|
[1]
|
Bartlett, J.B., Dredge, K. and Dalgleish, A.G. (2004) The Evolution of Thalidomide and Its IMiD Derivatives as Anticancer Agents. Nature Reviews Cancer, 4, 314-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Haslett, P.A.J., Corral, L.G., Albert, M. and Kaplan, G. (1998) Thalidomide Costimulates Primary Human T Lymphocytes, Preferentially Inducing Proliferation, Cytokine Production, and Cytotoxic Responses in the CD8+ Subset. The Journal of Experimental Medicine, 187, 1885-1892. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Corral, L.G., Haslett, P.A.J., Muller, G.W., Chen, R., Wong, L., Ocampo, C.J., et al. (1999) Differential Cytokine Modulation and T Cell Activation by Two Distinct Classes of Thalidomide Analogues That Are Potent Inhibitors of TNF-α. The Journal of Immunology, 163, 380-386. [Google Scholar] [CrossRef]
|
|
[4]
|
Davies, F.E., Raje, N., Hideshima, T., Lentzsch, S., Young, G., Tai, Y., et al. (2001) Thalidomide and Immunomodulatory Derivatives Augment Natural Killer Cell Cytotoxicity in Multiple Myeloma. Blood, 98, 210-216. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
D’Amato, R.J., Loughnan, M.S., Flynn, E. and Folkman, J. (1994) Thalidomide Is an Inhibitor of Angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 91, 4082-4085. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Rajkumar, S.V., Hayman, S.R., Lacy, M.Q., Dispenzieri, A., Geyer, S.M., Kabat, B., et al. (2005) Combination Therapy with Lenalidomide Plus Dexamethasone (REV/DEX) for Newly Diagnosed Myeloma. Blood, 106, 4050-4053. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Martiniani, R., Di Loreto, V., Di Sano, C., Lombardo, A. and Liberati, A.M. (2012) Biological Activity of Lenalidomide and Its Underlying Therapeutic Effects in Multiple Myeloma. Advances in Hematology, 2012, Article ID: 842945. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhu, Y.X., Kortuem, K.M. and Stewart, A.K. (2012) Molecular Mechanism of Action of Immune-Modulatory Drugs Thalidomide, Lenalidomide and Pomalidomide in Multiple Myeloma. Leukemia & Lymphoma, 54, 683-687. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ito, T., Ando, H., Suzuki, T., Ogura, T., Hotta, K., Imamura, Y., et al. (2010) Identification of a Primary Target of Thalidomide Teratogenicity. Science, 327, 1345-1350. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Jackson, S. and Xiong, Y. (2009) CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends in Biochemical Sciences, 34, 562-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Cheng, J., Guo, J., North, B.J., Tao, K., Zhou, P. and Wei, W. (2019) The Emerging Role for Cullin 4 Family of E3 Ligases in Tumorigenesis. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1871, 138-159. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Donovan, K.A., An, J., Nowak, R.P., Yuan, J.C., Fink, E.C., Berry, B.C., et al. (2018) Thalidomide Promotes Degradation of SALL4, a Transcription Factor Implicated in Duane Radial Ray Syndrome. eLife, 7, e38430. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Matyskiela, M.E., Couto, S., Zheng, X., Lu, G., Hui, J., Stamp, K., et al. (2018) SALL4 Mediates Teratogenicity as a Thalidomide-Dependent Cereblon Substrate. Nature Chemical Biology, 14, 981-987. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Krönke, J., Udeshi, N.D., Narla, A., Grauman, P., Hurst, S.N., McConkey, M., et al. (2014) Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells. Science, 343, 301-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lu, G., Middleton, R.E., Sun, H., Naniong, M., Ott, C.J., Mitsiades, C.S., et al. (2014) The Myeloma Drug Lenalidomide Promotes the Cereblon-Dependent Destruction of Ikaros Proteins. Science, 343, 305-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Krönke, J., Fink, E.C., Hollenbach, P.W., MacBeth, K.J., Hurst, S.N., Udeshi, N.D., et al. (2015) Lenalidomide Induces Ubiquitination and Degradation of CK1α in del(5q) MDS. Nature, 523, 183-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
An, J., Ponthier, C.M., Sack, R., Seebacher, J., Stadler, M.B., Donovan, K.A., et al. (2017) pSILAC Mass Spectrometry Reveals ZFP91 as IMiD-Dependent Substrate of the CRL4CRBN Ubiquitin Ligase. Nature Communications, 8, Article No. 15398. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hagner, P.R., Man, H., Fontanillo, C., Wang, M., Couto, S., Breider, M., et al. (2015) CC-122, a Pleiotropic Pathway Modifier, Mimics an Interferon Response and Has Antitumor Activity in DLBCL. Blood, 126, 779-789. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Matyskiela, M.E., Zhang, W., Man, H., Muller, G., Khambatta, G., Baculi, F., et al. (2017) A Cereblon Modulator (CC-220) with Improved Degradation of Ikaros and Aiolos. Journal of Medicinal Chemistry, 61, 535-542. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Bjorklund, C.C., Kang, J., Amatangelo, M., Polonskaia, A., Katz, M., Chiu, H., et al. (2019) Iberdomide (CC-220) Is a Potent Cereblon E3 Ligase Modulator with Antitumor and Immunostimulatory Activities in Lenalidomide-and Pomalidomide-Resistant Multiple Myeloma Cells with Dysregulated CRBN. Leukemia, 34, 1197-1201. