新型脂肪酶介孔材料复合微反应器的研究进展
Research Progress of Novel Lipase Mesoporous Composite Microreactor
DOI: 10.12677/HJMCe.2020.84011, PDF, HTML, XML, 下载: 549  浏览: 1,828  国家自然科学基金支持
作者: 王佳, 姜玉莹, 刘津欢:锦州医科大学药学院,辽宁 锦州;付纯刚, 钱 昆*, 鄂义峰:锦州医科大学化学教研室,辽宁 锦州
关键词: 脂肪酶催化反应介孔材料固定化酶微反应器Lipase Catalytic Reaction Mesoporous Materials Immobilized Enzyme Microreactor
摘要: 在药学领域中,脂肪酶这种天然手性催化剂经常被用于制备光学对映体药物。脂肪酶催化具有高活性,高反应性等特点,但却容易在高温、强酸、强碱中变性甚至失活。特别是,脂肪酶只有在油水都存在的界面才能被活化。如果能通过制备反应器的方法,将脂肪酶保护在某些特殊材料中,并创设油水双亲反应活性体系,则能够保护酶,并使其反应活性和稳定性得到提升。微型反应器还有利于酶的回收利用,从而降低对环境的污染。不同于常见的固定化酶方法包埋法、吸附法、共价结合法和交联法等,微反应器法可以随着材料学的进步而不断发展。近年来,选择不断发展创新的介孔材料作为容器,固载酶,从而搭建酶反应器平台的方法,取得了一系列成果。
Abstract: In pharmaceutical field, the natural chiral lipase often works as the catalyst to prepare optical en-antiomers. Lipase catalysis has the characteristics of high activity and high reactivity, but it is easy to denaturate and even inactivate in high temperature, strong acid and strong base. In particular, lipase can be activated at the interface of oil and water. The lipase can be protected in some special materials by the method of reactor. And the active system of oil-water amphiphilic reaction can be created, when the enzyme can be protected and its reaction activity and stability can be improved. Micro reactor is also conducive to the recovery and utilization of enzymes, so as to reduce environ-mental pollution. The micro reactor method can be developed with the progress of materials sci-ence which is quite different from the common immobilized enzyme methods, such as embedding, adsorption, covalent binding and cross-linking. In recent years, a series of achievements have been made in the method of selecting the constantly developing and innovative mesoporous materials as framework to immobilize enzymes and build enzyme reactor platform.
文章引用:王佳, 姜玉莹, 刘津欢, 付纯刚, 钱昆, 鄂义峰. 新型脂肪酶介孔材料复合微反应器的研究进展[J]. 药物化学, 2020, 8(4): 91-99. https://doi.org/10.12677/HJMCe.2020.84020

参考文献

[1] 余诚玮, 邓施璐, 温志刚, 等. 米糠及其脂肪酶的研究进展[J]. 食品质量安全检测学报, 2019, 10(2): 297-305.
[2] 李远锋, 张锟, 韩双艳, 等. 黑曲霉表面展示南极假丝酵母脂肪酶B催化仲醇动力学拆分[J]. 化学与生物工程, 2018, 35(5): 53-58.
[3] 宋华, 冯化林, 孙兴龙. 介孔材料合成研究进展[J]. 工业催化, 2010, 18(9): 1-6.
[4] Davis, M.E. (2002) Ordered Porous Materials for Emerging Applications. Nature, 417, 813-821.
https://doi.org/10.1038/nature00785
[5] 刘书来. 脂肪酶催化的研究进展[J]. 化工科技市场, 2003, 26(4): 16-20.
[6] 何慧艳. 脂肪酶的固定化及固定化酶的应用[J]. 中国高新技术企业, 2011(36): 78-79.
[7] 陈晟, 陈坚, 吴敬. 微生物脂肪酶的结构与功能研究进展[J]. 工业微生物, 2009, 39(5): 53-58.
[8] 孙宏丹, 孟秀春, 贾莉, 等. 微生物脂肪酶及其相关研究进展[J]. 大连医学院学报, 2001, 23(4): 292-295.
[9] 胡兴翠, 刘建华. 微生物脂肪酶特性及工业应用[J]. 基因组学与应用生物学, 2019, 38(8): 3572-3579.
[10] 徐文婷, 毕武丹, 丛方地, 等. 固定化脂肪酶ANL非水催化合成L-抗坏血酸棕榈酸酯[J]. 生物加工过程, 2018, 16(4): 36-39.
[11] 严子君, 张鑫, 吴祚骜, 等. 脂肪酶Novozym 435催化合成单月桂酸甘油酯[J]. 大学化学, 2020, 35(4): 119-124.
[12] 郑建永, 黄丽娟, 蓝星, 等. 有机相脂肪酶催化合成山梨酸乙酯的研究[J]. 浙江工业大学学报, 2018, 46(3): 288-291.
[13] 李雪玉, 周海燕, 周华, 等. 大孔树脂修饰固定化脂肪酶催化合成L-薄荷醇酯[J]. 高校化学工程学报, 2018. 32(5): 1134-1139.
[14] 汪玲. 微生物脂肪酶的性质及应用[J]. 生物化工, 2020, 6(3): 161-163.
[15] 彭立凤, 赵汝淇. 脂肪酶在催化合成光学活性药物中的应用[J]. 国外医药抗生素分册, 1999, 20(4): 160-166.
[16] 刘文强, 李莉. 手性药物及其中间体拆分方法的研究进展[J]. 药学学报, 2018, 53(1): 37-46.
