|
[1]
|
Polak‐Witka, K., Rudnicka, L., Blume‐Peytavi, U. and Vogt, A. (2019) The Role of the Microbiome in Scalp Hair Follicle Biology and Disease. Experimental Dermatology, 29, 286-294. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kumari, K.U., Yadav, N.P. and Luqman, S. (2022) Promising Essential Oils/Plant Extracts in the Prevention and Treatment of Dandruff Pathogenesis. Current Topics in Medicinal Chemistry, 22, 1104-1133. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Islam, N., Leung, P.S.C., Huntley, A.C. and Eric Gershwin, M. (2015) The Autoimmune Basis of Alopecia Areata: A Comprehensive Review. Autoimmunity Reviews, 14, 81-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Barbosa, V., Hight, R. and Grullon, K. (2023) Scalp Infection, Inflammation, and Infestation. Dermatologic Clinics, 41, 539-545. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Fung, E.S., Parker, J.A. and Monnot, A.D. (2023) Evaluating the Impact of Hair Care Product Exposure on Hair Follicle and Scalp Health. Alternatives to Laboratory Animals, 51, 323-334. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sheth, U. and Dande, P. (2020) Pityriasis capitis: Causes, Pathophysiology, Current Modalities, and Future Approach. Journal of Cosmetic Dermatology, 20, 35-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hazarika, N. (2019) Acne Vulgaris: New Evidence in Pathogenesis and Future Modalities of Treatment. Journal of Dermatological Treatment, 32, 277-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
T. Chiu, C., Huang, S. and Wang, H. (2015) A Review: Hair Health, Concerns of Shampoo Ingredients and Scalp Nourishing Treatments. Current Pharmaceutical Biotechnology, 16, 1045-1052. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Cong, T., Hao, D., Wen, X., Li, X., He, G. and Jiang, X. (2019) From Pathogenesis of Acne Vulgaris to Anti-Acne Agents. Archives of Dermatological Research, 311, 337-349. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Aydingoz, I.E., Tukenmez Demirci, G., Agirbasli, D., Oz‐Arslan, D. and Yenmis, G. (2020) The Investigation of the Amounts and Expressions of Epidermal Growth Factor, Epidermal Growth Factor Receptor, and Epidermal Growth Factor Receptor Gene Polymorphisms in Acne Vulgaris. Journal of Cosmetic Dermatology, 20, 346-351. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Jiang, T., Hu, W., Zhang, S., Ren, C., Lin, S., Zhou, Z., et al. (2022) Fibroblast Growth Factor 10 Attenuates Chronic Obstructive Pulmonary Disease by Protecting against Glycocalyx Impairment and Endothelial Apoptosis. Respiratory Research, 23, Article No. 269. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Song, W., Wang, L., Wang, L. and Li, Q. (2015) Interplay of miR-21 and Foxo1 Modulates Growth of Pancreatic Ductal Adenocarcinoma. Tumor Biology, 36, 4741-4745. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Su, Z., Zhang, Y., Cao, J., Sun, Y., Cai, Y., Zhang, B., et al. (2023) Hyaluronic Acid-Fgf2-Derived Peptide Bioconjugates for Suppression of FGFR2 and AR Simultaneously as an Acne Antagonist. Journal of Nanobiotechnology, 21, Article No. 55. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Agamia, N.F., El Mulla, K.F., Alsayed, N.M., Ghazala, R.M., El Maksoud, R.E.A., Abdelmeniem, I.M., et al. (2022) Isotretinoin Treatment Upregulates the Expression of P53 in the Skin and Sebaceous Glands of Patients with Acne Vulgaris. Archives of Dermatological Research, 315, 1355-1365. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Gosis, B.S., Wada, S., Thorsheim, C., Li, K., Jung, S., Rhoades, J.H., et al. (2022) Inhibition of Nonalcoholic Fatty Liver Disease in Mice by Selective Inhibition of mTORC1. Science, 376, Article No. 8271. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lee, J., Kang, H.S., Park, H.Y., Moon, Y., Kang, Y.N., Oh, B., et al. (2017) PPARα-Dependent Insig2a Overexpression Inhibits SREBP-1c Processing during Fasting. Scientific Reports, 7, Article No. 9958. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Chen, J., Lu, Y., Tian, M. and Huang, Q. (2019) Molecular Mechanisms of FoxO1 in Adipocyte Differentiation. Journal of Molecular Endocrinology, 62, R239-R253. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Agamia, N.F., Roshdy, O.H., Abdelmaksoud, R.E., Abdalla, D.M., Talaat, I.M., Zaki, E.I., et al. (2018) Effect of Oral Isotretinoin on the Nucleo‐Cytoplasmic Distribution of FoxO1 and FoxO3 Proteins in Sebaceous Glands of Patients with Acne Vulgaris. Experimental Dermatology, 27, 1344-1351. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, L., Lu, H., Zhang, Y., Li, Q., Shi, S. and Liu, Y. (2022) Effect of Azelaic Acid on Psoriasis Progression Investigated Based on Phosphatidylinositol 3-Kinase (PI3K)/protein Kinase B (AKT) Signaling Pathway. Clinical, Cosmetic and Investigational Dermatology, 15, 2523-2534. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Melnik, B.C. (2017) P53: Key Conductor of All Anti-Acne Therapies. Journal of Translational Medicine, 15, Article No. 195. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yoon, J.Y., Kwon, H.H., Min, S.U., Thiboutot, D.M. and Suh, D.H. (2013) Epigallocatechin-3-Gallate Improves Acne in Humans by Modulating Intracellular Molecular Targets and Inhibiting P. acnes. Journal of Investigative Dermatology, 133, 429-440. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kwon, H.H., Yoon, J.Y., Park, S.Y., Min, S., Kim, Y., Park, J.Y., et al. (2015) Activity-Guided Purification Identifies Lupeol, a Pentacyclic Triterpene, as a Therapeutic Agent Multiple Pathogenic Factors of Acne. Journal of Investigative Dermatology, 135, 1491-1500. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Clavaud, C., Jourdain, R., Bar-Hen, A., Tichit, M., Bouchier, C., Pouradier, F., et al. (2013) Dandruff Is Associated with Disequilibrium in the Proportion of the Major Bacterial and Fungal Populations Colonizing the Scalp. PLOS ONE, 8, e58203. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Lin, Q., Panchamukhi, A., Li, P., Shan, W., Zhou, H., Hou, L., et al. (2020) Malassezia and Staphylococcus Dominate Scalp Microbiome for Seborrheic Dermatitis. Bioprocess and Biosystems Engineering, 44, 965-975. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Liang, N., Yang, Y., Li, W., Wu, Y., Zhang, Z., Luo, Y., et al. (2017) Overexpression of NLRP3, NLRC4 and AIM2 Inflammasomes and Their Priming‐associated Molecules (TLR2, TLR4, Dectin‐1, Dectin‐2 and NF-κB) in Malassezia Folliculitis. Mycoses, 61, 111-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ortega-Peña, S., Martínez-García, S., Rodríguez-Martínez, S., Cancino-Diaz, M.E. and Cancino-Diaz, J.C. (2019) Overview of Staphylococcus Epidermidis Cell Wall-Anchored Proteins: Potential Targets to Inhibit Biofilm Formation. Molecular Biology Reports, 47, 771-784. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zipperer, A., Konnerth, M.C., Laux, C., Berscheid, A., Janek, D., Weidenmaier, C., et al. (2016) Human Commensals Producing a Novel Antibiotic Impair Pathogen Colonization. Nature, 535, 511-516. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Tsai, W., Fang, Y., Huang, T., Chiang, Y., Lin, C. and Chang, W. (2023) Heat-Killed Lacticaseibacillus paracasei GMNL-653 Ameliorates Human Scalp Health by Regulating Scalp Microbiome. BMC Microbiology, 23, Article No. 121. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Catinean, A., Neag, M.A., Muntean, D.M., Bocsan, I.C. and Buzoianu, A.D. (2018) An Overview on the Interplay between Nutraceuticals and Gut Microbiota. PeerJ, 6, e4465. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Dimidi, E. and Whelan, K. (2020) Food Supplements and Diet as Treatment Options in Irritable Bowel Syndrome. Neurogastroenterology & Motility, 32, e13951. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, B., Luo, P., Sun, J., Li, D., Liu, Z., Liu, X., et al. (2022) The Epidermal Barrier Structure and Function of Re-Harvested Skin from Non-Scalp Donor Sites. Journal of Investigative Surgery, 36, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Runtsch, M.C., Angiari, S., Hooftman, A., Wadhwa, R., Zhang, Y., Zheng, Y., et al. (2022) Itaconate and Itaconate Derivatives Target JAK1 to Suppress Alternative Activation of Macrophages. Cell Metabolism, 34, 487-501.e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Konger, R.L., Derr-Yellin, E., Zimmers, T.A., Katona, T., Xuei, X., Liu, Y., et al. (2021) Epidermal PPARγ Is a Key Homeostatic Regulator of Cutaneous Inflammation and Barrier Function in Mouse Skin. International Journal of Molecular Sciences, 22, Article No. 8634. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Igawa, S., Ohzono, A., Pham, P., Wang, Z., Nakatsuji, T., Dokoshi, T., et al. (2021) Sphingosine 1-Phosphate Receptor 2 Is Central to Maintaining Epidermal Barrier Homeostasis. Journal of Investigative Dermatology, 141, 1188-1197.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Inchingolo, A.D., Malcangi, G., Inchingolo, A.M., Piras, F., Settanni, V., Garofoli, G., et al. (2022) Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. International Journal of Molecular Sciences, 23, Article No. 4027. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Jing, R., Fu, M., Huang, Y., Zhang, K., Ye, J., Gong, F., et al. (2024) Oat β‐Glucan Repairs the Epidermal Barrier by Upregulating the Levels of Epidermal Differentiation, Cell-Cell Junctions and Lipids via Dectin‐1. British Journal of Pharmacology, 181, 1596-1613. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Chen, T., Zhang, X., Zhu, G., Liu, H., Chen, J., Wang, Y., et al. (2020) Quercetin Inhibits TNF-α Induced HUVECs Apoptosis and Inflammation via Downregulating NF-κB and AP-1 Signaling Pathway in Vitro. Medicine, 99, e22241. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Goryachkina, V.L., Ivanova, M.Y., Tsomartova, D.A., et al. (2014) Regulation of Hair Follicle Cycle. Morfologiia, 146, 83-87.
|
|
[39]
|
Ito, T., Ito, N., Saatoff, M., Hashizume, H., Fukamizu, H., Nickoloff, B.J., et al. (2008) Maintenance of Hair Follicle Immune Privilege Is Linked to Prevention of NK Cell Attack. Journal of Investigative Dermatology, 128, 1196-1206. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhou, L., Wang, H., Jing, J., Yu, L., Wu, X. and Lu, Z. (2018) Regulation of Hair Follicle Development by Exosomes Derived from Dermal Papilla Cells. Biochemical and Biophysical Research Communications, 500, 325-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gupta, A.K., Talukder, M. and Williams, G. (2022) Comparison of Oral Minoxidil, Finasteride, and Dutasteride for Treating Androgenetic Alopecia. Journal of Dermatological Treatment, 33, 2946-2962. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Lee, Y.H., Choi, H., Kim, J.Y., Kim, J., Lee, J., Cho, S., et al. (2021) Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth via the AKT/GSK-3β/β-Catenin Signaling Pathway. Journal of Microbiology and Biotechnology, 31, 933-941. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Jung, Y.H., Chae, C.W., Choi, G.E., Shin, H.C., Lim, J.R., Chang, H.S., et al. (2022) Cyanidin 3-O-Arabinoside Suppresses DHT-Induced Dermal Papilla Cell Senescence by Modulating p38-Dependent ER-Mitochondria Contacts. Journal of Biomedical Science, 29, Article No. 17. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Hibino, T. and Nishiyama, T. (2004) Role of TGF-beta2 in the Human Hair Cycle. Journal of Dermatological Science, 35, 9-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Flores, A., Schell, J., Krall, A.S., Jelinek, D., Miranda, M., Grigorian, M., et al. (2017) Lactate Dehydrogenase Activity Drives Hair Follicle Stem Cell Activation. Nature Cell Biology, 19, 1017-1026. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Sotiropoulou, P.A., Karambelas, A.E., Debaugnies, M., Candi, A., Bouwman, P., Moers, V., et al. (2012) BRCA1 Deficiency in Skin Epidermis Leads to Selective Loss of Hair Follicle Stem Cells and Their Progeny. Genes & Development, 27, 39-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Matsumura, H., Mohri, Y., Binh, N.T., Morinaga, H., Fukuda, M., Ito, M., et al. (2016) Hair Follicle Aging Is Driven by Transepidermal Elimination of Stem Cells via COL17A1 Proteolysis. Science, 351, 559-600. [Google Scholar] [CrossRef] [PubMed]
|