细胞因子在新生儿败血症早期诊断中的研究进展
Research Progress of Cytokines in Early Diagnosis of Neonatal Septicemia
DOI: 10.12677/acm.2024.14112918, PDF, HTML, XML,   
作者: 卢雪萌, 耿荟云*:西安医学院研究生工作部,陕西 西安
关键词: 细胞因子败血症新生儿Cytokine Sepsis Newborn
摘要: 新生儿败血症早期临床表现缺乏特异性,且病情进展迅速,可造成多脏器功能损伤甚至死亡。新型的生物标记物如细胞因子,在既往的研究中已被证实与疾病的早期诊断相关。本文对细胞因子在新生儿败血症早期诊断中的研究进展进行综述。
Abstract: The early clinical manifestations of neonatal sepsis are lack of specificity, and the disease progresses rapidly, which can cause multiple organ dysfunction and even death. Novel biomarkers such as cytokines have been shown to be associated with disease diagnosis and prognosis in previous studies. This article reviews the research progress of cytokines in the early diagnosis of neonatal septicemia.
文章引用:卢雪萌, 耿荟云. 细胞因子在新生儿败血症早期诊断中的研究进展[J]. 临床医学进展, 2024, 14(11): 582-588. https://doi.org/10.12677/acm.2024.14112918

1. 引言

新生儿败血症(neonatal sepsis, NS)指致病菌(包括细菌和真菌)侵入新生儿血液循环,并在其中生长繁殖并产生毒素从而引起全身炎症反应综合佂(SIRS),其根据发病年龄和败血症发作时间分为早发型败血症(early onset sepsis, EOS)和晚发型败血症(last onset sepsis, LOS),是新生儿时期主要致死病因之一[1] [2]新生儿败血症缺乏临床特异症状,有研究指出,新生败血症每提前诊治1 h,可降低10%的死亡风险[3]。血培养是诊断败血症的金标准,但其出结果时间慢,一般至少需要2 d [4]。目前常用的生物标记物如C-反应蛋白(CRP)、降钙素原(PCT)、外周白细胞计数(WBC)等。CRP存在升高延迟,早期诊断新生儿败血症是不可靠的[5]。PCT虽可在一定程度对诊断新生儿败血症起提示作用,但PCT在非感染性疾病如新生儿出生窒息、新生儿低氧血症和新生儿颅内出血中同样也会出现假阳性[6]。全身炎症反应可引起新生儿败血症,其中包括细胞因子在内的各种炎症介质的产生和释放。因此本文就细胞因子在新生儿败血症早期诊断中的研究进展进行综述。

2. IL-6与新生儿败血症

IL-6是一种具有调节免疫应答、造血、急性期反应和炎症的多功能细胞因子。它由各种类型的细胞产生,如T细胞、B细胞、单核细胞、成纤维细胞等[7]。IL-6已被证实是识别新生儿早期细菌感染的高敏标志物,其水平在感染后2~4小时内升高,在随后的24小时内下降,且随着抗菌治疗的开始,IL-6水平下降得更快[8]-[10]。在Qing Ye等人的研究中,新生儿败血症患者接受有效治疗后,IL-6水平显著下降,这表明IL-6或可作为临床治疗有效的监测参数[11]。然而,在某些情况下,如母亲有绒毛膜羊膜炎,IL-6的被动转移可导致新生儿出生后IL-6水平升高,可能会导致出现假阳性结果。因此,有必要评估产妇的危险因素[12]。在新生儿早发性败血症的诊断中IL-6具有更高的潜在效用价值[13],同时IL-6为怀疑LONS的早产儿提供有关随后败血症严重程度和死亡风险的有价值的信息[11]。在一项前瞻性研究中,Cobo等人发现了脐带血IL-6是PPROM早发性新生儿败血症的独立预测因素[14]。此外,患有PPROM的婴儿脐带血IL-6水平升高,患有EONS的新生儿血中IL-6水平明显更高,因此脐带血IL-6水平比母亲有绒毛膜羊膜炎对PPROM的败血症患儿具有更高的预测价值[15]

