-873.
https://doi.org/10.1016/j.jhep.2017.06.003
[4] Tilg, H., Moschen, A.R. and Roden, M. (2016) NAFLD and Diabetes Mellitus. Nature Reviews Gastroenterology & Hepatology, 14, 32-42.
https://doi.org/10.1038/nrgastro.2016.147
[5] Deprince, A., Haas, J.T. and Staels, B. (2020) Dysregulated Lipid Metabolism Links NAFLD to Cardiovascular Disease. Molecular Metabolism, 42, Article 101092.
https://doi.org/10.1016/j.molmet.2020.101092
[6] Seifert, M. and Küppers, R. (2016) Human Memory B Cells. Leukemia, 30, 2283-2292.
https://doi.org/10.1038/leu.2016.226
[7] Luo, W., Gan, J., Luo, Z., Li, S., Wang, Z., Wu, J., et al. (2024) Safety, Immunogenicity and Protective Effectiveness of Heterologous Boost with a Recombinant COVID-19 Vaccine (Sf9 Cells) in Adult Recipients of Inactivated Vaccines. Signal Transduction and Targeted Therapy, 9, Article No. 41.
https://doi.org/10.1038/s41392-024-01751-1
[8] Dyda, A., Broome, A., Rawlinson, W., Mahimbo, A., Saha, A., Kefalas, B., et al. (2024) Measles, Mumps, Rubella and Varicella Antibodies among International and Domestic University Students. Journal of Travel Medicine, 31, taae004.
https://doi.org/10.1093/jtm/taae004
[9] Katzelnick, L.C., Gresh, L., Halloran, M.E., Mercado, J.C., Kuan, G., Gordon, A., et al. (2017) Antibody-Dependent Enhancement of Severe Dengue Disease in Humans. Science, 358, 929-932.
https://doi.org/10.1126/science.aan6836
[10] O’Connor, S.M., Taylor, C.E. and Hughes, J.M. (2006) Emerging Infectious Determinants of Chronic Diseases. Emerging Infectious Diseases, 12, 1051-1057.
https://doi.org/10.3201/eid1207.060037
[11] Huby, T. and Gautier, E.L. (2021) Immune Cell-Mediated Features of Non-Alcoholic Steatohepatitis. Nature Reviews Immunology, 22, 429-443.
https://doi.org/10.1038/s41577-021-00639-3
[12] Chumak, A.A., Nosach, O.V., Ovsyannikova, L.M., Alekhina, S.M., Pleskach, O.Y., Sarkisova, E.O., et al. (2014) Peculiarities of Viruses Herpesviridae Family Persistence in Patients with Non-Alcoholic Fatty Liver Disease Who Had Been Exposed to the Factors of Chornobyl NPP Accident. Problemy Radiatsiinoi Medytsyny ta Radiobiolohii, 19, 361-370.
[13] Abo-Amer, Y.E., Sabal, A., Ahmed, R., Hasan, N.F.E., Refaie, R., Mostafa, S.M., et al. (2020) Relationship between Helicobacter pylori Infection and Nonalcoholic Fatty Liver Disease (NAFLD) in a Developing Country: A Cross-Sectional Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 619-625.
https://doi.org/10.2147/dmso.s237866
[14] Baeg, M.K., Yoon, S.K., Ko, S.H., Noh, Y.S., Lee, I.S. and Choi, M.G. (2016) Helicobacter pylori Infection Is Not Associated with Nonalcoholic Fatty Liver Disease. World Journal of Gastroenterology, 22, 2592-2600.
https://doi.org/10.3748/wjg.v22.i8.2592
[15] Han, Y.M., Lee, J., Choi, J.M., Kwak, M., Yang, J.I., Chung, S.J., et al. (2021) The Association between Helicobacter pylori with Nonalcoholic Fatty Liver Disease Assessed by Controlled Attenuation Parameter and Other Metabolic Factors. PLOS ONE, 16, e0260994.
https://doi.org/10.1371/journal.pone.0260994
[16] Larsson, S.C., Butterworth, A.S. and Burgess, S. (2023) Mendelian Randomization for Cardiovascular Diseases: Principles and Applications. European Heart Journal, 44, 4913-4924.
https://doi.org/10.1093/eurheartj/ehad736
[17] Butler-Laporte, G., Kreuzer, D., Nakanishi, T., Harroud, A., Forgetta, V. and Richards, J.B. (2020) Genetic Determinants of Antibody-Mediated Immune Responses to Infectious Diseases Agents: A Genome-Wide and HLA Association Study. Open Forum Infectious Diseases, 7, ofaa450.
https://doi.org/10.1093/ofid/ofaa450
[18] Kurki, M.I., Karjalainen, J., Palta, P., Sipilä, T.P., Kristiansson, K., Donner, K.M., et al. (2023) FinnGen Provides Genetic Insights from a Well-Phenotyped Isolated Population. Nature, 613, 508-518.
https://doi.org/10.1038/s41586-022-05473-8
[19] Evans, D.M. and Davey Smith, G. (2015) Mendelian Randomization: New Applications in the Coming Age of Hypothesis-Free Causality. Annual Review of Genomics and Human Genetics, 16, 327-350.
