[1]
|
中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国变应性鼻炎诊断和治疗指南(2022年, 修订版) [J]. 中华耳鼻咽喉头颈外科杂志, 2022, 57(2): 106-129.
|
[2]
|
王孟, 郑铭, 王向东, 等. 中国过敏性鼻炎流行病学研究进展[J]. 中国耳鼻咽喉头颈外科, 2019, 26(8): 415-420.
|
[3]
|
Sharma, A., Deshmukh, P., Jain, S., Gaurkar, S. and Sharma, A. (2024) Unraveling the Molecular Threads: A Comprehensive Review of the Pathogenesis and Therapeutic Insights into Allergic Rhinitis. Cureus, 16, e64410. https://doi.org/10.7759/cureus.64410
|
[4]
|
Guan, Y., Ma, Y., Tang, Y., Liu, X., Zhao, Y. and An, L. (2021) MiRNA-221-5p Suppressed the Th17/Treg Ratio in Asthma via RORγt/Foxp3 by Targeting SOCS1. Allergy, Asthma & Clinical Immunology, 17, Article No. 123. https://doi.org/10.1186/s13223-021-00620-8
|
[5]
|
Benavides-Aguilar, J.A., Morales-Rodríguez, J.I., Ambriz-González, H., Ruiz-Manriquez, L.M., Banerjee, A., Pathak, S., et al. (2023) The Regulatory Role of microRNAs in Common Eye Diseases: A Brief Review. Frontiers in Genetics, 14, Article ID: 1152110. https://doi.org/10.3389/fgene.2023.1152110
|
[6]
|
Tunçer, F., Şahiner, Ü.M., Ocak, M., Ünsal, H., Soyer, Ö., Şekerel, B.E., et al. (2022) Comparison of miRNA Expression in Patients with Seasonal and Perennial Allergic Rhinitis and Non-Atopic Asthma. The Turkish Journal of Pediatrics, 64, 859-868. https://doi.org/10.24953/turkjped.2022.410
|
[7]
|
Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297. https://doi.org/10.1016/s0092-8674(04)00045-5
|
[8]
|
Adams, B.D., Parsons, C., Walker, L., Zhang, W.C. and Slack, F.J. (2017) Targeting Noncoding RNAs in Disease. Journal of Clinical Investigation, 127, 761-771. https://doi.org/10.1172/jci84424
|
[9]
|
Mehta, A. and Baltimore, D. (2016) Erratum: MicroRNAs as Regulatory Elements in Immune System Logic. Nature Reviews Immunology, 16, Article No. 400. https://doi.org/10.1038/nri.2016.65
|
[10]
|
Hoefig, K.P. and Heissmeyer, V. (2008) MicroRNAs Grow up in the Immune System. Current Opinion in Immunology, 20, 281-287. https://doi.org/10.1016/j.coi.2008.05.005
|
[11]
|
Song, J., Liu, D. and Yin, W. (2022) lnc-THRIL and miR-125b Relate to Disease Risk, Severity, and Imbalance of Th1 Cells/Th2 Cells in Allergic Rhinitis. Allergologia et Immunopathologia, 50, 15-23. https://doi.org/10.15586/aei.v50i3.528
|
[12]
|
罗红平, 田理. 中医药调节Th1/Th2免疫失衡治疗变应性鼻炎的研究进展[J]. 中医眼耳鼻喉杂志, 2023, 13(4): 210-212, 220.
|
[13]
|
杨雪华, 马文新, 谭亚洲, 等. 熊果酸对变应性鼻炎大鼠Th1/Th2平衡等功能的影响[J]. 西北药学杂志, 2023, 38(2): 80-85.
|
[14]
|
权少敏, 周长明, 刘涛. 变应性鼻炎发病相关危险因素分析[J]. 中国中西医结合耳鼻咽喉科杂志, 2024, 32(3): 234-238.
|
[15]
|
Meng, Y., Wang, C. and Zhang, L. (2019) Recent Developments and Highlights in Allergic Rhinitis. Allergy, 74, 2320-2328. https://doi.org/10.1111/all.14067
|
[16]
|
Xia, G., Bao, L., Gao, W., Liu, S., Ji, K. and Li, J. (2015) Differentially Expressed miRNA in Inflammatory Mucosa of Chronic Rhinosinusitis. Journal of Nanoscience and Nanotechnology, 15, 2132-2139. https://doi.org/10.1166/jnn.2015.9161
|
[17]
|
杨好喜, 龚淑敏, 王虹. 变应性鼻炎患者血清let-7e、miR-155-5p表达及其与Treg/Th17细胞平衡的关系[J]. 山东医药, 2021, 61(22): 32-36.