3. IL-8与新生儿败血症

IL-8是促炎细胞因子,来源于单核细胞、巨噬细胞、成纤维细胞和内皮细胞。IL-8在感染期间中性粒细胞的迁移和活化中起作用[15]。IL-8作为感染的标志物,与疾病的严重程度密切相关。感染初期,IL-8水平迅速升高,IL-8浓度在2~4小时内升高,随后在4小时内迅速下降,因此可作为感染的早期标志物。一项对548名新生儿进行的8项研究的meta分析中,该研究报告了IL-8诊断新生儿败血症的综合敏感性和特异性分别为78%和84%。IL-8对于新生儿败血症的诊断具有中等准确性[16]。当I-L8 > 60 pg/mL时,IL-8具有高灵敏度(95%)和阳性预测值(97%),但特异性(10%)和阴性预测值(10%)较低[15]。IL-8的平均临界值为220.53 pg/mL,敏感性为72.48%,特异性为80%。IL-8的平均敏感性稍低,为73% (中位数,80%),使用70 pg/ml的临界值,平均特异性为81% (中位数,82%) [17]。需要进一步的研究来减少IL-8作为EOS诊断生物标志物的异质性,使用meta分析更加方便。在一项回顾性研究中,血浆IL-8浓度是预测败血症诱导的心功能不全的潜在生物标志物,IL-8的预测值甚至优于cTnT,但低于NT-proBNP [18]

4. IL-10与新生儿败血症

IL-10是由多种不同类型的免疫细胞产生的一种关键抗炎细胞因子,在预防炎症和自身免疫疾病方面具有关键作用。IL-10是早期诊断新生儿败血症的有用生物标志物,其敏感性、特异性和诊断能力都很好[19]。IL-10能够预测受败血症影响的新生儿的预后和生存[20]。L10是新生儿感染的早期预测标志物,其高值与感染的严重程度相关。与革兰氏阳性感染相比,更高浓度的IL10与革兰氏阴性感染相关。IL10 > 27 pg/ml时诊断新生儿败血症的敏感性为60%,特异性为87% [21]。在不同年龄组中,高水平IL-10与严重的败血症相关,与健康对照组相比,新生儿晚发型败血症患儿的IL-10水平显著升高[22]。确诊新生儿晚发型败血症的婴儿IL-10/TNF-α比率升高,CCL2/IL-10和IL-12p70比率降低。确诊新生儿晚发型败血症的婴儿IL-10/TNF-α比值升高可能表明新生儿早期免疫反应性低下[23]。此外,Omran等人报道了唾液IL-10可作为诊断足月新生儿晚发型败血症的潜在无创生物标志物[24]

5. TNF-α与新生儿败血症

TNF-α是一种趋化因子或细胞因子,在全身感染和炎症时由活化的吞噬细胞产生。TNF-α的代谢特点与IL-6相似,且炎症刺激后TNF-α水平升高不受胎龄或生后日龄影响。与正常健康新生儿相比,感染新生儿的TNF-α浓度显著升高[15]。在一项包括23项试验的meta分析,TNF-α在早发型败血症(敏感性 = 66%,特异性 = 76%)和晚发型败血症(敏感性 = 88%,特异性 = 89%)诊断方面具有中等准确性[25]。因此,就其本身而言,单独TNF-α并非诊断新生儿败血症的有用标志,当TNF-α和IL6水平组合用于诊断新生儿败血症时,敏感性和特异性分别增加到60%和100% [26]。TNF-α基因表达与极低出生体重婴儿的新生儿败血症密切相关[27]。Varljen等人报道了TNF-α-308 A等位基因与早产婴儿培养证实和临床证实的早发型败血症风险相关。在他们的研究中所有分析的TNF-α AA基因型早产儿均发展为新生儿早发型败血症[28]

