[1]
|
Bartlett, J.B., Dredge, K. and Dalgleish, A.G. (2004) The Evolution of Thalidomide and Its IMiD Derivatives as Anticancer Agents. Nature Reviews Cancer, 4, 314-322. https://doi.org/10.1038/nrc1323
|
[2]
|
Haslett, P.A.J., Corral, L.G., Albert, M. and Kaplan, G. (1998) Thalidomide Costimulates Primary Human T Lymphocytes, Preferentially Inducing Proliferation, Cytokine Production, and Cytotoxic Responses in the CD8+ Subset. The Journal of Experimental Medicine, 187, 1885-1892. https://doi.org/10.1084/jem.187.11.1885
|
[3]
|
Corral, L.G., Haslett, P.A.J., Muller, G.W., Chen, R., Wong, L., Ocampo, C.J., et al. (1999) Differential Cytokine Modulation and T Cell Activation by Two Distinct Classes of Thalidomide Analogues That Are Potent Inhibitors of TNF-α. The Journal of Immunology, 163, 380-386. https://doi.org/10.4049/jimmunol.163.1.380
|
[4]
|
Davies, F.E., Raje, N., Hideshima, T., Lentzsch, S., Young, G., Tai, Y., et al. (2001) Thalidomide and Immunomodulatory Derivatives Augment Natural Killer Cell Cytotoxicity in Multiple Myeloma. Blood, 98, 210-216. https://doi.org/10.1182/blood.v98.1.210
|
[5]
|
D’Amato, R.J., Loughnan, M.S., Flynn, E. and Folkman, J. (1994) Thalidomide Is an Inhibitor of Angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 91, 4082-4085. https://doi.org/10.1073/pnas.91.9.4082
|
[6]
|
Rajkumar, S.V., Hayman, S.R., Lacy, M.Q., Dispenzieri, A., Geyer, S.M., Kabat, B., et al. (2005) Combination Therapy with Lenalidomide Plus Dexamethasone (REV/DEX) for Newly Diagnosed Myeloma. Blood, 106, 4050-4053. https://doi.org/10.1182/blood-2005-07-2817
|
[7]
|
Martiniani, R., Di Loreto, V., Di Sano, C., Lombardo, A. and Liberati, A.M. (2012) Biological Activity of Lenalidomide and Its Underlying Therapeutic Effects in Multiple Myeloma. Advances in Hematology, 2012, Article ID: 842945. https://doi.org/10.1155/2012/842945
|
[8]
|
Zhu, Y.X., Kortuem, K.M. and Stewart, A.K. (2012) Molecular Mechanism of Action of Immune-Modulatory Drugs Thalidomide, Lenalidomide and Pomalidomide in Multiple Myeloma. Leukemia & Lymphoma, 54, 683-687. https://doi.org/10.3109/10428194.2012.728597
|
[9]
|
Ito, T., Ando, H., Suzuki, T., Ogura, T., Hotta, K., Imamura, Y., et al. (2010) Identification of a Primary Target of Thalidomide Teratogenicity. Science, 327, 1345-1350. https://doi.org/10.1126/science.1177319
|
[10]
|
Jackson, S. and Xiong, Y. (2009) CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends in Biochemical Sciences, 34, 562-570. https://doi.org/10.1016/j.tibs.2009.07.002
|
[11]
|
Cheng, J., Guo, J., North, B.J., Tao, K., Zhou, P. and Wei, W. (2019) The Emerging Role for Cullin 4 Family of E3 Ligases in Tumorigenesis. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1871, 138-159. https://doi.org/10.1016/j.bbcan.2018.11.007
|
[12]
|
Donovan, K.A., An, J., Nowak, R.P., Yuan, J.C., Fink, E.C., Berry, B.C., et al. (2018) Thalidomide Promotes Degradation of SALL4, a Transcription Factor Implicated in Duane Radial Ray Syndrome. eLife, 7, e38430. https://doi.org/10.7554/elife.38430
|
[13]
|
Matyskiela, M.E., Couto, S., Zheng, X., Lu, G., Hui, J., Stamp, K., et al. (2018) SALL4 Mediates Teratogenicity as a Thalidomide-Dependent Cereblon Substrate. Nature Chemical Biology, 14, 981-987. https://doi.org/10.1038/s41589-018-0129-x
|
[14]
|
Krönke, J., Udeshi, N.D., Narla, A., Grauman, P., Hurst, S.N., McConkey, M., et al. (2014) Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells. Science, 343, 301-305. https://doi.org/10.1126/science.1244851
|
[15]
|
Lu, G., Middleton, R.E., Sun, H., Naniong, M., Ott, C.J., Mitsiades, C.S., et al. (2014) The Myeloma Drug Lenalidomide Promotes the Cereblon-Dependent Destruction of Ikaros Proteins. Science, 343, 305-309. https://doi.org/10.1126/science.1244917
