气–固法合成制备氢化镁及热力学分析
Preparation of MgH2 by Gas-Solid Synthesis and Thermodynamics Analysis
DOI: 10.12677/AMC.2015.33006, PDF, HTML, XML,  被引量 下载: 3,088  浏览: 10,396 
作者: 谭梦蕾, 谈哲君, 权高峰*:西南交通大学材料科学与工程学院材料先进技术教育部重点实验室,四川 成都
关键词: 氢化镁储氢材料热力学计算爆发式反应Magnesium Hydride Hydrogen Storage Materials Thermodynamics Calculation Explosive Reaction
摘要: 氢能发展日益壮大,制氢、储氢、运氢成为关键的工程技术问题。氢化镁作为镁基储氢材料,因其储氢量大,密度小,氢气释放易于控制而成为氢燃料电池领域关注的焦点之一。本文采用气–固反应法制备氢化镁,并通过对不同状态的镁(镁蒸汽与固体镁粉)与氢气的在高温高压下的合成反应进行热力学计算和实验,从而论证其大规模生产的工业可行性。热力学分析和试验验证结果表明:相比于镁在蒸汽状态下与氢气反应制备氢化镁而言,工业高纯镁固体粉末与氢气反应制备氢化镁的温度和压强条件要求较低(673 K, 7 MPa, 72 h),可工业化制备氢化镁。
Abstract: With the rapid development of hydrogen energy, hydrogen production, storage and transport be-come key issues of engineering technology. MgH2, as an Mg-based hydrogen storage material, has become the center of attention in hydrogen fuel-cell area because it has a high hydrogen capacity with less dense and easy control in hydrogen releasing. In this paper, gas-solid reaction is adopted to prepare MgH2. And a feasibility study in industry is analyzed about reactions between hydrogen with magnesium vapor and powder, respectively, by considering their thermodynamics calculation. The thermodynamics analysis and experimental results show that the temperature and pressure conditions of the reaction between hydrogen and magnesium powder are more easily fulfilled (673 K, 7 MPa, 72 h) than that between hydrogen and magnesium vapor, and that this method can be used in industry.
文章引用:谭梦蕾, 谈哲君, 权高峰. 气–固法合成制备氢化镁及热力学分析[J]. 材料化学前沿, 2015, 3(3): 53-59. http://dx.doi.org/10.12677/AMC.2015.33006

参考文献

[1] 夏丽洪 (2005) 专家谈我国能源行业的协调发展. 国际石油经济, 2, 10-14.
[2] 闫惠忠 (2012) 储氢材料产业现状及发展. 高科技与产业化, 195, 68-71.
[3] 刘新波, 刘子利 (2007) 镁基储氢合金的研究进展. 金属功能材料, 3, 32-36.
[4] Li, F.B., et al. (2006) Synthesis and hydrogenation properties of Mg-Li-H system by reactive Mechanical alloying. International Journal of Hydrogen Energy, 31, 581-585.
http://dx.doi.org /10.1016/j.ijhydene.2005.06.007
[5] Porcu, M., Petford-Long, A.K. and Sykes, J.M. (2008) TEM studies of Nb2O5 catalyst in ball-milled MgH2 for hydrogen storage. Journal of Alloys and Compounds, 453, 341-346.
http://dx.doi.org /10.1016/j.jallcom.2006.11.147
[6] Kim, J.W., Ahn, J.P. and Jin, S.A. (2008) Microstructural evolution of NBF5-doped MgH2exhibiting fast hydrogen sorption kinetics. Journal of Power Sources, 178, 373-378.
http://dx.doi.org /10.1016/j.jpowsour.2007.12.005
[7] Li, Q., Liu, J. and Liu, Y. (2010) Comparative study on the controlled hydriding combustion synthesis and the microwave synthesis to prepare Mg2Ni from micro-particles. International Journal of Hydrogen Energy, 35, 3129-3135.
http://dx.doi.org /10.1016/j.ijhydene.2009.07.121
[8] CHourashiya, M.G. and Yang, D.-C. (2012) Comparison of commercial and hydriding-combustion-synthesized Mg- hydride. Materials Letters, 66, 42-45.
http://dx.doi.org /10.1016/j.matlet.2011.08.008
[9] Zhong, H.C., Wang, H. and Liu, J.W. (2011) Altered desorption enthalpy of MgH2 by the reversible formation of Mg (In) solid solution. Scripta Materialia, 65, 285-287.
http://dx.doi.org /10.1016/j.scriptamat.2011.04.024
[10] Hanada, N., Ichikawa, T. and Fujii, H. (2005) Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. The Journal of Physical Chemistry B, 109, 7188-7194.
http://dx.doi.org /10.1021/jp044576c
[11] Dean, J.A., 著 (2003) 魏俊发, 等, 译. 兰氏化学手册. 第二版, 科学出版社, 北京.
[12] 李志宝, 孙志贤, 张莹洁 (2014) MgH2储氢热力学研究进展. 中国科学, 6, 964-972.
[13] Jain, I.P., Lal, C. and Jain, A. (2010) Hydrogen storage in Mg: A most promising material. International Journal of Hydrogen Energy, 35, 5133-5144.
http://dx.doi.org /10.1016/j.ijhydene.2009.08.088
[14] Schlapbaah, L. (2001) Hydrogen storage materials for mobile application. Nature, 414, 353-358.
http://dx.doi.org /10.1038/35104634