6. IL-35与新生儿败血症

IL-35是一种新描述的IL-12家族细胞因子,在免疫应答的形成和排序中发挥着重要作用。IL-35通过抑制辅助T细胞(Th)1、Th2和Th17细胞反应,有助于调节宿主免疫[17]。IL-35在许多自身免疫性和炎症性疾病中发挥重要作用:1型糖尿病(T1D)、类风湿性关节炎(RA)、多发性硬化症(MS)、系统性红斑狼疮(SLE)、IBD、原发性干燥综合征(pSS)和动脉粥样硬化等[29]。在成人的系统性硬化、过敏性鼻炎和感染性休克中,其水平升高。据报道,败血症患者血清IL-35水平升高,这与腹腔败血症小鼠血液和腹腔灌洗液中IL-35浓度升高一致,表明IL-35在感染过程中发挥重要作用[30]。在患有EOS的新生儿中,IL-35不仅具有快速增加的优势(感染后6小时,12小时达到峰值),而且在长达3天内保持稳定。此外,它还可用于EOS的预后。对于31.7 ng/mL的临界值,该白细胞介素的敏感性为78.48%,特异性为66.67% [17]

7. IL-27与新生儿败血症

IL-27是一种具有免疫调节促炎和抗炎功能的多方面细胞因子,属于IL-6/IL-12家族。它主要由暴露于微生物产品和炎症刺激物的活化抗原呈递细胞分泌。它由亚单位蛋白p28/IL-30和EB病毒诱导的蛋白3的结合形成,并作为T细胞、巨噬细胞和中性粒细胞的调节器[31]。IL-27可以识别重症儿童患者的细菌感染,AUC为0.75。与其他身体部位感染的患者相比,IL-27在严格血培养阳性的患者中具有更大的预测价值[32]。在一项前瞻性研究中,血浆IL-27水平升高与患EOS风险密切相关,并独立于PCT和其他标志物。尽管IL-27的敏感性(70.59%)和NPV (74.69%)不是非常理想,但IL-27和PCT的联合使用(AUC = 0.792)显示出比单独使用PCT或IL-27更高的预测能力[33]。IL-27的临界值 > 283.8 ng/mL时,其诊断足月新生儿晚发型败血症的敏感性为97.8%,特异性为100% [34]。Wong等人报道了IL-27作为危重成人败血症诊断生物标志物[35]。成人(无论是否患有败血症)的IL-27水平也高于儿童,这证实了IL-27水平可能会随着年龄的增长而变化。IL-27可能是诊断新生儿败血症的一个非常有前景的标记物,但其敏感性和特异性相对较低,作为新生儿败血症生物标志物的价值需要进一步进行研究。

8. IL-18与新生儿败血症

IL-18是一种独特的细胞因子,参与各种T细胞群的激活和分化。IL-18是IL-1家族的成员,在各种传染性、代谢性或炎症性疾病中发挥作用,如流感病毒感染、动脉粥样硬化、心肌梗死、慢性阻塞性肺病或克罗恩病。儿童和成人败血症患者血清中IL-18和IL-18BP浓度升高,游离IL-18仍高于健康人或非败血症患者[36]。早产婴儿血清IL-18浓度升高,败血症发病率升高,与胎龄呈负相关[37]。IL-18诱导的IL-17A是新生儿败血症中先前未被识别的损伤效应物[36]。IL-18诱导T细胞产生IL-17,进而表达IL-18Rα,这一机制可能与自身免疫性脑脊髓炎、全身性JIA或新生儿败血症等疾病有关。补充IL-18可以增强患败血症新生小鼠全身炎症反应,并增加其死亡率。相反,IL-18缺失显著提高脓毒症小鼠的存活率。这一机制可能是败血症中IL-18的使用增加了小鼠肠道γδT细胞以及髓细胞产生IL-17A,阻断了IL-17受体降低IL-18增强的新生儿败血症和内毒素血症死亡率[36]。在一项前瞻性研究中探讨了新生儿败血症与血清IL-18水平之间的联系。研究中的多变量分析显示,IL-18是新生儿败血症的独立风险因素。IL-18在新生儿败血症诊断中的最佳临界值为0.85 ng/mL,敏感性为60%,特异性为84%。IL-18对死亡率预测具有良好的价值[38]