|
[16]
|
Krönke, J., Fink, E.C., Hollenbach, P.W., MacBeth, K.J., Hurst, S.N., Udeshi, N.D., et al. (2015) Lenalidomide Induces Ubiquitination and Degradation of CK1α in del(5q) MDS. Nature, 523, 183-188. https://doi.org/10.1038/nature14610
|
[17]
|
An, J., Ponthier, C.M., Sack, R., Seebacher, J., Stadler, M.B., Donovan, K.A., et al. (2017) pSILAC Mass Spectrometry Reveals ZFP91 as IMiD-Dependent Substrate of the CRL4CRBN Ubiquitin Ligase. Nature Communications, 8, Article No. 15398. https://doi.org/10.1038/ncomms15398
|
[18]
|
Hagner, P.R., Man, H., Fontanillo, C., Wang, M., Couto, S., Breider, M., et al. (2015) CC-122, a Pleiotropic Pathway Modifier, Mimics an Interferon Response and Has Antitumor Activity in DLBCL. Blood, 126, 779-789. https://doi.org/10.1182/blood-2015-02-628669
|
[19]
|
Matyskiela, M.E., Zhang, W., Man, H., Muller, G., Khambatta, G., Baculi, F., et al. (2017) A Cereblon Modulator (CC-220) with Improved Degradation of Ikaros and Aiolos. Journal of Medicinal Chemistry, 61, 535-542. https://doi.org/10.1021/acs.jmedchem.6b01921
|
[20]
|
Bjorklund, C.C., Kang, J., Amatangelo, M., Polonskaia, A., Katz, M., Chiu, H., et al. (2019) Iberdomide (CC-220) Is a Potent Cereblon E3 Ligase Modulator with Antitumor and Immunostimulatory Activities in Lenalidomide-and Pomalidomide-Resistant Multiple Myeloma Cells with Dysregulated CRBN. Leukemia, 34, 1197-1201. https://doi.org/10.1038/s41375-019-0620-8
|
[21]
|
Matyskiela, M.E., Lu, G., Ito, T., Pagarigan, B., Lu, C., Miller, K., et al. (2016) A Novel Cereblon Modulator Recruits GSPT1 to the CRL4CRBN Ubiquitin Ligase. Nature, 535, 252-257. https://doi.org/10.1038/nature18611
|
[22]
|
Hansen, J.D., Condroski, K., Correa, M., Muller, G., Man, H., Ruchelman, A., et al. (2017) Protein Degradation via CRL4CRBN Ubiquitin Ligase: Discovery and Structure–activity Relationships of Novel Glutarimide Analogs That Promote Degradation of Aiolos and/or GSPT1. Journal of Medicinal Chemistry, 61, 492-503. https://doi.org/10.1021/acs.jmedchem.6b01911
|
[23]
|
Hansen, J.D., Correa, M., Nagy, M.A., Alexander, M., Plantevin, V., Grant, V., et al. (2020) Discovery of CRBN E3 Ligase Modulator CC-92480 for the Treatment of Relapsed and Refractory Multiple Myeloma. Journal of Medicinal Chemistry, 63, 6648-6676. https://doi.org/10.1021/acs.jmedchem.9b01928
|
[24]
|
Hansen, J.D., Correa, M., Alexander, M., Nagy, M., Huang, D., Sapienza, J., et al. (2021) CC-90009: A Cereblon E3 Ligase Modulating Drug That Promotes Selective Degradation of GSPT1 for the Treatment of Acute Myeloid Leukemia. Journal of Medicinal Chemistry, 64, 1835-1843. https://doi.org/10.1021/acs.jmedchem.0c01489
|
[25]
|
Carrancio, S., Groocock, L., Janardhanan, P., Jankeel, D., Galasso, R., Guarinos, C., et al. (2021) CC-99282 Is a Novel Cereblon (CRBN) E3 Ligase Modulator (CELMoD) Agent with Enhanced Tumoricidal Activity in Preclinical Models of Lymphoma. Blood, 138, 1200-1200. https://doi.org/10.1182/blood-2021-148068
|
[26]
|
Matyskiela, M.E., Zhu, J., Baughman, J.M., Clayton, T., Slade, M., Wong, H.K., et al. (2020) Cereblon Modulators Target ZBTB16 and Its Oncogenic Fusion Partners for Degradation via Distinct Structural Degrons. ACS Chemical Biology, 15, 3149-3158. https://doi.org/10.1021/acschembio.0c00674
|
[27]
|
Henderson, J.A., Kirby, R.J., Perino, S., Agafonov, R.V., Chaturvedi, P., Class, B., et al. (2021) Abstract LB007: CFT7455: A Novel, IKZF1/3 Degrader That Demonstrates Potent Tumor Regression in IMiD-Resistant Multiple Myeloma (MM) Xenograft Models. Cancer Research, 81, LB007. https://doi.org/10.1158/1538-7445.am2021-lb007
|
[28]
|