[17] Zhao, X.B., Qi, F., Yuan, C.L., et al. (2015) Lipase-Catalyzed Process for Biodiesel Production: Enzyme Immobilization, Process Simu-lation and Optimization. Renewable and Sustainable Energy Reviews, 44, 182-197.
https://doi.org/10.1016/j.rser.2014.12.021
[18] Sankaran, R., Show, P.L. and Chang, J.S. (2016) Biodiesel Produc-tion Using Immobilized Lipase: Feasibility and Challenges. Biofuels, Bioproducts and Biorefining, 10, 896-916.
https://doi.org/10.1002/bbb.1719
[19] Gao, X., Ding, Y., Sheng, Y.D., et al. (2019) Enzyme Immobilization in MOF-Derived Porous NiO with Hierarchical Structure: An Efficient and Stable Enzymatic Reactor. ChemCatChem, 11, 2828-2836.
https://doi.org/10.1002/cctc.201900611
[20] Le, T.T., Murugesan, K., Lee, C.S., et al. (2016) Degradation of Syn-thetic Pollutants in Real Wastewater Using Laccase Encapsulated in Core-Shell Magnetic Copper Alginate Beads. Biore-source Technology, 216, 203-210.
https://doi.org/10.1016/j.biortech.2016.05.077
[21] Nadar, S.S. and Rathod, V.K. (2017) Facile Synthesis of Glu-coamylase Embedded Metal-Organic Frameworks (Glucoamylase-MOF) with Enhanced Stability. International Journal of Biological Macromolecules, 95, 511-519.
[22] Zdarta, J., Pinelo, M., Jesionowski, T., et al. (2018) Upgrading of Biomass Monosaccharides by Immobilized Glucose Dehydrogenase and Xylose Dehydrogenase. ChemCatChem, 10, 5164-5173.
https://doi.org/10.1002/cctc.201801335
[23] Pang, S., Wu, Y.W., Zhang, X.Q., et al. (2016) Immobi-lization of Laccase via Adsorption onto Bimodal Mesoporous Zr-MOF. Process Biochemistry, 51, 229-239.
https://doi.org/10.1016/j.procbio.2015.11.033
[24] Gao, J., Wang, Y., Du, Y.J., et al. (2017) Construction of Bio-catalytic Colloidosome Using Lipase-Containing Dendritic Mesoporous Silica Nanospheres for Enhanced Enzyme Catal-ysis. Chemical Engineering Journal, 317, 175-186.
https://doi.org/10.1016/j.cej.2017.02.012
[25] Yassin, M.A., Gad, A.A.M., Ghanem, A.F., et al. (2019) Green Synthesis of Cellulose Nanofibers Using Immobilized Cellulase. Carbohydrate Polymers, 205, 255-260.
https://doi.org/10.1016/j.carbpol.2018.10.040
[26] Hermanova, S., Zarevucka, M., Bousa, D., et al. (2015) Gra-phene Oxide Immobilized Enzymes Show High Thermal and Solvent Stability. Nanoscale, 7, 5852-5858.
https://doi.org/10.1039/C5NR00438A
[27] Xia, G.H., Cao, S.L., Xu, P., et al. (2017) Preparation of a Nanobiocat-alyst by Efficiently Immobilizing Aspergillus niger Lipase onto Magnetic Metal-Biomolecule Frameworks (BioMOF). ChemCatChem, 9, 1794-1800.
https://doi.org/10.1002/cctc.201700070
[28] Hartmann, M. and Kostrov, X. (2013) Immobilization of Enzymes on Porous Silicas—Benefits and Challenges. Chemical Society Reviews, 42, 6277-6289.
https://doi.org/10.1039/c3cs60021a
[29] 王艳君. 介孔分子筛MCM-41的合成及其孔道中脂肪酶的固定化研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2006.
[30] 鲁奇林, 李雨擎. MCM-41分子筛的水热合成、改性及其应用研究进展[J]. 现代化工, 2019, 39(4): 40-44.
[31] 王海鑫, 陈赓, 高龙, 等. 介孔分子筛SBA-15的研究进展[J]. 广东化工, 2018(1): 100, 110.
[32] 张晓凤, 喻晓蔚, 徐岩. 定点突变提高土曲霉Aspergillus terreus脂肪酶的催化活性[J]. 生物工程学报, 2018, 34(7): 1091-1105.
[33] 秦靖杉, 刘宇, 姜男哲. SBA-16的形貌可控合成研究[J]. 新型化工材料, 2017, 45(3): 163-165.
[34] El-Nahass, M.N., El-Keiy, M.M. and Ali, E.M.M. (2018) Immobilization of Horseradish Peroxidase into Cubic Mesoporous Silicate, SBA-16 with High Activity and Enhanced Stability. Interna-tional Journal of Biological Macromolecules, 116, 1304-1309.
[35] 钱昆, 宋晓伟, 徐达, 等. 以季磷化合物为模板剂合成超大孔分子筛ITQ-33[J]. 高等学校化学学报, 2012, 33(10): 2141-2145.
[36] Qian, K., Wang, Y.L., Liang, Z.Q., et al. (2015) Germanosilicate Zeolite ITQ-44 with Extra-Large 18-Rings Synthesized Using a Commercial Quater-nary Ammonium as a Structure-Directing Agent. RSC Advances, 5, 63209-63214.
https://doi.org/10.1039/C5RA09942K
[37] DiCosimo, R., McAuliffe, J., Poulose, A.J., et al. (2013) Industrial Use of Immobilized Enzymes Chemical Society Reviews, 42, 6437-6474.
https://doi.org/10.1039/c3cs35506c