9. 其他细胞因子

L-17A可由如γδT细胞、细胞毒性CD8+T细胞、先天组织特异性细胞、先天淋巴细胞(ILCs)和髓细胞等细胞亚群分泌。IL-17A介导的炎症是宿主保护和抵抗感染生存所必需的。IL-17A还可加剧胎儿炎症反应,并与免疫病理学有关。IL-17A水平在各种炎症状态下升高,包括败血症、肺炎、系统性红斑狼疮、类风湿性关节炎、同种异体移植排斥和癌症[39]。小鼠新生儿败血症的死亡率取决于肺和肠道中γδT细胞产生的过量和有害的IL-17A。血清高IL-17A水平与败血症的风险更大相关,表明这种细胞因子可能是败血症进展的新预测因子,也是一个有吸引力的治疗靶点[40]。当IL-17A途径在胎儿发育过程中由于绒毛膜羊膜炎或子宫内炎症条件而被触发时,IL-17A可引发和/或加剧胎儿炎症反应,从而增加与常见新生儿疾病相关的新生儿发病率和死亡率,如败血症、支气管肺发育不良(BPD)、动脉导管未闭(PDA)和坏死性小肠结肠炎(NEC)等[41]。新生儿晚发型败血症患儿Th17细胞相关细胞因子/趋化因子、IL-17和CCL20的水平显著高于新生儿早发型败血症患儿。IL-17水平与年龄呈正相关。

IL-9和IL-21是在炎症和感染中起关键作用的多效活性细胞因子[41]。IL-9最常与过敏性炎症和对细胞外寄生虫的免疫相关[42]。但也有证据表明,IL-9通过增强IL-4介导的人B细胞IgE和IgG的产生,在感染性疾病的免疫调节中发挥作用。IL-21是T细胞介导的B细胞活化、增殖和类转换重组的关键成分,因此是一种在感染中起关键作用的强大免疫调节细胞因子。IL-9和IL-21均升高的事实表明,Th9细胞在新生儿败血症中具有特异性功能,CD4+细胞已被证明能产生IL-9和IL-21 [43]。IL-21促进Th9细胞分泌IL-9,从而对其分化和功能形成正反馈[44]。尽管在新生儿败血症的背景下没有关于IL-9的研究,但先前已证明败血症新生儿外周血中IL-21水平升高。在一项前瞻性病例对照研究中,败血症新生儿的IL-9和IL-21的平均水平明显高于对照组,但诊断准确率低于IL-6 [45]

10. 结论

新生儿败血症临床表现不典型,且极易被误诊。目前常用的生物标记诊断新生儿败血症存在局限性,迫切需要新的生物标记来快速且便捷诊断新生儿败血症。细胞因子如IL-6、IL-10等在目前研究中对新生儿败血症的诊断有一定的价值,但其敏感度和特异性低。新发现的细胞因子如IL-35、IL-18等在新生儿败血症条件下研究有限,有可能成为新的生物标志物,但需进一步验证。

