|
[1]
|
Cheuiche, A.V., da Silveira, L.G., de Paula, L.C.P., Lucena, I.R.S. and Silveiro, S.P. (2021) Diagnosis and Management of Precocious Sexual Maturation: An Updated Review. European Journal of Pediatrics, 180, 3073-3087. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Knobil, E. (1980) The Neuroendocrine Control of the Menstrual Cycle. Recent Progress in Hormone Research, 36, 53-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Latronico, A.C., Brito, V.N. and Carel, J. (2016) Causes, Diagnosis, and Treatment of Central Precocious Puberty. The Lancet Diabetes & Endocrinology, 4, 265-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Cantas-Orsdemir, S. and Eugster, E.A. (2019) Update on Central Precocious Puberty: From Etiologies to Outcomes. Expert Review of Endocrinology & Metabolism, 14, 123-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Teilmann, G., Pedersen, C.B., Jensen, T.K., Skakkebæk, N.E. and Juul, A. (2005) Prevalence and Incidence of Precocious Pubertal Development in Denmark: An Epidemiologic Study Based on National Registries. Pediatrics, 116, 1323-1328. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kim, S.H., Huh, K., Won, S., Lee, K. and Park, M. (2015) A Significant Increase in the Incidence of Central Precocious Puberty among Korean Girls from 2004 to 2010. PLOS ONE, 10, e0141844. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Soriano-Guillén, L., Corripio, R., Labarta, J.I., Cañete, R., Castro-Feijóo, L., Espino, R., et al. (2010) Central Precocious Puberty in Children Living in Spain: Incidence, Prevalence, and Influence of Adoption and Immigration. The Journal of Clinical Endocrinology & Metabolism, 95, 4305-4313. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tenedero, C.B., Oei, K. and Palmert, M.R. (2021) An Approach to the Evaluation and Management of the Obese Child with Early Puberty. Journal of the Endocrine Society, 6, bvab173. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sultan, C., Gaspari, L., Kalfa, N. and Paris, F. (2012) Clinical Expression of Precocious Puberty in Girls. In: Sultan, C., Ed., Endocrine Development, S. Karger AG, 84-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Eckert-Lind, C., Busch, A.S., Petersen, J.H., Biro, F.M., Butler, G., Bräuner, E.V., et al. (2020) Worldwide Secular Trends in Age at Pubertal Onset Assessed by Breast Development among Girls: A Systematic Review and Meta-Analysis. JAMA Pediatrics, 174, e195881. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Biro, F.M., Galvez, M.P., Greenspan, L.C., Succop, P.A., Vangeepuram, N., Pinney, S.M., et al. (2010) Pubertal Assessment Method and Baseline Characteristics in a Mixed Longitudinal Study of Girls. Pediatrics, 126, e583-e590. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Karlberg, J. (2002) Secular Trends in Pubertal Development. Hormone Research in Paediatrics, 57, 19-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Davey Smith, G. and Hemani, G. (2014) Mendelian Randomization: Genetic Anchors for Causal Inference in Epidemiological Studies. Human Molecular Genetics, 23, R89-R98. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Emdin, C.A., Khera, A.V. and Kathiresan, S. (2017) Mendelian Randomization. JAMA, 318, 1925-1926. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Song, M., Fung, T.T., Hu, F.B., Willett, W.C., Longo, V.D., Chan, A.T., et al. (2016) Association of Animal and Plant Protein Intake with All-Cause and Cause-Specific Mortality. JAMA Internal Medicine, 176, 1453-1463. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lawrence, M.A. and Baker, P.I. (2019) Ultra-processed Food and Adverse Health Outcomes. BMJ, 365, L2289. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Asfaw, A. (2011) Does Consumption of Processed Foods Explain Disparities in the Body Weight of Individuals? The Case of Guatemala. Health Economics, 20, 184-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Monteiro, C.A., Cannon, G., Levy, R.B., Moubarac, J., Louzada, M.L., Rauber, F., et al. (2019) Ultra-Processed Foods: What They Are and How to Identify Them. Public Health Nutrition, 22, 936-941. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Hall, K.D., Ayuketah, A., Brychta, R., Cai, H., Cassimatis, T., Chen, K.Y., et al. (2019) Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metabolism, 30, 67-77.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liu, M., Cao, B., Luo, Q., Wang, Q., Liu, M., Liang, X., et al. (2022) The Critical BMI Hypothesis for Puberty Initiation and the Gender Prevalence Difference: Evidence from an Epidemiological Survey in Beijing, China. Frontiers in Endocrinology, 13, Article 1009133. