[1]
|
Jobby, R., Jha, P., Yadav, A.K. and Desai, N. (2018) Biosorption and Biotransformation of Hexavalent Chromium [Cr(VI)]: A Comprehensive Review. Chemosphere, 207, 255-266. https://doi.org/10.1016/j.chemosphere.2018.05.050
|
[2]
|
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. and Sutton, D.J. (2012) Heavy Metal Toxicity and the Environment. In: Experientia Supplementum, Springer, 133-164. https://doi.org/10.1007/978-3-7643-8340-4_6
|
[3]
|
Wang, S. and Shi, X. (2001) Molecular Mechanisms of Metal Toxicity and Carcinogenesis. Molecular and Cellular Biochemistry, 222, 3-9. https://doi.org/10.1023/a:1017918013293
|
[4]
|
Sharma, P., Singh, S.P., Parakh, S.K. and Tong, Y.W. (2022) Health Hazards of Hexavalent Chromium (Cr(VI)) and Its Microbial Reduction. Bioengineered, 13, 4923-4938. https://doi.org/10.1080/21655979.2022.2037273
|
[5]
|
Romanenko, V.I. and Koren’kov, V.N. (1977) Pure Culture of Bacteria Using Chromates and Bichromates as Hydrogen Acceptors during Development under Anaerobic Conditions. Mikrobiologiia, 46, 414-417.
|
[6]
|
Hossain, M., Tasnim, S., Safa, A., Rayhan, A.B.H., Khan, M.T.I.A., Bulbul, N., et al. (2020) Draft Genome Sequence of Bacillus Cereus TN10, a Chromium-Resistant and-Reducing Strain Isolated from Tannery Effluent. Microbiology Resource Announcements, 9, e00603-20. https://doi.org/10.1128/mra.00603-20
|
[7]
|
Li, J., Tang, C., Zhang, M., Fan, C., Guo, D., An, Q., et al. (2021) Exploring the Cr(vi) Removal Mechanism of Sporosarcina Saromensis M52 from a Genomic Perspective. Ecotoxicology and Environmental Safety, 225, Article 112767. https://doi.org/10.1016/j.ecoenv.2021.112767
|
[8]
|
Sahoo, H., Kumari, S. and Naik, U.C. (2021) Characterization of Multi-Metal-Resistant Serratia Sp. GP01 for Treatment of Effluent from Fertilizer Industries. Archives of Microbiology, 203, 5425-5435. https://doi.org/10.1007/s00203-021-02523-z
|
[9]
|
Zhang, K. and Li, F. (2011) Isolation and Characterization of a Chromium-Resistant Bacterium Serratia Sp. Cr-10 from a Chromate-Contaminated Site. Applied Microbiology and Biotechnology, 90, 1163-1169. https://doi.org/10.1007/s00253-011-3120-y
|
[10]
|
贾燕, 白群华, 肖虹. 重庆市某电镀厂聚集区域铬污染状况调查[J]. 现代预防医学, 2014, 41(6): 978-980+983.
|
[11]
|
刘媛, 白群华, 何劲, 等. 耐铬(Ⅵ)粘质沙雷氏菌CM01的筛选鉴定及其铬(Ⅵ)代谢特性研究[J]. 现代预防医学, 2020, 47(17): 3212-3216.
|
[12]
|
Chin, C., Peluso, P., Sedlazeck, F.J., Nattestad, M., Concepcion, G.T., Clum, A., et al. (2016) Phased Diploid Genome Assembly with Single-Molecule Real-Time Sequencing. Nature Methods, 13, 1050-1054. https://doi.org/10.1038/nmeth.4035
|
[13]
|
Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H. and Phillippy, A.M. (2017) Canu: Scalable and Accurate Long-Read Assembly via Adaptivek-Mer Weighting and Repeat Separation. Genome Research, 27, 722-736. https://doi.org/10.1101/gr.215087.116
|
[14]
|
Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., et al. (2014) Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLOS ONE, 9, e112963. https://doi.org/10.1371/journal.pone.0112963
|
[15]
|
Besemer, J. (2001) Genemarks: A Self-Training Method for Prediction of Gene Starts in Microbial Genomes. Implications for Finding Sequence Motifs in Regulatory Regions. Nucleic Acids Research, 29, 2607-2618. https://doi.org/10.1093/nar/29.12.2607
|
[16]
|
Chan, P.P., Lin, B.Y., Mak, A.J. and Lowe, T.M. (2021) Trnascan-Se 2.0: Improved Detection and Functional Classification of Transfer RNA Genes. Nucleic Acids Research, 49, 9077-9096. https://doi.org/10.1093/nar/gkab688
|
[17]
|
Kalvari, I., Argasinska, J., Quinones-Olvera, N., Nawrocki, E.P., Rivas, E., Eddy, S.R., et al. (2017) Rfam 13.0: Shifting to a Genome-Centric Resource for Non-Coding RNA Families. Nucleic Acids Research, 46, D335-D342. https://doi.org/10.1093/nar/gkx1038
|
[18]
|
Blin, K., Shaw, S., Kloosterman, A.M., Charlop-Powers, Z., van Wezel, G.P., Medema, M.H., et al. (2021) Antismash 6.0: Improving Cluster Detection and Comparison Capabilities. Nucleic Acids Research, 49, W29-W35. https://doi.org/10.1093/nar/gkab335
|
[19]
|
刘媛. 铬(Ⅵ)压力下沙雷氏菌CM01的蛋白差异表达及耐铬(Ⅵ)机制研究[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2021.
