[1]
|
Saravanan, C., et al. (2015) Effect of Particulate Reinforced Aluminium Metal Matrix Composite—A Review. Mechanics and Mechanical Engineering, 19, 23-30.
|
[2]
|
Su, Y., Ouyang, Q., Zhang, W., Li, Z., Guo, Q., Fan, G., et al. (2014) Composite Structure Modeling and Mechanical Behavior of Particle Reinforced Metal Matrix Composites. Materials Science and Engineering: A, 597, 359-369. https://doi.org/10.1016/j.msea.2014.01.024
|
[3]
|
Ozden, S., Ekici, R. and Nair, F. (2007) Investigation of Impact Behaviour of Aluminium Based Sic Particle Reinforced Metal-Matrix Composites. Composites Part A: Applied Science and Manufacturing, 38, 484-494. https://doi.org/10.1016/j.compositesa.2006.02.026
|
[4]
|
Jagadeesh, G.V. and Gangi Setti, S. (2020) A Review on Micromechanical Methods for Evaluation of Mechanical Behavior of Particulate Reinforced Metal Matrix Composites. Journal of Materials Science, 55, 9848-9882. https://doi.org/10.1007/s10853-020-04715-2
|
[5]
|
Zhang, J., Zheng, Z., Huang, K., Lin, C., Huang, W., Chen, X., et al. (2024) Field-Assisted Machining of Difficult-To-Machine Materials. International Journal of Extreme Manufacturing, 6, Article ID: 032002. https://doi.org/10.1088/2631-7990/ad2c5e
|
[6]
|
Sahoo, B.P., Das, D. and Chaubey, A.K. (2021) Strengthening Mechanisms and Modelling of Mechanical Properties of Submicron-TiB2 Particulate Reinforced Al 7075 Metal Matrix Composites. Materials Science and Engineering: A, 825, Article ID: 141873. https://doi.org/10.1016/j.msea.2021.141873
|
[7]
|
Samal, P., Vundavilli, P.R., Meher, A. and Mahapatra, M.M. (2020) Recent Progress in Aluminum Metal Matrix Composites: A Review on Processing, Mechanical and Wear Properties. Journal of Manufacturing Processes, 59, 131-152. https://doi.org/10.1016/j.jmapro.2020.09.010
|
[8]
|
Yan, C., Lifeng, W. and Jianyue, R. (2008) Multi-Functional Sic/al Composites for Aerospace Applications. Chinese Journal of Aeronautics, 21, 578-584. https://doi.org/10.1016/s1000-9361(08)60177-6
|
[9]
|
武高辉. 一种3D打印用SiCP/Al复合材料粉末的制备方法[P]. 中国专利, 202110161449.6. 2022-02-01.
|
[10]
|
Liu, D., Zhang, S.Q., Li, A. and Wang, H.M. (2009) Microstructure and Tensile Properties of Laser Melting Deposited TiC/TA15 Titanium Matrix Composites. Journal of Alloys and Compounds, 485, 156-162.
|
[11]
|
韩龙. 基于3D打印预制体的ZrO2/Al-Mg复合材料制备工艺研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2020.
|
[12]
|
张力, 杨现锋, 徐协文, 等. 熔融沉积法3D打印制备氧化锆陶瓷及其力学性能研究[J]. 无机材料学报, 2021, 36(4): 436-442.
|
[13]
|
杨建明, 汤阳, 顾海, 等. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018, 32(15): 2672-2682.
|
[14]
|
第五届全国快速成形与制造学术会议在西安召开[J]. 电加工与模具, 2011(3): 63.
|
[15]
|
Yu, W.H., Sing, S.L., Chua, C.K., Kuo, C.N. and Tian, X.L. (2019) Particle-Reinforced Metal Matrix Nanocomposites Fabricated by Selective Laser Melting: A State of the Art Review. Progress in Materials Science, 104, 330-379. https://doi.org/10.1016/j.pmatsci.2019.04.006
|
[16]
|
申琦, 余森, 牛金龙, 等. 选区激光熔化制备镁基材料研究进展[J]. 材料导报, 2019, 33(S1): 278-282.
