|
[1]
|
Owens, N. and Grauerholz, L. (2018) Interspecies Parenting: How Pet Parents Construct Their Roles. Humanity & Society, 43, 96-119. [Google Scholar] [CrossRef]
|
|
[2]
|
Thompson, A. (2008) Ingredients: Where Pet Food Starts. Topics in Companion Animal Medicine, 23, 127-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Cummings, J.H. and Stephen, A.M. (2007) Carbohydrate Terminology and Classification. European Journal of Clinical Nutrition, 61, S5-S18. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kaushik, S.J., Panserat, S. and Schrama, J.W. (2022) Carbohydrates. In: Hardy, R.W. and Kaushik, S.J., Eds., Fish Nutrition, Academic Press, 555-591. [Google Scholar] [CrossRef]
|
|
[5]
|
Adebowale, T.O., Yao, K. and Oso, A.O. (2019) Major Cereal Carbohydrates in Relation to Intestinal Health of Monogastric Animals: A Review. Animal Nutrition, 5, 331-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Mudgil, D. and Barak, S. (2013) Composition, Properties and Health Benefits of Indigestible Carbohydrate Polymers as Dietary Fiber: A Review. International Journal of Biological Macromolecules, 61, 1-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Verbrugghe, A. and Hesta, M. (2017) Cats and Carbohydrates: The Carnivore Fantasy? Veterinary Sciences, 4, Article 55. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Idowu, O. and Heading, K. (2018) Hypoglycemia in Dogs: Causes, Management, and Diagnosis. Canadian Veterinary Journal, 59, 642-649.
|
|
[9]
|
Nelson, D.L., and Cox, M.M. (2008) Carbohydrates and Glycobiology. In: Ahr, K., Ed., Principles of Biochemistry, W.H. Freeman and Company, 235-270.
|
|
[10]
|
Romsos, D.R., Palmer, H.J., Muiruri, K.L. and Bennink, M.R. (1981) Influence of a Low Carbohydrate Diet on Performance of Pregnant and Lactating Dogs. The Journal of Nutrition, 111, 678-689. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kienzle, E., Meyer, H., Burger, I.H., et al. (1989) The Effects of Carbohydrate-Free Diets Containing Different Levels of Protein on Reproduction in the Bitch. Cambridge University Press.
|
|
[12]
|
Kienzle, E. (1993) Carbohydrate Metabolism of the Cat. 4. Activity of Maltase, Isomaltase, Sucrase and Lactase in the Gastrointestinal Tract in Relation to Age and Diet. Journal of Animal Physiology and Animal Nutrition, 70, 89-96. [Google Scholar] [CrossRef]
|
|
[13]
|
Legrand-Defretin, V. (1994) Differences between Cats and Dogs: A Nutritional View. Proceedings of the Nutrition Society, 53, 15-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Riaz, M.N. and Rokey, G.J. (2012) Impact of Protein, Starch, Fat and Fiber on Extruded Foods and Feeds. In: Riaz, M.N. and Rokey, G.J., Eds., Extrusion Problems Solved, Elsevier, 43-54. [Google Scholar] [CrossRef]
|
|
[15]
|
Spears, J.K. and Fahey, G.C. (2004) Resistant Starch as Related to Companion Animal Nutrition. Journal of AOAC INTERNATIONAL, 87, 787-791. [Google Scholar] [CrossRef]
|
|
[16]
|
Murray, S.M., Flickinger, E.A., Patil, A.R., Merchen, N.R., Brent, J.L. and Fahey, G.C. (2001) In Vitro Fermentation Characteristics of Native and Processed Cereal Grains and Potato Starch Using Ileal Chyme from Dogs. Journal of Animal Science, 79, 435-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lankhorst, C., Tran, Q.D., Havenaar, R., Hendriks, W.H. and van der Poel, A.F.B. (2007) The Effect of Extrusion on the Nutritional Value of Canine Diets as Assessed by in vitro Indicators. Animal Feed Science and Technology, 138, 285-297. [Google Scholar] [CrossRef]
|
|
[18]
|
Pezzali, J.G. and Aldrich, C.G. (2019) Effect of Ancient Grains and Grain-Free Carbohydrate Sources on Extrusion Parameters and Nutrient Utilization by Dogs. Journal of Animal Science, 97, 3758-3767. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Corsato Alvarenga, I. and Aldrich, C.G. (2020) Starch Characterization of Commercial Extruded Dry Pet Foods. Translational Animal Science, 4, 1017-1022. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Perry, E.B., Valach, A.A., Fenton, J.M. and Moore, G.E. (2022) An Assessment of Starch Content and Gelatinization in Traditional and Non-Traditional Dog Food Formulations. Animals, 12, Article 3357. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
张文珍, 付京杰, 王钰飞, 等 膨化机的喂料速度对宠物食品常规营养成分及适口性的影响[J]. 饲料工业, 2014, 35(1): 28-31.