Chourasia, A.H., Majeski, H., Pasis, A., Erdman, P., Oke, A., Hecht, D., et al. (2022) BTX-1188, a First-In-Class Dual Degrader of GSPT1 and IKZF1/3, for Treatment of Acute Myeloid Leukemia (AML) and Solid Tumors. Journal of Clinical Oncology, 40, 7025-7025. https://doi.org/10.1200/jco.2022.40.16_suppl.7025
|
[29]
|
Zhao, M., Hu, M., Chen, Y., Liu, H., Chen, Y., Liu, B., et al. (2021) Cereblon Modulator CC-885 Induces CRBN-Dependent Ubiquitination and Degradation of CDK4 in Multiple Myeloma. Biochemical and Biophysical Research Communications, 549, 150-156. https://doi.org/10.1016/j.bbrc.2021.02.110
|
[30]
|
Surka, C., Jin, L., Mbong, N., Lu, C., Jang, I.S., Rychak, E., et al. (2021) CC-90009, a Novel Cereblon E3 Ligase Modulator, Targets Acute Myeloid Leukemia Blasts and Leukemia Stem Cells. Blood, 137, 661-677. https://doi.org/10.1182/blood.2020008676
|
[31]
|
Chamberlain, P.P. and Cathers, B.E. (2019) Cereblon Modulators: Low Molecular Weight Inducers of Protein Degradation. Drug Discovery Today: Technologies, 31, 29-34. https://doi.org/10.1016/j.ddtec.2019.02.004
|
[32]
|
An, J., Ponthier, C.M., Sack, R., Seebacher, J., Stadler, M.B., Donovan, K.A., et al. (2017) pSILAC Mass Spectrometry Reveals ZFP91 as IMiD-Dependent Substrate of the CRL4CRBN Ubiquitin Ligase. Nature Communications, 8, Article No. 15398. https://doi.org/10.1038/ncomms15398
|
[33]
|
Kohlhase, J., Heinrich, M., Liebers, M., Fröhlich Archangelo, L., Reardon, W. and Kispert, A. (2002) Cloning and Expression Analysis of sall4, the Murine Homologue of the Gene Mutated in Okihiro Syndrome. Cytogenetic and Genome Research, 98, 274-277. https://doi.org/10.1159/000071048
|
[34]
|
Sweetman, D. and Münsterberg, A. (2006) The Vertebrate Spalt Genes in Development and Disease. Developmental Biology, 293, 285-293. https://doi.org/10.1016/j.ydbio.2006.02.009
|
[35]
|
Yang, J., Chai, L., Fowles, T.C., Alipio, Z., Xu, D., Fink, L.M., et al. (2008) Genome-Wide Analysis Reveals Sall4 to Be a Major Regulator of Pluripotency in Murine-Embryonic Stem Cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 19756-19761. https://doi.org/10.1073/pnas.0809321105
|
[36]
|
Sievers, Q.L., Petzold, G., Bunker, R.D., Renneville, A., Słabicki, M., Liddicoat, B.J., et al. (2018) Defining the Human C2H2 Zinc Finger Degrome Targeted by Thalidomide Analogs through CRBN. Science, 362, eaat0572. https://doi.org/10.1126/science.aat0572
|
[37]
|
Watson, E.R., Novick, S., Matyskiela, M.E., Chamberlain, P.P., H. de la Peña, A., Zhu, J., et al. (2022) Molecular Glue CELMoD Compounds Are Regulators of Cereblon Conformation. Science, 378, 549-553. https://doi.org/10.1126/science.add7574
|
[38]
|
Fischer, E.S., Böhm, K., Lydeard, J.R., Yang, H., Stadler, M.B., Cavadini, S., et al. (2014) Structure of the DDB1-CRBN E3 Ubiquitin Ligase in Complex with Thalidomide. Nature, 512, 49-53. https://doi.org/10.1038/nature13527
|
[39]
|
Petzold, G., Fischer, E.S. and Thomä, N.H. (2016) Structural Basis of Lenalidomide-Induced CK1α Degradation by the CRL4CRBN Ubiquitin Ligase. Nature, 532, 127-130. https://doi.org/10.1038/nature16979
|
[40]
|
Cao, S., Kang, S., Mao, H., Yao, J., Gu, L. and Zheng, N. (2022) Defining Molecular Glues with a Dual-Nanobody Cannabidiol Sensor. Nature Communications, 13, Article No. 815. https://doi.org/10.1038/s41467-022-28507-1
|
[41]
|
Miñarro-Lleonar, M., Bertran-Mostazo, A., Duro, J., Barril, X. and Juárez-Jiménez, J. (2023) Lenalidomide Stabilizes Protein-Protein Complexes by Turning Labile Intermolecular H-Bonds into Robust Interactions. Journal of Medicinal Chemistry, 66, 6037-6046. https://doi.org/10.1021/acs.jmedchem.2c01692
|
[42]
|
Boichenko, I., Bär, K., Deiss, S., Heim, C., Albrecht, R., Lupas, A.N., et al. (2018) Chemical Ligand Space of Cereblon. ACS Omega, 3, 11163-11171. https://doi.org/10.1021/acsomega.8b00959
|