|
[17]
|
常成, 郭一帆, 卓伟伟, 等. 激光选区熔化适配型铝合金的研究及应用现状[J]. 中国有色金属学报, 2024, 34(8): 2491-2510.
|
[18]
|
张莎莎. TiC颗粒增强316L不锈钢复合材料SLM制备及性能研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2019.
|
[19]
|
Zhao, S., Shen, X., Yang, J., Teng, W. and Wang, Y. (2018) Densification Behavior and Mechanical Properties of Nanocrystalline Tic Reinforced 316L Stainless Steel Composite Parts Fabricated by Selective Laser Melting. Optics & Laser Technology, 103, 239-250. https://doi.org/10.1016/j.optlastec.2018.01.005
|
[20]
|
付旺琪, 钱波, 刘志远, 等. SLM碳化钒颗粒强化316L不锈钢的点阵结构及性能[J]. 激光与光电子学进展, 2019, 56(24): 155-161.
|
[21]
|
蒋佳斌, 谢德巧, 周凯, 等. 激光选区熔化成形LaB6增强316L不锈钢的组织及力学性能[J]. 南京航空航天大学学报, 2021, 53(1): 85-92.
|
[22]
|
周燕, 段隆臣, 吴雪良, 等. 粉末粒径对激光选区熔化成形S136模具钢的磨损与抗腐蚀性能的影响[J]. 激光与光电子学进展, 2018, 55(10): 205-211.
|
[23]
|
胡辉, 周燕, 文世峰, 等. 激光选区熔化成形TiB2增强S136模具钢[J]. 中国激光, 2018, 45(12): 131-140.
|
[24]
|
程灵钰. SLM制备不锈钢与纳米羟基磷灰石复合材料研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2014.
|
[25]
|
洪旭潮, 刘允中, 黄斌. 激光选区熔化成形TiC/SiC协同增强铝基复合材料的组织性能与强化机制[J]. 中国有色金属学报, 2021, 31(9): 2436-2446.
|
[26]
|
廉清, 吴一, 王浩伟, 等. TiB2增强Al-Si复合材料激光增材制造工艺及性能研究[J]. 热加工工艺, 2017, 46(22): 113-117.
|
[27]
|
Astfalck, L.C., Kelly, G.K., Li, X. and Sercombe, T.B. (2017) On the Breakdown of Sic during the Selective Laser Melting of Aluminum Matrix Composites. Advanced Engineering Materials, 19, Article ID: 1600835. https://doi.org/10.1002/adem.201600835
|
[28]
|
Gu, D., Wang, H., Chang, F., Dai, D., Yuan, P., Hagedorn, Y., et al. (2014) Selective Laser Melting Additive Manufacturing of TiC/AlSi10Mg Bulk-Form Nanocomposites with Tailored Microstructures and Properties. Physics Procedia, 56, 108-116. https://doi.org/10.1016/j.phpro.2014.08.153
|
[29]
|
邹田春, 祝贺, 陈敏英, 等. 激光选区熔化碳化硅增强铝基复合材料的微观组织及拉伸性能研究[J]. 中国激光, 2021, 48(10): 231-239.
|
[30]
|
陈帅, 刘建光, 王卫东, 等. TiB2/AlSi10Mg激光选区熔化成形工艺研究[J]. 精密成形工程, 2021, 13(3): 154-161.
|
[31]
|
薛刚, 朱海红, 柯林达, 等. SiC含量对激光选区熔化制备SiCP/AlSi10Mg复合材料组织与性能的影响[J]. 热加工工艺, 2021, 50(10): 62-66.
|
[32]
|
刘宇轩, 王日初, 蔡志勇, 等. Sc元素对激光选区熔化TiB2/AlSi10Mg复合材料组织和性能的影响[J]. 金属热处理, 2020, 45(8): 56-63.