|
|
[22]
|
李重阳, 董颖超, 李军国, 等. 挤压膨化工艺参数对犬粮加工质量的影响研究[J]. 饲料工业, 2018, 39(21): 9-14.
|
|
[23]
|
Dainton, A.N., He, F., Bingham, T.W., Sarlah, D., Detweiler, K.B., Mangian, H.J., et al. (2022) Nutritional and Physico-Chemical Implications of Avocado Meal as a Novel Dietary Fiber Source in an Extruded Canine Diet. Journal of Animal Science, 100, skac026. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Martens, B.M.J., Gerrits, W.J.J., Bruininx, E.M.A.M. and Schols, H.A. (2018) Amylopectin Structure and Crystallinity Explains Variation in Digestion Kinetics of Starches across Botanic Sources in an in vitro Pig Model. Journal of Animal Science and Biotechnology, 9, Article No. 91. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Dhital, S., Warren, F.J., Butterworth, P.J., Ellis, P.R. and Gidley, M.J. (2016) Mechanisms of Starch Digestion by α-Amylase—Structural Basis for Kinetic Properties. Critical Reviews in Food Science and Nutrition, 57, 875-892. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Alonso, R., Aguirre, A. and Marzo, F. (2000) Effects of Extrusion and Traditional Processing Methods on Antinutrients and in vitro Digestibility of Protein and Starch in Faba and Kidney Beans. Food Chemistry, 68, 159-165. [Google Scholar] [CrossRef]
|
|
[27]
|
Goudez, R., Weber, M., Biourge, V. and Nguyen, P. (2011) Influence of Different Levels and Sources of Resistant Starch on Faecal Quality of Dogs of Various Body Sizes. British Journal of Nutrition, 106, S211-S215. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Jackson, M.I., Waldy, C. and Jewell, D.E. (2020) Dietary Resistant Starch Preserved through Mild Extrusion of Grain Alters Fecal Microbiome Metabolism of Dietary Macronutrients While Increasing Immunoglobulin a in the Cat. PLOS ONE, 15, e0241037. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Beloshapka, A.N., Cross, T.L. and Swanson, K.S. (2020) Graded Dietary Resistant Starch Concentrations on Apparent Total Tract Macronutrient Digestibility and Fecal Fermentative End Products and Microbial Populations of Healthy Adult Dogs. Journal of Animal Science, 99, skaa409. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Food and Drug Administration (2016) Food Labeling: Revision of the Nutrition and Supplement Facts Labels. Federal Register, 81, 33743-33999.