https://doi.org/10.1146/annurev-genom-090314-050016
[20] Li, P., Wang, H., Guo, L., Gou, X., Chen, G., Lin, D., et al. (2022) Association between Gut Microbiota and Preeclampsia-Eclampsia: A Two-Sample Mendelian Randomization Study. BMC Medicine, 20, Article No. 443.
https://doi.org/10.1186/s12916-022-02657-x
[21] Burgess, S. and Thompson, S.G. (2017) Interpreting Findings from Mendelian Randomization Using the MR-Egger Method. European Journal of Epidemiology, 32, 377-389.
https://doi.org/10.1007/s10654-017-0255-x
[22] A, G., Sun, C., Shan, Y., Husile, H. and Bai, H. (2022) Bidirectional Causal Link between Inflammatory Bowel Disease and Celiac Disease: A Two-Sample Mendelian Randomization Analysis. Frontiers in Genetics, 13, Article 993492.
https://doi.org/10.3389/fgene.2022.993492
[23] Jury, B., Fleming, C., Huston, W.M. and Luu, L.D.W. (2023) Molecular Pathogenesis of Chlamydia trachomatis. Frontiers in Cellular and Infection Microbiology, 13, Article 1281823.
https://doi.org/10.3389/fcimb.2023.1281823
[24] Caven, L. and Carabeo, R.A. (2019) Pathogenic Puppetry: Manipulation of the Host Actin Cytoskeleton by Chlamydia trachomatis. International Journal of Molecular Sciences, 21, Article 90.
https://doi.org/10.3390/ijms21010090
[25] Pierantonelli, I. and Svegliati-Baroni, G. (2019) Nonalcoholic Fatty Liver Disease: Basic Pathogenetic Mechanisms in the Progression from NAFLD to Nash. Transplantation, 103, e1-e13.
https://doi.org/10.1097/tp.0000000000002480
[26] Fischbach, W. and Malfertheiner, P. (2018) Helicobacter pylori Infection: When to Eradicate, How to Diagnose and Treat. Deutsches Ärzteblatt international, 115, 429-436.
https://doi.org/10.3238/arztebl.2018.0429
[27] Xu, X., Li, W., Qin, L., Yang, W., Yu, G. and Wei, Q. (2019) Relationship between Helicobacter pylori Infection and Obesity in Chinese Adults: A Systematic Review with Meta-Analysis. PLOS ONE, 14, e0221076.
https://doi.org/10.1371/journal.pone.0221076
[28] Kato, M., Toda, A., Yamamoto‐Honda, R., Arase, Y. and Sone, H. (2019) Association between Helicobacter pylori Infection, Eradication and Diabetes Mellitus. Journal of Diabetes Investigation, 10, 1341-1346.
https://doi.org/10.1111/jdi.13011
[29] Sun, Y., Fu, D., Wang, Y.K., Liu, M. and Liu, X.D. (2016) Prevalence of Helicobacter pylori Infection and Its Association with Lipid Profiles. Bratislava Medical Journal, 117, 521-524.
https://doi.org/10.4149/bll_2016_103
[30] Polyzos, S.A., Kountouras, J., Papatheodorou, A., Patsiaoura, K., Katsiki, E., Zafeiriadou, E., et al. (2013) Helicobacter pylori Infection in Patients with Nonalcoholic Fatty Liver Disease. Metabolism, 62, 121-126.
https://doi.org/10.1016/j.metabol.2012.06.007
[31] Liu, Y., Xu, H., Zhao, Z., Dong, Y., Wang, X. and Niu, J. (2022) No Evidence for a Causal Link between Helicobacter pylori Infection and Nonalcoholic Fatty Liver Disease: A Bidirectional Mendelian Randomization Study. Frontiers in Microbiology, 13, Article 1018322.
https://doi.org/10.3389/fmicb.2022.1018322
[32] Cole, S. (2020) Herpes Simplex Virus: Epidemiology, Diagnosis, and Treatment. Nursing Clinics of North America, 55, 337-345.
https://doi.org/10.1016/j.cnur.2020.05.004
[33] James, C., Harfouche, M., Welton, N.J., Turner, K.M., Abu-Raddad, L.J., Gottlieb, S.L., et al. (2020) Herpes Simplex Virus: Global Infection Prevalence and Incidence Estimates, 2016. Bulletin of the World Health Organization, 98, 315-329.
https://doi.org/10.2471/blt.19.237149
[34] Mayberry, C.L., Bond, A.C., Wilczek, M.P., Mehmood, K. and Maginnis, M.S. (2021) Sending Mixed Signals: Polyomavirus Entry and Trafficking. Current Opinion in Virology, 47, 95-105.
https://doi.org/10.1016/j.coviro.2021.02.004
[35] Shackelton, L.A., Rambaut, A., Pybus, O.G. and Holmes, E.C. (2006) JC Virus Evolution and Its Association with Human Populations. Journal of Virology, 80, 9928-9933.
https://doi.org/10.1128/jvi.00441-06
[36] Bofill-Mas, S., Formiga-Cruz, M., Clemente-Casares, P., Calafell, F. and Girones, R. (2001) Potential Transmission of Human Polyomaviruses through the Gastrointestinal Tract after Exposure to Virions or Viral DNA. Journal of Virology, 75, 10290-10299.
https://doi.org/10.1128/jvi.75.21.10290-10299.2001