|
[18]
|
Chen, Z., Deng, Y., Li, F., Xiao, B., Zhou, X. and Tao, Z. (2019) MicroRNA-466a-3p Attenuates Allergic Nasal Inflammation in Mice by Targeting GA-TA3. Clinical and Experimental Immunology, 197, 366-375. https://doi.org/10.1111/cei.13312
|
[19]
|
Suojalehto, H., Toskala, E., Kilpeläinen, M., Majuri, M., Mitts, C., Lindström, I., et al. (2013) MicroRNA Profiles in Nasal Mucosa of Patients with Allergic and Nonallergic Rhinitis and Asthma. International Forum of Allergy & Rhinology, 3, 612-620. https://doi.org/10.1002/alr.21179
|
[20]
|
陈艳春, 梅显伟, 徐世影, 等. 变应性鼻炎患者鼻黏膜组织的miR-223表达水平及其临床意义[J]. 中国中西医结合耳鼻咽喉科杂志, 2021, 29(3): 179-183.
|
[21]
|
Ogulur, I., Pat, Y., Ardicli, O., Barletta, E., Cevhertas, L., Fernandez‐Santamaria, R., et al. (2021) Advances and Highlights in Biomarkers of Allergic Diseases. Allergy, 76, 3659-3686. https://doi.org/10.1111/all.15089
|
[22]
|
Specjalski, K. and Jassem, E. (2019) MicroRNAs: Potential Biomarkers and Targets of Therapy in Allergic Diseases? Archivum Immunologiae et Therapiae Experimentalis, 67, 213-223. https://doi.org/10.1007/s00005-019-00547-4
|
[23]
|
Ruan, G., Wen, X. and Yuan, Z. (2020) Correlation between miR-223 and IL-35 and Their Regulatory Effect in Children with Allergic Rhinitis. Clinical Immunology, 214, Article ID: 108383. https://doi.org/10.1016/j.clim.2020.108383
|
[24]
|
Li, B., Yu, X. and Pang, F. (2023) LncRNA FGD5-AS1 Alleviates Inflammation in Allergic Rhinitis through the miR-223-3p/COX11 Axis. International Archives of Allergy and Immunology, 185, 201-211. https://doi.org/10.1159/000534985
|
[25]
|
Zhou, Y., Zhang, T., Yan, Y., You, B., You, Y., Zhang, W., et al. (2021) MicroRNA-223-3p Regulates Allergic Inflammation by Targeting INPP4A. Brazilian Journal of Otorhinolaryngology, 87, 591-600. https://doi.org/10.1016/j.bjorl.2020.05.020
|
[26]
|
Wu, G., Yang, G., Zhang, R., Xu, G., Zhang, L., Wen, W., et al. (2015) Altered MicroRNA Expression Profiles of Extracellular Vesicles in Nasal Mucus from Patients with Allergic Rhinitis. Allergy, Asthma & Immunology Research, 7, Article No. 449. https://doi.org/10.4168/aair.2015.7.5.449
|
[27]
|
Brandstadter, J.D. and Maillard, I. (2019) Notch Signalling in T Cell Homeostasis and Differentiation. Open Biology, 9, Article ID: 190187. https://doi.org/10.1098/rsob.190187
|
[28]
|
Jiao, W., Wei, J., Kong, Y., Xu, Y., Tao, Z. and Chen, S. (2018) Notch Signaling Promotes Development of Allergic Rhinitis by Suppressing Foxp3 Expression and Treg Cell Differentiation. International Archives of Allergy and Immunology, 178, 33-44. https://doi.org/10.1159/000493328
|
[29]
|
汪奕龙, 宋杰, 吴湘明. 微小RNA-223-3p调控Notch通路对屋尘螨所致过敏性鼻炎小鼠鼻腔炎症反应的影响实验研究[J]. 陕西医学杂志, 2024, 53(5): 598-603+609.
|
[30]
|
Zhang, X., Zhang, Y., Li, H., Hu, C., Wang, N., Cao, P., et al. (2012) Overexpression of miR-125b, a Novel Regulator of Innate Immunity, in Eosinophilic Chronic Rhinosinusitis with Nasal Polyps. American Journal of Respiratory and Critical Care Medicine, 185, 140-151. https://doi.org/10.1164/rccm.201103-0456oc
|
[31]
|
张锦堂, 范小帆. 血清miR-125a和miR-25与变应性鼻炎儿童调节性T细胞数量和功能的相关性[J]. 中国妇幼保健, 2022, 37(19): 3617-3620.