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Rosenfield, R.L., Lipton, R.B. and Drum, M.L. (2009) Thelarche, Pubarche, and Menarche Attainment in Children with Normal and Elevated Body Mass Index. Pediatrics, 123, 84-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lee, S.Y., Kim, J.M., Kim, Y.M. and Lim, H.H. (2021) Single Random Measurement of Urinary Gonadotropin Concentration for Screening and Monitoring Girls with Central Precocious Puberty. Annals of Pediatric Endocrinology & Metabolism, 26, 178-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Calcaterra, V., Magenes, V.C., Hruby, C., Siccardo, F., Mari, A., Cordaro, E., et al. (2023) Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. Children, 10, Article 241. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Bhattacharya, S. and nee Paul, S.M. (2021) Phytoestrogens Responsible for Altered Pubertal Timing in Females: A Matter of Concern. Proceedings of the Zoological Society, 74, 558-571. [Google Scholar] [CrossRef]
|
|
[25]
|
Hertog, M.G.L., Feskens, E.J.M., Hollman, P.C.H., Katan, M.B. and Kromhout, D. (1994) Dietary Flavonoids and Cancer Risk in the Zutphen Elderly Study. Nutrition and Cancer, 22, 175-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Patisaul, H.B. (2013) Effects of Environmental Endocrine Disruptors and Phytoestrogens on the Kisspeptin System. In: Kauffman, A. and Smith, J., Eds, Kisspeptin Signaling in Reproductive Biology, Springer, 455-479. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kim, J., Kim, S., Huh, K., Kim, Y., Joung, H. and Park, M. (2011) High Serum Isoflavone Concentrations Are Associated with the Risk of Precocious Puberty in Korean Girls. Clinical Endocrinology, 75, 831-835. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Marks, K.J., Hartman, T.J., Taylor, E.V., Rybak, M.E., Northstone, K. and Marcus, M. (2017) Exposure to Phytoestrogens in Utero and Age at Menarche in a Contemporary British Cohort. Environmental Research, 155, 287-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cheng, G., Remer, T., Prinz-Langenohl, R., Blaszkewicz, M., Degen, G.H. and Buyken, A.E. (2010) Relation of Isoflavones and Fiber Intake in Childhood to the Timing of Puberty. The American Journal of Clinical Nutrition, 92, 556-564. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Tinwell, H., Colombel, S., Blanck, O. and Bars, R. (2013) The Screening of Everyday Life Chemicals in Validated Assays Targeting the Pituitary-Gonadal Axis. Regulatory Toxicology and Pharmacology, 66, 184-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wedick, N.M., Mantzoros, C.S., Ding, E.L., Brennan, A.M., Rosner, B., Rimm, E.B., et al. (2012) The Effects of Caffeinated and Decaffeinated Coffee on Sex Hormone-Binding Globulin and Endogenous Sex Hormone Levels: A Randomized Controlled Trial. Nutrition Journal, 11, Article No. 86. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ezzat, A.R. and El-Gohary, Z.M. (1994) Hormonal and Histological Effects of Chronic Caffeine Administration on the Pituitary-Gonadal and Pituitary-Adrenocortical Axes in Male Rabbits. Functional and Developmental Morphology, 4, 45-50.
|
|
[33]
|
Park, M., Choi, Y., Choi, H., Yim, J. and Roh, J. (2015) High Doses of Caffeine during the Peripubertal Period in the Rat Impair the Growth and Function of the Testis. International Journal of Endocrinology, 2015, Article ID: 368475. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Xie, L., Tang, Q., Yao, D., Gu, Q., Zheng, H., Wang, X., et al. (2021) Effect of Decaffeinated Green Tea Polyphenols on Body Fat and Precocious Puberty in Obese Girls: A Randomized Controlled Trial. Frontiers in Endocrinology, 12, Article ID: 736724. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Gu, Q., Wang, X., Xie, L., Yao, X., Qian, L., Yu, Z., et al. (2022) Green Tea Catechin EGCG Could Prevent Obesity-Related Precocious Puberty through NKB/NK3R Signaling Pathway. The Journal of Nutritional Biochemistry, 108, Article ID: 109085. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Brix, N., Lauridsen, L.L.B., Ernst, A., Olsen, J., Henriksen, T.B. and Ramlau-Hansen, C.H. (2020) Alcohol Intake during Pregnancy and Timing of Puberty in Sons and Daughters: A Nationwide Cohort Study. Reproductive Toxicology, 91, 35-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Peck, J.D., Peck, B.M., Skaggs, V.J., Fukushima, M. and Kaplan, H.B. (2011) Socio-Environmental Factors Associated with Pubertal Development in Female Adolescents: The Role of Prepubertal Tobacco and Alcohol Use. Journal of Adolescent Health, 48, 241-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Hiney, J.K., Srivastava, V.K. and Les Dees, W. (2010) Insulin-like Growth Factor-1 Stimulation of Hypothalamic Kiss-1 Gene Expression Is Mediated by Akt: Effect of Alcohol. Neuroscience, 166, 625-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Dees, W.L., Hiney, J.K. and Srivastava, V.K. (2017) Alcohol and Puberty: Mechanisms of Delayed Development. Alcohol Research: Current Reviews, 38, 277-282.