|
[33]
|
沈君剑, 刘允中, 欧阳盛, 等. 激光选区熔化成形TiB2与SiC颗粒混杂增强铝基复合材料的显微组织与力学性能[J]. 粉末冶金材料科学与工程, 2020, 25(3): 251-259.
|
[34]
|
欧阳盛, 刘允中, 沈君剑, 等. (TiH2 + TiB2)/AA7075复合粉末激光选区熔化成形的显微组织与力学性能[J]. 粉末冶金材料科学与工程, 2020, 25(3): 197-205.
|
[35]
|
邰鹤立, 坚增运. SiCp/AlSi10Mg激光选区熔化成形组织及性能研究[J]. 西安工业大学学报, 2020, 40(1): 64-69, 81.
|
[36]
|
Gu, D., Hagedorn, Y., Meiners, W., Wissenbach, K. and Poprawe, R. (2011) Nanocrystalline TiC Reinforced Ti Matrix Bulk-Form Nanocomposites by Selective Laser Melting (SLM): Densification, Growth Mechanism and Wear Behavior. Composites Science and Technology, 71, 1612-1620. https://doi.org/10.1016/j.compscitech.2011.07.010
|
[37]
|
Gu, D., Meng, G., Li, C., Meiners, W. and Poprawe, R. (2012) Selective Laser Melting of TiC/Ti Bulk Nanocomposites: Influence of Nanoscale Reinforcement. Scripta Materialia, 67, 185-188. https://doi.org/10.1016/j.scriptamat.2012.04.013
|
[38]
|
Xia, M., Liu, A., Wang, H., Lin, Y., Li, N., Zhang, M., et al. (2019) Microstructure Evolution and Its Effect on Mechanical Response of the Multi-Phase Reinforced Ti-Based Composites by Laser Powder-Bed Fusion. Journal of Alloys and Compounds, 782, 506-515. https://doi.org/10.1016/j.jallcom.2018.12.182
|
[39]
|
李闯, 顾冬冬, 沈以赴, 等. SLM制备TiCx/Ti纳米复合材料的致密化及显微组织[J]. 中国有色金属学报, 2011, 21(7): 1554-1561.
|
[40]
|
彭斌意, 刘洋, 郑晓董, 等. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
|
[41]
|
Attar, H., Bönisch, M., Calin, M., Zhang, L., Scudino, S. and Eckert, J. (2014) Selective Laser Melting of in Situ Titanium-Titanium Boride Composites: Processing, Microstructure and Mechanical Properties. Acta Materialia, 76, 13-22. https://doi.org/10.1016/j.actamat.2014.05.022
|
[42]
|
Jia, Q. and Gu, D. (2014) Selective Laser Melting Additive Manufacturing of TiC/Inconel 718 Bulk-Form Nanocomposites: Densification, Microstructure, and Performance. Journal of Materials Research, 29, 1960-1969. https://doi.org/10.1557/jmr.2014.130
|
[43]
|
曹聪帅. 激光熔注WC/Ni基复合材料层制备工艺及组织性能研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2016.
|
[44]
|
Nguyen, Q.B., Zhu, Z., Chua, B.W., Zhou, W., Wei, J. and Nai, S.M.L. (2018) Development of WC-Inconel Composites Using Selective Laser Melting. Archives of Civil and Mechanical Engineering, 18, 1410-1420. https://doi.org/10.1016/j.acme.2018.05.001
|
[45]
|
肖纬汗. 3D打印石墨烯/Inconel 718复合材料的组织与性能研究[D]: [硕士学位论文]. 南昌: 南昌航空大学, 2017.
|
[46]
|
褚清坤, 余春风, 邓朝阳, 等. TiC含量对激光选区熔化Inconel 625合金微观组织及表面摩擦磨损性能的影响[J]. 中国表面工程, 2021, 34(1): 76-84.