NOTES

*通讯作者。

参考文献

[1] 江载芳, 申昆玲, 沈颖. 诸福棠实用儿科学[M]. 第8版. 北京: 人民卫生出版社, 2015: 491-495.
[2] Shane, A.L., Sánchez, P.J. and Stoll, B.J. (2017) Neonatal Sepsis. The Lancet, 390, 1770-1780.
https://doi.org/10.1016/s0140-6736(17)31002-4
[3] 陆文峰, 张洁, 方成志. 新生儿败血症情况及早期诊断指标分析[J]. 中国妇幼健康研究, 2017, 28(8): 908-910.
[4] 中华医学会儿科学分会新生儿学组, 中国医师协会新生儿科医师分会感染专业委员会. 新生儿败血症诊断及治疗专家共识(2019年版) [J]. 中华儿科杂志, 2019, 57(4): 252-257.
[5] Delanghe, J.R. and Speeckaert, M.M. (2015) Translational Research and Biomarkers in Neonatal Sepsis. Clinica Chimica Acta, 451, 46-64.
https://doi.org/10.1016/j.cca.2015.01.031
[6] Chauhan, N., Tiwari, S. and Jain, U. (2017) Potential Biomarkers for Effective Screening of Neonatal Sepsis Infections: An Overview. Microbial Pathogenesis, 107, 234-242.
https://doi.org/10.1016/j.micpath.2017.03.042
[7] Mihara, M., Hashizume, M., Yoshida, H., Suzuki, M. and Shiina, M. (2011) IL-6/IL-6 Receptor System and Its Role in Physiological and Pathological Conditions. Clinical Science, 122, 143-159.
https://doi.org/10.1042/cs20110340
[8] Chiesa, C., Pacifico, L., Natale, F., Hofer, N., Osborn, J.F. and Resch, B. (2015) Fetal and Early Neonatal Interleukin-6 Response. Cytokine, 76, 1-12.
https://doi.org/10.1016/j.cyto.2015.03.015
[9] Shahkar, L., Keshtkar, A., Mirfazeli, A., Ahani, A. and Roshandel, G. (2011) The Role of IL-6 for Predicting Neonatal Sepsis: A Systematic Review and Meta-Analysis. Iranian Journal of Pediatrics, 21, 411-417.
[10] Kurul, Ş., Simons, S.H.P., Ramakers, C.R.B., De Rijke, Y.B., Kornelisse, R.F., Reiss, I.K.M., et al. (2021) Association of Inflammatory Biomarkers with Subsequent Clinical Course in Suspected Late Onset Sepsis in Preterm Neonates. Critical Care, 25, Article No. 12.
https://doi.org/10.1186/s13054-020-03423-2
[11] Ye, Q., Du, L., Shao, W. and Shang, S. (2016) Utility of Cytokines to Predict Neonatal Sepsis. Pediatric Research, 81, 616-621.
https://doi.org/10.1038/pr.2016.267
[12] Cortés, J.S., Losada, P.X., Fernández, L.X., Beltrán, E., DeLaura, I., Narváez, C.F., et al. (2020) Interleukin-6 as a Biomarker of Early-Onset Neonatal Sepsis. American Journal of Perinatology, 38, e338-e346.
https://doi.org/10.1055/s-0040-1710010
[13] Cobo, T., Kacerovsky, M., Andrys, C., Drahosova, M., Musilova, I., Hornychova, H., et al. (2013) Umbilical Cord Blood IL-6 as Predictor of Early-Onset Neonatal Sepsis in Women with Preterm Prelabour Rupture of Membranes. PLOS ONE, 8, e69341.
https://doi.org/10.1371/journal.pone.0069341
[14] Eichberger, J. and Resch, B. (2022) Reliability of Interleukin-6 Alone and in Combination for Diagnosis of Early Onset Neonatal Sepsis: Systematic Review. Frontiers in Pediatrics, 10, Article 840778.
https://doi.org/10.3389/fped.2022.840778
[15] Sharma, D., Farahbakhsh, N., Shastri, S. and Sharma, P. (2017) Biomarkers for Diagnosis of Neonatal Sepsis: A Literature Review. The Journal of Maternal-Fetal & Neonatal Medicine, 31, 1646-1659.
https://doi.org/10.1080/14767058.2017.1322060
[16] Zhou, M., Cheng, S., Yu, J. and Lu, Q. (2015) Interleukin-8 for Diagnosis of Neonatal Sepsis: A Meta-Analysis. PLOS ONE, 10, e0127170.
https://doi.org/10.1371/journal.pone.0127170
[17] Memar, M.Y., Alizadeh, N., Varshochi, M. and Kafil, H.S. (2017) Immunologic Biomarkers for Diagnostic of Early-Onset Neonatal Sepsis. The Journal of Maternal-Fetal & Neonatal Medicine, 32, 143-153.
https://doi.org/10.1080/14767058.2017.1366984