|
|
[40]
|
Srivastava, V.K., Hiney, J.K., Stevener, K. and Dees, W.L. (2015) Differential Effects of Alcohol on Excitatory and Inhibitory Puberty‐Related Peptides in the Basal Hypothalamus of the Female Rat. Alcoholism: Clinical and Experimental Research, 39, 2386-2393. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Jansen, E.C., Marín, C., Mora-Plazas, M. and Villamor, E. (2016) Higher Childhood Red Meat Intake Frequency Is Associated with Earlier Age at Menarche. The Journal of Nutrition, 146, 792-798. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Bonafini, S., Antoniazzi, F., Maffeis, C., Minuz, P. and Fava, C. (2015) Beneficial Effects of ω-3 PUFA in Children on Cardiovascular Risk Factors during Childhood and Adolescence. Prostaglandins & Other Lipid Mediators, 120, 72-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Perng, W., Villamor, E., Mora-Plazas, M., Marin, C. and Baylin, A. (2014) α-Linolenic Acid (ALA) Is Inversely Related to Development of Adiposity in School-Age Children. European Journal of Clinical Nutrition, 69, 167-172. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Lauritzen, L., Eriksen, S.E., Hjorth, M.F., Nielsen, M.S., Olsen, S.F., Stark, K.D., et al. (2016) Maternal Fish Oil Supplementation during Lactation Is Associated with Reduced Height at 13 Years of Age and Higher Blood Pressure in Boys Only. British Journal of Nutrition, 116, 2082-2090. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Santillán, M.E., Vincenti, L.M., Martini, A.C., Fiol de Cuneo, M., Ruiz, R.D., Mangeaud, A., et al. (2010) Developmental and Neurobehavioral Effects of Perinatal Exposure to Diets with Different Ω-6:ω-3 Ratios in Mice. Nutrition, 26, 423-431. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Vázquez, C., Botella-Carretero, J.I., Corella, D., Fiol, M., Lage, M., Lurbe, E., et al. (2014) White Fish Reduces Cardiovascular Risk Factors in Patients with Metabolic Syndrome: The WISH-CARE Study, a Multicenter Randomized Clinical Trial. Nutrition, Metabolism and Cardiovascular Diseases, 24, 328-335. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Dror, D.K. (2014) Dairy Consumption and Pre‐School, School‐Age and Adolescent Obesity in Developed Countries: A Systematic Review and Meta‐Analysis. Obesity Reviews, 15, 516-527. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wiley, A.S. (2011) Milk Intake and Total Dairy Consumption: Associations with Early Menarche in NHANES 1999-2004. PLOS ONE, 6, e14685. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Ramezani Tehrani, F., Moslehi, N., Asghari, G., Gholami, R., Mirmiran, P. and Azizi, F. (2013) Intake of Dairy Products, Calcium, Magnesium, and Phosphorus in Childhood and Age at Menarche in the Tehran Lipid and Glucose Study. PLOS ONE, 8, e57696. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Carwile, J.L., Willett, W.C., Wang, M., Rich-Edwards, J., Frazier, A.L. and Michels, K.B. (2015) Milk Consumption after Age 9 Years Does Not Predict Age at Menarche. The Journal of Nutrition, 145, 1900-1908. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Papanikolaou, Y., Jones, J.M. and Fulgoni, V.L. (2017) Several Grain Dietary Patterns Are Associated with Better Diet Quality and Improved Shortfall Nutrient Intakes in US Children and Adolescents: A Study Focusing on the 2015-2020 Dietary Guidelines for Americans. Nutrition Journal, 16, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Kissock, K.R., Neale, E.P. and Beck, E.J. (2021) Whole Grain Food Definition Effects on Determining Associations of Whole Grain Intake and Body Weight Changes: A Systematic Review. Advances in Nutrition, 12, 693-707. [Google Scholar] [CrossRef] [PubMed]
|