|
[20]
|
Stothard, P. and Wishart, D.S. (2004) Circular Genome Visualization and Exploration Using Cgview. Bioinformatics, 21, 537-539. https://doi.org/10.1093/bioinformatics/bti054
|
[21]
|
Chai, L., Ding, C., Tang, C., Yang, W., Yang, Z., Wang, Y., et al. (2018) Discerning Three Novel Chromate Reduce and Transport Genes of Highly Efficient Pannonibacter Phragmitetus BB: From Genome to Gene and Protein. Ecotoxicology and Environmental Safety, 162, 139-146. https://doi.org/10.1016/j.ecoenv.2018.06.090
|
[22]
|
Guillén-Jiménez, F.D.M., Morales-Barrera, L., Morales-Jiménez, J., Hernández-Rodríguez, C.H. and Cristiani-Urbina, E. (2008) Modulation of Tolerance to Cr(VI) and Cr(VI) Reduction by Sulfate Ion in a Candida Yeast Strain Isolated from Tannery Wastewater. Journal of Industrial Microbiology & Biotechnology, 35, 1277-1287. https://doi.org/10.1007/s10295-008-0425-7
|
[23]
|
Shi, K., Radhakrishnan, M., Dai, X., Rosen, B.P. and Wang, G. (2021) Nema Catalyzes Trivalent Organoarsenical Oxidation and Is Regulated by the Trivalent Organoarsenical-Selective Transcriptional Repressor Nemr. Environmental Science & Technology, 55, 6485-6494. https://doi.org/10.1021/acs.est.1c00574
|
[24]
|
He, M., Li, X., Guo, L., Miller, S.J., Rensing, C. and Wang, G. (2010) Characterization and Genomic Analysis of Chromate Resistant and Reducing Bacillus cereus Strain SJ1. BMC Microbiology, 10, Article No. 221. https://doi.org/10.1186/1471-2180-10-221
|
[25]
|
Teitzel, G.M., Geddie, A., De Long, S.K., Kirisits, M.J., Whiteley, M. and Parsek, M.R. (2006) Survival and Growth in the Presence of Elevated Copper: Transcriptional Profiling of Copper-Stressed Pseudomonas aeruginosa. Journal of Bacteriology, 188, 7242-7256. https://doi.org/10.1128/jb.00837-06
|
[26]
|
Argüello, J.M., Eren, E. and González-Guerrero, M. (2007) The Structure and Function of Heavy Metal Transport P1b-atpases. Bio Metals, 20, 233-248. https://doi.org/10.1007/s10534-006-9055-6
|
[27]
|
Henne, K.L., Nakatsu, C.H., Thompson, D.K. and Konopka, A.E. (2009) High-Level Chromate Resistance in Arthrobacter Sp. Strain FB24 Requires Previously Uncharacterized Accessory Genes. BMC Microbiology, 9, Article No. 199. https://doi.org/10.1186/1471-2180-9-199
|
[28]
|
Zhou, S.M., Dong, L.L., He, Y. and Xiao, H. (2017) Characterization of Chromate Resistance in Genetically Engineered Escherichia coli Expressing Chromate Ion Transporter ChrA. Journal of Southern Medical University, 37, 1290-1295.
|
[29]
|
李星龙. 耐铬沙雷氏菌CM01基因组测序分析及关键基因对铬代谢的影响研究[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2022.
|
[30]
|
Kan, G., Wang, X., Jiang, J., Zhang, C., Chi, M., Ju, Y., et al. (2018) Copper Stress Response in Yeast Rhodotorula mucilaginosa AN5 Isolated from Sea Ice, Antarctic. Microbiology Open, 8, e00657. https://doi.org/10.1002/mbo3.657
|
[31]
|
Cao, L., Lu, M., Zhao, M., Zhang, Y., Nong, Y., Hu, M., et al. (2023) Physiological and Transcriptional Studies Reveal Cr(VI) Reduction Mechanisms in the Exoelectrogen Cellulomonas fimi Clb-11. Frontiers in Microbiology, 14, Article 1161303. https://doi.org/10.3389/fmicb.2023.1161303
|
[32]
|
Liu, Y., Qiu, Y., Yin, Q., Li, X., Bai, Q., Li, Y., et al. (2021) Itraq-Based Quantitative Proteomic Reveals Proteomic Changes in Serratia Sp. CM01 and Mechanism of Cr(VI) Resistance. Ecotoxicology and Environmental Safety, 228, Article 112899. https://doi.org/10.1016/j.ecoenv.2021.112899
|
[33]
|
Nachin, L. (2003) SufC: An Unorthodox Cytoplasmic ABC/ATPase Required for [Fe-S] Biogenesis under Oxidative Stress. The EMBO Journal, 22, 427-437. https://doi.org/10.1093/emboj/cdg061
|
[34]
|
Gomes, A.F.R., Almeida, M.C., Sousa, E. and Resende, D.I.S.P. (2024) Siderophores and Metallophores: Metal Complexation Weapons to Fight Environmental Pollution. Science of the Total Environment, 932, Article 173044. https://doi.org/10.1016/j.scitotenv.2024.173044
|
[35]
|
Gaudu, P. and Weiss, B. (2000) Flavodoxin Mutants of Escherichia coli K-12. Journal of Bacteriology, 182, 1788-1793. https://doi.org/10.1128/jb.182.7.1788-1793.2000
|
[36]
|
Shi, K., Radhakrishnan, M., Dai, X., Rosen, B.P. and Wang, G. (2021) NemA Catalyzes Trivalent Organoarsenical Oxidation and Is Regulated by the Trivalent Organoarsenical-Selective Transcriptional Repressor NemR. Environmental Science & Technology, 55, 6485-6494. https://doi.org/10.1021/acs.est.1c00574
|