[18] Chen, X., Liu, X., Dong, R., Zhang, D. and Qin, S. (2021) A Retrospective Observational Study of the Association between Plasma Levels of Interleukin 8 in 42 Patients with Sepsis-Induced Myocardial Dysfunction at a Single Center between 2017 and 2020. Medical Science Monitor, 27, e933065.
https://doi.org/10.12659/msm.933065
[19] Wang, Q., Peng, G., Gan, L., Deng, Z., Zeng, L. and Deng, J. (2021) The Value of Interleukin-10 in the Early Diagnosis of Neonatal Sepsis: A Meta-Analysis. Pediatric Critical Care Medicine, 22, e492-e501.
https://doi.org/10.1097/pcc.0000000000002706
[20] Xing, W., Wang, Y., Liu, J., Pei, J. and Yu, C. (2023) Role of Interleukins in the Detection of Neonatal Sepsis: A Network Meta-Analysis. Frontiers in Pediatrics, 11, Article 1267777.
https://doi.org/10.3389/fped.2023.1267777
[21] Boskabadi, H. and Zakerihamidi, M. (2018) Evaluate the Diagnosis of Neonatal Sepsis by Measuring Interleukins: A Systematic Review. Pediatrics & Neonatology, 59, 329-338.
https://doi.org/10.1016/j.pedneo.2017.10.004
[22] Khaertynov, K.S., Boichuk, S.V., Khaiboullina, S.F., Anokhin, V.A., Andreeva, A.A., Lombardi, V.C., et al. (2017) Comparative Assessment of Cytokine Pattern in Early and Late Onset of Neonatal Sepsis. Journal of Immunology Research, 2017, Article ID: 8601063.
https://doi.org/10.1155/2017/8601063
[23] Hibbert, J., Strunk, T., Simmer, K., Richmond, P., Burgner, D. and Currie, A. (2020) Plasma Cytokine Profiles in Very Preterm Infants with Late-Onset Sepsis. PLOS ONE, 15, e0232933.
https://doi.org/10.1371/journal.pone.0232933
[24] Omran, A., Sobh, H., Abdalla, M.O., El-Sharkawy, S., Rezk, A.R. and Khashana, A. (2021) Salivary and Serum Interleukin-10, C-Reactive Protein, Mean Platelet Volume, and CRP/MPV Ratio in the Diagnosis of Late-Onset Neonatal Sepsis in Full-Term Neonates. Journal of Immunology Research, 2021, Article ID: 4884537.
https://doi.org/10.1155/2021/4884537
[25] Lv, B., Huang, J., Yuan, H., Yan, W., Hu, G. and Wang, J. (2014) Tumor Necrosis Factor-α as a Diagnostic Marker for Neonatal Sepsis: A Meta-Analysis. Scientific World Journal, 2014, Article ID: 471463.
[26] Hincu, M., Zonda, G., Stanciu, G.D., Nemescu, D. and Paduraru, L. (2020) Relevance of Biomarkers Currently in Use or Research for Practical Diagnosis Approach of Neonatal Early-Onset Sepsis. Children, 7, Article 309.
https://doi.org/10.3390/children7120309
[27] Cernada, M., Serna, E., Bauerl, C., Collado, M.C., Pérez-Martínez, G. and Vento, M. (2014) Genome-Wide Expression Profiles in Very Low Birth Weight Infants with Neonatal Sepsis. Pediatrics, 133, e1203-e1211.
https://doi.org/10.1542/peds.2013-2552
[28] Varljen, T., Rakic, O., Sekulovic, G., Jekic, B., Maksimovic, N., Janevski, M.R., et al. (2019) Association between Tumor Necrosis Factor-α Promoter-308 G/A Polymorphism and Early Onset Sepsis in Preterm Infants. The Tohoku Journal of Experimental Medicine, 247, 259-264.
https://doi.org/10.1620/tjem.247.259
[29] Ye, C., Yano, H., Workman, C.J. and Vignali, D.A.A. (2021) Interleukin-35: Structure, Function and Its Impact on Immune-Related Diseases. Journal of Interferon & Cytokine Research, 41, 391-406.
https://doi.org/10.1089/jir.2021.0147
[30] Cao, J., Xu, F., Lin, S., Tao, X., Xiang, Y., Lai, X., et al. (2015) IL-35 Is Elevated in Clinical and Experimental Sepsis and Mediates Inflammation. Clinical Immunology, 161, 89-95.
https://doi.org/10.1016/j.clim.2015.08.016