|
|
[31]
|
Fahey, G.C., Merchen, N.R., Corbin, J.E., Hamilton, A.K., Serbe, K.A., Lewis, S.M., et al. (1990) Dietary Fiber for Dogs: I. Effects of Graded Levels of Dietary Beet Pulp on Nutrient Intake, Digestibility, Metabolizable Energy and Digesta Mean Retention Time. Journal of Animal Science, 68, 4221-4228. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
De Godoy, M., Kerr, K. and Fahey Jr., G. (2013) Alternative Dietary Fiber Sources in Companion Animal Nutrition. Nutrients, 5, 3099-3117. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
de Godoy, M.R.C., Mitsuhashi, Y., Bauer, L.L., Fahey, G.C., Buff, P.R. and Swanson, K.S. (2015) In vitro Fermentation Characteristics of Novel Fibers, Coconut Endosperm Fiber and Chicory Pulp, Using Canine Fecal Inoculum. Journal of Animal Science, 93, 370-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Finet, S.E., Southey, B.R., Rodriguez-Zas, S.L., He, F. and de Godoy, M.R.C. (2021) Miscanthus Grass as a Novel Functional Fiber Source in Extruded Feline Diets. Frontiers in Veterinary Science, 8, Article 668288. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Donadelli, R.A., Dogan, H. and Aldrich, G. (2021) The Effects of Fiber Source on Extrusion Parameters and Kibble Structure of Dry Dog Foods. Animal Feed Science and Technology, 274, Article ID: 114884. [Google Scholar] [CrossRef]
|
|
[36]
|
Dainton, A.N., Dogan, H. and Aldrich, C.G. (2021) The Effects of Select Hydrocolloids on the Processing of Pâté-Style Canned Pet Food. Foods, 10, Article 2506. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kruger, C.L. and Mann, S.W. (2003) Safety Evaluation of Functional Ingredients. Food and Chemical Toxicology, 41, 793-805. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Carlson, J.L., Erickson, J.M., Lloyd, B.B. and Slavin, J.L. (2018) Health Effects and Sources of Prebiotic Dietary Fiber. Current Developments in Nutrition, 2, nzy005. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Nguyen, P., Dumon, H., Biourge, V. and Pouteau, E. (1998) Glycemic and Insulinemic Responses after Ingestion of Commercial Foods in Healthy Dogs: Influence of Food Composition. The Journal of Nutrition, 128, S2654-S2658. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Graham, P.A., Maskell, I.E., Rawlings, J.M., Nash, A.S. and Markwell, P.J. (2002) Influence of a High Fibre Diet on Glycaemic Control and Quality of Life in Dogs with Diabetes Mellitus. Journal of Small Animal Practice, 43, 67-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Müller, M., Canfora, E. and Blaak, E. (2018) Gastrointestinal Transit Time, Glucose Homeostasis and Metabolic Health: Modulation by Dietary Fibers. Nutrients, 10, Article 275. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Rankovic, A., Adolphe, J.L., Ramdath, D.D., Shoveller, A.K. and Verbrugghe, A. (2020) Glycemic Response in Nonracing Sled Dogs Fed Single Starch Ingredients and Commercial Extruded Dog Foods with Different Carbohydrate Sources. Journal of Animal Science, 98, skaa241. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Nelson, R.W., Scott-Moncrieff, J.C., Feldman, E.C., DeVries-Concannon, S.E., Kass, P.H., Davenport, D.J., et al. (2000) Effect of Dietary Insoluble Fiber on Control of Glycemia in Cats with Naturally Acquired Diabetes Mellitus. Journal of the American Veterinary Medical Association, 216, 1082-1088. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Bennett, N., Greco, D.S., Peterson, M.E., Kirk, C., Mathes, M. and Fettman, M.J. (2006) Comparison of a Low Carbohydrate-Low Fiber Diet and a Moderate Carbohydrate-High Fiber Diet in the Management of Feline Diabetes Mellitus. Journal of Feline Medicine and Surgery, 8, 73-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
张赛赛. 膳食纤维在治疗猫常见病方面的研究进展[J]. 食品与营养科学, 2024, 13(2): 221-226.
|
|
[46]
|
Fekete, S., Hullár, I., Andrásofszky, E., Rigó, Z. and Berkényi, T. (2001) Reduction of the Energy Density of Cat Foods by Increasing Their Fibre Content with a View to Nutrients’ Digestibility. Journal of Animal Physiology and Animal Nutrition, 85, 200-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Jewell, D.E., Toll, P.W., Azain, M.J., et al. (2006) Fiber but Not Conjugated Linoleic Acid Influences Adiposity in Dogs. Veterinary Therapeutics: Research in Applied Veterinary Medicine, 7, 78-85.
|
|
[48]
|
Weber, M., Bissot, T., Servet, E., Sergheraert, R., Biourge, V. and German, A.J. (2007) A High‐Protein, High‐Fiber Diet Designed for Weight Loss Improves Satiety in Dogs. Journal of Veterinary Internal Medicine, 21, 1203-1208. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Moreno, A.A., Parker, V.J., Winston, J.A. and Rudinsky, A.J. (2022) Dietary Fiber Aids in the Management of Canine and Feline Gastrointestinal Disease. Journal of the American Veterinary Medical Association, 260, S33-S45. [Google Scholar] [CrossRef] [PubMed]
|