[1]
|
Liu, C., Fang, C., Shang, Y., Yao, B. and He, Q. (2022) Transcranial Ultrasound Diagnostic Value of Hemodynamic Cerebral Changes in Preterm Infants for Early-Onset Sepsis. Translational Pediatrics, 11, 1149-1155. https://doi.org/10.21037/tp-22-269
|
[2]
|
Barghi, B. and Azadeh-Fard, N. (2022) Predicting Risk of Sepsis, Comparison between Machine Learning Methods: A Case Study of a Virginia Hospital. European Journal of Medical Research, 27, Article No. 213. https://doi.org/10.1186/s40001-022-00843-4
|
[3]
|
Tauber, S.C., Djukic, M., Gossner, J., Eiffert, H., Brück, W. and Nau, R. (2020) Sepsis-Associated Encephalopathy and Septic Encephalitis: An Update. Expert Review of Anti-Infective Therapy, 19, 215-231. https://doi.org/10.1080/14787210.2020.1812384
|
[4]
|
Neu, C., Esper Treml, R., Baumbach, P., Engelmann, M., Gebhardt, C., Götze, J., et al. (2024) Cholinesterase Activities and Sepsis-Associated Encephalopathy in Viral versus Nonviral Sepsis. Canadian Journal of Anesthesia, 71, 378-389. https://doi.org/10.1007/s12630-024-02692-7
|
[5]
|
Yuechen, Z., Shaosong, X., Zhouxing, Z., Fuli, G. and Wei, H. (2023) A Summary of the Current Diagnostic Methods For, and Exploration of the Value of Micrornas as Biomarkers in, Sepsis-Associated Encephalopathy. Frontiers in Neuroscience, 17, Article 1125888. https://doi.org/10.3389/fnins.2023.1125888
|
[6]
|
中华医学会儿科学分会新生儿学组, 中国医师协会新生儿科医师分会感染专业委员会. 新生儿败血症诊断及治疗专家共识(2019年版) [J]. 中华儿科杂志, 57(4): 252-257.
|
[7]
|
Mazeraud, A., Righy, C., Bouchereau, E., Benghanem, S., Bozza, F.A. and Sharshar, T. (2020) Septic-Associated Encephalopathy: A Comprehensive Review. Neurotherapeutics, 17, 392-403. https://doi.org/10.1007/s13311-020-00862-1
|
[8]
|
Mei, J., Zhang, X., Sun, X., Hu, L. and Song, Y. (2024) Optimizing the Prediction of Sepsis-Associated Encephalopathy with Cerebral Circulation Time Utilizing a Nomogram: A Pilot Study in the Intensive Care Unit. Frontiers in Neurology, 14, Article 1303075. https://doi.org/10.3389/fneur.2023.1303075
|
[9]
|
Ehler, J., Saller, T., Wittstock, M., Rommer, P.S., Chappell, D., Zwissler, B., et al. (2019) Diagnostic Value of NT-proCNP Compared to NSE and S100B in Cerebrospinal Fluid and Plasma of Patients with Sepsis-Associated Encephalopathy. Neuroscience Letters, 692, 167-173. https://doi.org/10.1016/j.neulet.2018.11.014
|
[10]
|
陈惠金. 新生儿缺氧缺血性脑损伤和颅内出血的B超诊断[J]. 中华妇幼临床医学杂志: 电子版, 2005, 1(1): 10-12.
|
[11]
|
Milligan, D.W.A. (1980) Failure of Autoregulation and Intraventricular Hæmorrhage in Preterm Infants. The Lancet, 315, 896-898. https://doi.org/10.1016/s0140-6736(80)90836-3
|
[12]
|
Gu, M., Mei, X. and Zhao, Y. (2020) Sepsis and Cerebral Dysfunction: BBB Damage, Neuroinflammation, Oxidative Stress, Apoptosis and Autophagy as Key Mediators and the Potential Therapeutic Approaches. Neurotoxicity Research, 39, 489-503. https://doi.org/10.1007/s12640-020-00270-5
|
[13]
|
Tang, Y., Soroush, F., Sun, S., Liverani, E., Langston, J.C., Yang, Q., et al. (2018) Protein Kinase C-Delta Inhibition Protects Blood-Brain Barrier from Sepsis-Induced Vascular Damage. Journal of Neuroinflammation, 15, Article No. 309. https://doi.org/10.1186/s12974-018-1342-y
|
[14]
|
Mo, X., Xiong, X., Wang, Y., Gu, H., Yang, Y. and He, J. (2023) Texture Feature-Based Machine Learning Classification on MRI Image for Sepsis-Associated Encephalopathy Detection: A Pilot Study. Computational and Mathematical Methods in Medicine, 2023, Article 6403556. https://doi.org/10.1155/2023/6403556
|
[15]
|
Liu, X., Niu, H. and Peng, J. (2024) Enhancing Predictions with a Stacking Ensemble Model for ICU Mortality Risk in Patients with Sepsis-Associated Encephalopathy. Journal of International Medical Research, 52, Article 3000605241239013.