[31] Hunter, C.A. and Kastelein, R. (2012) Interleukin-27: Balancing Protective and Pathological Immunity. Immunity, 37, 960-969.
https://doi.org/10.1016/j.immuni.2012.11.003
[32] Hanna, W.J., Berrens, Z., Langner, T., Lahni, P. and Wong, H.R. (2015) Interleukin-27: A Novel Biomarker in Predicting Bacterial Infection among the Critically Ill. Critical Care, 19, Article No. 378.
https://doi.org/10.1186/s13054-015-1095-2
[33] He, Y., Du, W.X., Jiang, H.y., Ai, Q., Feng, J., Liu, Z., et al. (2017) Multiplex Cytokine Profiling Identifies Interleukin-27 as a Novel Biomarker for Neonatal Early Onset Sepsis. Shock, 47, 140-147.
https://doi.org/10.1097/shk.0000000000000753
[34] Tosson, A.M.S., Koptan, D.M.T., Kamal, M. and Abd Elhady, M. (2022) Assessment of Serum Interleukin-27 and Mean Platelet Volume in Late-Onset Neonatal Sepsis. American Journal of Perinatology, 41, 1232-1237.
[35] Wong, H.R., Lindsell, C.J., Lahni, P., Hart, K.W. and Gibot, S. (2013) Interleukin 27 as a Sepsis Diagnostic Biomarker in Critically Ill Adults. Shock, 40, 382-386.
https://doi.org/10.1097/shk.0b013e3182a67632
[36] Wynn, J.L., Wilson, C.S., Hawiger, J., Scumpia, P.O., Marshall, A.F., Liu, J., et al. (2016) Targeting IL-17A Attenuates Neonatal Sepsis Mortality Induced by Il-18. Proceedings of the National Academy of Sciences of the United States of America, 113, E2627-E2635.
https://doi.org/10.1073/pnas.1515793113
[37] Kaplanski, G. (2017) Interleukin‐18: Biological Properties and Role in Disease Pathogenesis. Immunological Reviews, 281, 138-153.
https://doi.org/10.1111/imr.12616
[38] Li, X., Li, T., Dong, G., Wei, Y., Xu, Z. and Yang, J. (2022) Clinical Value of Serum Interleukin-18 in Neonatal Sepsis Diagnosis and Mortality Prediction. Journal of Inflammation Research, 15, 6923-6930.
https://doi.org/10.2147/jir.s393506
[39] Ge, Y., Huang, M. and Yao, Y. (2020) Biology of Interleukin-17 and Its Pathophysiological Significance in Sepsis. Frontiers in Immunology, 11, Article 1558.
https://doi.org/10.3389/fimmu.2020.01558
[40] Rendon, J.L. and Choudhry, M.A. (2012) Th17 Cells: Critical Mediators of Host Responses to Burn Injury and Sepsis. Journal of Leukocyte Biology, 92, 529-538.
https://doi.org/10.1189/jlb.0212083
[41] Liu, J., Cen, H., Ni, J., Zhang, M., Li, P., Yang, X., et al. (2014) Association of IL-21 Polymorphisms (Rs907715, Rs2221903) with Susceptibility to Multiple Autoimmune Diseases: A Meta-analysis. Autoimmunity, 48, 108-116.
https://doi.org/10.3109/08916934.2014.944262
[42] Chakraborty, S., Kubatzky, K.F. and Mitra, D.K. (2019) An Update on Interleukin-9: From Its Cellular Source and Signal Transduction to Its Role in Immunopathogenesis. International Journal of Molecular Sciences, 20, Article 2113.
https://doi.org/10.3390/ijms20092113
[43] Kaplan, M.H., Hufford, M.M. and Olson, M.R. (2015) The Development and in Vivo Function of T Helper 9 Cells. Nature Reviews Immunology, 15, 295-307.
https://doi.org/10.1038/nri3824
[44] Ma, C.S., Tangye, S.G. and Deenick, E.K. (2010) Human Th9 Cells: Inflammatory Cytokines Modulate IL‐9 Production through the Induction of Il‐21. Immunology & Cell Biology, 88, 621-623.
https://doi.org/10.1038/icb.2010.73
[45] Froeschle, G.M., Bedke, T., Boettcher, M., Huber, S., Singer, D. and Ebenebe, C.U. (2020) T Cell Cytokines in the Diagnostic of Early-Onset Sepsis. Pediatric Research, 90, 191-196.
https://doi.org/10.1038/s41390-020-01248-x