|
[32]
|
Wu, X., Zhao, S., Huang, W., Huang, L., Huang, M., Luo, X., et al. (2022) Aberrant Expressions of Circulating lncRNA NEAT1 and MicroRNA‐125a Are Linked with Th2 Cells and Symptom Severity in Pediatric Allergic Rhinitis. Journal of Clinical Laboratory Analysis, 36, e24235. https://doi.org/10.1002/jcla.24235
|
[33]
|
吕峰, 刘娟, 孙锋, 等. 变应性鼻炎患者血清miR-149-5p、Notch1 mRNA表达与Treg/Th17平衡的关系[J]. 山东医药, 2024, 64(22): 37-41.
|
[34]
|
闫智永, 张爽, 唐桥斐. miR-149-5p对变应性鼻炎小鼠Notch1表达和Treg/Th17免疫平衡的影响[J]. 贵州医科大学学报, 2020, 45(6): 660-667.
|
[35]
|
Yu, X., Wang, M. and Cao, Z. (2020) Reduced CD4+ T Cell CXCR3 Expression in Patients with Allergic Rhinitis. Frontiers in Immunology, 11, Article ID: 581180. https://doi.org/10.3389/fimmu.2020.581180
|
[36]
|
李荣荣, 瞿申红, 张少杰, 等. miR-155/GATA3/CD4~+T细胞通路对变应性鼻炎发病机制的调控[J]. 中国免疫学杂志, 2024, 40(3): 629-635.
|
[37]
|
李荣荣. MicroRNA-155基因敲除对变应性鼻炎发病机制中GATA3以及Th1/Th2和ILC2细胞的影响[D]: [硕士学位论文]. 百色: 右江民族医学院, 2022.
|
[38]
|
Zheng, Y., Dong, C., Yang, J., Jin, Y., Zheng, W., Zhou, Q., et al. (2019) Exosomal microRNA‐155‐5p from PDLSCs Regulated Th17/Treg Balance by Targeting Sirtuin‐1 in Chronic Periodontitis. Journal of Cellular Physiology, 234, 20662-20674. https://doi.org/10.1002/jcp.28671
|
[39]
|
许美华. 变应性鼻炎患儿血清中miRNA-155-5p和IL-4、IL-5及IL-17的表达及相关性研究[D]: [硕士学位论文]. 承德: 承德医学院, 2023.
|
[40]
|
Zhong, Z., Huang, X., Zhang, S., Zheng, S., Cheng, X., Li, R., et al. (2023) Blocking Notch Signalling Reverses miR-155-Mediated Inflammation in Allergic Rhinitis. International Immunopharmacology, 116, Article ID: 109832. https://doi.org/10.1016/j.intimp.2023.109832
|
[41]
|
刘凤杰, 王步权, 毛承刚. 变应性鼻炎患者血清miR-124-3p和miR-202-5p的表达及临床意义[J]. 中国耳鼻咽喉头颈外科, 2024, 31(8): 515-518.
|
[42]
|
Lu, T.X., Hartner, J., Lim, E., Fabry, V., Mingler, M.K., Cole, E.T., et al. (2011) MicroRNA-21 Limits in Vivo Immune Response-Mediated Activation of the IL-12/IFN-gamma Pathway, Th1 Polarization, and the Severity of Delayed-Type Hypersensitivity. The Journal of Immunology, 187, 3362-3373. https://doi.org/10.4049/jimmunol.1101235
|
[43]
|
杜慧慧, 麻琼钒, 郑国君, 等. 血清miRNA-21和miRNA-192与儿童变应性鼻炎的相关性研究[J]. 中国妇幼保健, 2023, 38(4): 665-668.
|
[44]
|
Wang, S., Wang, L., Hu, H. and Dong, P. (2021) MiR-224 Ameliorates Inflammation and Symptoms in Mouse Model of Allergic Rhinitis by Targeting CDK9. Allergologia et Immunopathologia, 49, 80-88. https://doi.org/10.15586/aei.v49i6.451
|
[45]
|
Long, S. and Zhang, H. (2021) MIR-181A-5P Attenuates Ovalbumin-Induced Allergic Inflammation in Nasal Epithelial Cells by Targeting IL-33/P38 MAPK Pathway. Clinical and Investigative Medicine, 44, E31-38. https://doi.org/10.25011/cim.v44i4.37327
|
[46]
|
Neilson, J.R., Zheng, G.X.Y., Burge, C.B. and Sharp, P.A. (2007) Dynamic Regulation of miRNA Expression in Ordered Stages of Cellular Development. Genes & Development, 21, 578-589. https://doi.org/10.1101/gad.1522907
|
[47]
|
Blevins, R., Bruno, L., Carroll, T., Elliott, J., Marcais, A., Loh, C., et al. (2015) microRNAs Regulate Cell-to-Cell Variability of Endogenous Target Gene Expression in Developing Mouse Thymocytes. PLOS Genetics, 11, e1005020. https://doi.org/10.1371/journal.pgen.1005020
|