|
[16]
|
Michels, M., Steckert, A.V., Quevedo, J., Barichello, T. and Dal-Pizzol, F. (2015) Mechanisms of Long-Term Cognitive Dysfunction of Sepsis: From Blood-Borne Leukocytes to Glial Cells. Intensive Care Medicine Experimental, 3, Article No. 30. https://doi.org/10.1186/s40635-015-0066-x
|
[17]
|
Lee, A.C., Cherkerzian, S., Tofail, F., Folger, L.V., Ahmed, S., Rahman, S., et al. (2024) Perinatal Inflammation, Fetal Growth Restriction, and Long-Term Neurodevelopmental Impairment in Bangladesh. Pediatric Research. https://doi.org/10.1038/s41390-024-03101-x
|
[18]
|
Reinhart, K., Bauer, M., Riedemann, N.C. and Hartog, C.S. (2012) New Approaches to Sepsis: Molecular Diagnostics and Biomarkers. Clinical Microbiology Reviews, 25, 609-634. https://doi.org/10.1128/cmr.00016-12
|
[19]
|
Li, B., Dasgupta, C., Huang, L., Meng, X. and Zhang, L. (2019) MiRNA-210 Induces Microglial Activation and Regulates Microglia-Mediated Neuroinflammation in Neonatal Hypoxic-Ischemic Encephalopathy. Cellular & Molecular Immunology, 17, 976-991. https://doi.org/10.1038/s41423-019-0257-6
|
[20]
|
Pei, M., Yang, Y., Zhang, C., Huang, Q., Fang, Y., Xu, L., et al. (2024) Role of Serum Neuron-Specific Enolase Levels in the Early Diagnosis and Prognosis of Sepsis-Associated Encephalopathy: A Systematic Review and Meta-Analysis. Frontiers in Neurology, 15, Article 1353063. https://doi.org/10.3389/fneur.2024.1353063
|
[21]
|
Ehler, J., Barrett, L.K., Taylor, V., Groves, M., Scaravilli, F., Wittstock, M., et al. (2017) Translational Evidence for Two Distinct Patterns of Neuroaxonal Injury in Sepsis: A Longitudinal, Prospective Translational Study. Critical Care, 21, Article No. 262. https://doi.org/10.1186/s13054-017-1850-7
|
[22]
|
Rivera-Lara, L. (2019) The Role of Impaired Brain Perfusion in Septic Encephalopathy. Critical Care, 23, Article No. 54. https://doi.org/10.1186/s13054-018-2299-z
|
[23]
|
Claassen, J.A.H.R., Thijssen, D.H.J., Panerai, R.B. and Faraci, F.M. (2021) Regulation of Cerebral Blood Flow in Humans: Physiology and Clinical Implications of Autoregulation. Physiological Reviews, 101, 1487-1559. https://doi.org/10.1152/physrev.00022.2020
|
[24]
|
Nwafor, D.C., Brichacek, A.L., Mohammad, A.S., Griffith, J., Lucke-Wold, B.P., Benkovic, S.A., et al. (2019) Targeting the Blood-Brain Barrier to Prevent Sepsis-Associated Cognitive Impairment. Journal of Central Nervous System Disease, 11. https://doi.org/10.1177/1179573519840652
|
[25]
|
Schramm, P., Klein, K.U., Falkenberg, L., Berres, M., Closhen, D., Werhahn, K.J., et al. (2012) Impaired Cerebrovascular Autoregulation in Patients with Severe Sepsis and Sepsis-Associated Delirium. Critical Care, 16, Article No. R181. https://doi.org/10.1186/cc11665
|
[26]
|
Atterton, B., Paulino, M.C., Povoa, P. and Martin-Loeches, I. (2020) Sepsis Associated Delirium. Medicina, 56, Article 240. https://doi.org/10.3390/medicina56050240
|
[27]
|
Masse, M.H., et al. (2018) Early Evidence of Sepsis-Associated Hyperperfusion—A Study of Cerebral Blood Flow Measured with MRI Arterial Spin Labeling in Critically III Septic Patients and Control Subjects. Critical Care Medicine, 46, e663-e669.
|
[28]
|
Rhee, C.J., da Costa, C.S., Austin, T., Brady, K.M., Czosnyka, M. and Lee, J.K. (2018) Neonatal Cerebrovascular Autoregulation. Pediatric Research, 84, 602-610. https://doi.org/10.1038/s41390-018-0141-6
|
[29]
|
Ferlini, L. and Gaspard, N. (2023) What’s New on Septic Encephalopathy? Ten Things You Need to Know. Minerva Anestesiologica, 89, 217-225. https://doi.org/10.23736/s0375-9393.22.16689-7
|
[30]
|
Ratnaparkhi, C.R., Bayaskar, M.V., Dhok, A.P. and Bhende, V. (2020) Utility of Doppler Ultrasound in Early-Onset Neonatal Sepsis. Indian Journal of Radiology and Imaging, 30, 52-58. https://doi.org/10.4103/ijri.ijri_265_19
|