标题: 
                                
                                    一般测度Busemann-Petty问题的稳定性Stability in the Busemann-Petty Problem for Arbitrary Measures
                        
                            作者: 
                                汪卫 
                                    
                                        关键字:
                                        Busemann-Petty问题, 星体, 凸体, Radon变换The Busemann-Petty Problem; Star Bodies; Convex Bodies; Radon Transform 
                                    
                                        期刊名称: 
                                            《Pure  Mathematics》, Vol.2 No.4, 2012-11-01
                                    
                                    
                                        摘要:
                                        基于Zvavitch将Busemann-Petty问题推广到了一般测度,本文利用Radon变换研究了一般测度Busemann-Petty问题的稳定性。作为应用,我们建立了n(n≤4)维空间中的一个关于一般测度的超截面不等式。这些结果与Koldobsky利用Fourier变换证明的结论是一致的。
Zvavitch found a generalization of the Busemann-Petty problem to arbitrary measures. In this paper, we study the stability in the Busemann-Petty problem for arbitrary measures by using Radon transform. As application, we obtain a hyperplane inequality for arbitrary measures in dimensions up to four. These results are consistent with Koldobsky’s results which are obtained by using Fourier transform.