|
[47]
|
Miracle, D.B. and Senkov, O.N. (2017) A Critical Review of High Entropy Alloys and Related Concepts. Acta Materialia, 122, 448-511. https://doi.org/10.1016/j.actamat.2016.08.081
|
[48]
|
Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G. and George, E.P. (2013) The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy. Acta Materialia, 61, 5743-5755. https://doi.org/10.1016/j.actamat.2013.06.018
|
[49]
|
Gu, D.D., Meiners, W., Wissenbach, K. and Poprawe, R. (2012) Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms. International Materials Reviews, 57, 133-164. https://doi.org/10.1179/1743280411y.0000000014
|
[50]
|
Ocelík, V., Janssen, N., Smith, S.N. and De Hosson, J.T.M. (2016) Additive Manufacturing of High-Entropy Alloys by Laser Processing. JOM, 68, 1810-1818. https://doi.org/10.1007/s11837-016-1888-z
|
[51]
|
Sun, Z., Tan, X., Tor, S.B. and Chua, C.K. (2018) Simultaneously Enhanced Strength and Ductility for 3D-Printed Stainless Steel 316L by Selective Laser Melting. NPG Asia Materials, 10, 127-136. https://doi.org/10.1038/s41427-018-0018-5
|
[52]
|
Zhu, Z.G., Nguyen, Q.B., et al. (2018) Hierarchical Microstructure and Strengthening Mechanisms of a CoCrFeNiMn High Entropy Alloy Additively Manufactured by Selective Laser Melting. Scripta Materialia, 154, 20-24. https://doi.org/10.1016/j.scriptamat.2018.05.015
|
[53]
|
Yevgeni, B., Meurig, T. and Iain, T. (2014) The Use of High-Entropy Alloys in Additive Manufacturing. Scripta Materialia, 99, 93-96.
|
[54]
|
Li, R., Niu, P., Yuan, T., Cao, P., Chen, C. and Zhou, K. (2018) Selective Laser Melting of an Equiatomic CoCrFeNiMn High-Entropy Alloy: Processability, Non-Equilibrium Microstructure and Mechanical Property. Journal of Alloys and Compounds, 746, 125-134. https://doi.org/10.1016/j.jallcom.2018.02.298
|
[55]
|
Zhou, Y., Zhang, Z., Wang, Y., et al. (2018) Selective Laser Melting of Typical Metallic Materials: An Effective Process Prediction Model Developed by Energy Absorption and Consumption Analysis. Additive Manufacturing, 25, 204-217.
|
[56]
|
Li, B., Zhang, L. and Yang, B. (2020) Grain Refinement and Localized Amorphization of Additively Manufactured High-Entropy Alloy Matrix Composites Reinforced by Nano Ceramic Particles via Selective-Laser-Melting/Remelting. Composites Communications, 19, 56-60. https://doi.org/10.1016/j.coco.2020.03.001
|
[57]
|
Li, B., Qian, B., Xu, Y., Liu, Z. and Xuan, F. (2019) Fine-Structured CoCrFeNiMn High-Entropy Alloy Matrix Composite with 12 wt% Tin Particle Reinforcements via Selective Laser Melting Assisted Additive Manufacturing. Materials Letters, 252, 88-91. https://doi.org/10.1016/j.matlet.2019.05.108
|
[58]
|
Sanaty-Zadeh, A. (2012) Comparison between Current Models for the Strength of Particulate-Reinforced Metal Matrix Nanocomposites with Emphasis on Consideration of Hall-Petch Effect. Materials Science and Engineering: A, 531, 112-118. https://doi.org/10.1016/j.msea.2011.10.043
|
[59]
|
Zhang, Z., Ma, P., Fang, Y., Yang, Z., Zhang, N., Prashanth, K.G., et al. (2023) Effect of NiCoFeAlTi High Entropy Intermetallic Reinforcement Particle Size on the Microstructure and Mechanical Properties of CoCrFeMnNi High-Entropy Alloy Composites Fabricated by Selective Laser Melting. Journal of Alloys and Compounds, 947, Article ID: 169417. https://doi.org/10.1016/j.jallcom.2023.169417
|