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Matyskiela, M.E., Lu, G., Ito, T., Pagarigan, B., Lu, C., Miller, K., et al. (2016) A Novel Cereblon Modulator Recruits GSPT1 to the CRL4CRBN Ubiquitin Ligase. Nature, 535, 252-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hansen, J.D., Condroski, K., Correa, M., Muller, G., Man, H., Ruchelman, A., et al. (2017) Protein Degradation via CRL4CRBN Ubiquitin Ligase: Discovery and Structure–activity Relationships of Novel Glutarimide Analogs That Promote Degradation of Aiolos and/or GSPT1. Journal of Medicinal Chemistry, 61, 492-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hansen, J.D., Correa, M., Nagy, M.A., Alexander, M., Plantevin, V., Grant, V., et al. (2020) Discovery of CRBN E3 Ligase Modulator CC-92480 for the Treatment of Relapsed and Refractory Multiple Myeloma. Journal of Medicinal Chemistry, 63, 6648-6676. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Hansen, J.D., Correa, M., Alexander, M., Nagy, M., Huang, D., Sapienza, J., et al. (2021) CC-90009: A Cereblon E3 Ligase Modulating Drug That Promotes Selective Degradation of GSPT1 for the Treatment of Acute Myeloid Leukemia. Journal of Medicinal Chemistry, 64, 1835-1843. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Carrancio, S., Groocock, L., Janardhanan, P., Jankeel, D., Galasso, R., Guarinos, C., et al. (2021) CC-99282 Is a Novel Cereblon (CRBN) E3 Ligase Modulator (CELMoD) Agent with Enhanced Tumoricidal Activity in Preclinical Models of Lymphoma. Blood, 138, 1200-1200. [Google Scholar] [CrossRef]
|
|
[26]
|
Matyskiela, M.E., Zhu, J., Baughman, J.M., Clayton, T., Slade, M., Wong, H.K., et al. (2020) Cereblon Modulators Target ZBTB16 and Its Oncogenic Fusion Partners for Degradation via Distinct Structural Degrons. ACS Chemical Biology, 15, 3149-3158. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Henderson, J.A., Kirby, R.J., Perino, S., Agafonov, R.V., Chaturvedi, P., Class, B., et al. (2021) Abstract LB007: CFT7455: A Novel, IKZF1/3 Degrader That Demonstrates Potent Tumor Regression in IMiD-Resistant Multiple Myeloma (MM) Xenograft Models. Cancer Research, 81, LB007. [Google Scholar] [CrossRef]
|
|
[28]
|
Chourasia, A.H., Majeski, H., Pasis, A., Erdman, P., Oke, A., Hecht, D., et al. (2022) BTX-1188, a First-In-Class Dual Degrader of GSPT1 and IKZF1/3, for Treatment of Acute Myeloid Leukemia (AML) and Solid Tumors. Journal of Clinical Oncology, 40, 7025-7025. [Google Scholar] [CrossRef]
|
|
[29]
|
Zhao, M., Hu, M., Chen, Y., Liu, H., Chen, Y., Liu, B., et al. (2021) Cereblon Modulator CC-885 Induces CRBN-Dependent Ubiquitination and Degradation of CDK4 in Multiple Myeloma. Biochemical and Biophysical Research Communications, 549, 150-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Surka, C., Jin, L., Mbong, N., Lu, C., Jang, I.S., Rychak, E., et al. (2021) CC-90009, a Novel Cereblon E3 Ligase Modulator, Targets Acute Myeloid Leukemia Blasts and Leukemia Stem Cells. Blood, 137, 661-677. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chamberlain, P.P. and Cathers, B.E. (2019) Cereblon Modulators: Low Molecular Weight Inducers of Protein Degradation. Drug Discovery Today: Technologies, 31, 29-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
An, J., Ponthier, C.M., Sack, R., Seebacher, J., Stadler, M.B., Donovan, K.A., et al. (2017) pSILAC Mass Spectrometry Reveals ZFP91 as IMiD-Dependent Substrate of the CRL4CRBN Ubiquitin Ligase. Nature Communications, 8, Article No. 15398. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kohlhase, J., Heinrich, M., Liebers, M., Fröhlich Archangelo, L., Reardon, W. and Kispert, A. (2002) Cloning and Expression Analysis of sall4, the Murine Homologue of the Gene Mutated in Okihiro Syndrome. Cytogenetic and Genome Research, 98, 274-277. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Sweetman, D. and Münsterberg, A. (2006) The Vertebrate Spalt Genes in Development and Disease. Developmental Biology, 293, 285-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yang, J., Chai, L., Fowles, T.C., Alipio, Z., Xu, D., Fink, L.M., et al. (2008) Genome-Wide Analysis Reveals Sall4 to Be a Major Regulator of Pluripotency in Murine-Embryonic Stem Cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 19756-19761. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Sievers, Q.L., Petzold, G., Bunker, R.D., Renneville, A., Słabicki, M., Liddicoat, B.J., et al. (2018) Defining the Human C2H2 Zinc Finger Degrome Targeted by Thalidomide Analogs through CRBN. Science, 362, eaat0572. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Watson, E.R., Novick, S., Matyskiela, M.E., Chamberlain, P.P., H. de la Peña, A., Zhu, J., et al. (2022) Molecular Glue CELMoD Compounds Are Regulators of Cereblon Conformation. Science, 378, 549-553. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Fischer, E.S., Böhm, K., Lydeard, J.R., Yang, H., Stadler, M.B., Cavadini, S., et al. (2014) Structure of the DDB1-CRBN E3 Ubiquitin Ligase in Complex with Thalidomide. Nature, 512, 49-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Petzold, G., Fischer, E.S. and Thomä, N.H. (2016) Structural Basis of Lenalidomide-Induced CK1α Degradation by the CRL4CRBN Ubiquitin Ligase. Nature, 532, 127-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Cao, S., Kang, S., Mao, H., Yao, J., Gu, L. and Zheng, N. (2022) Defining Molecular Glues with a Dual-Nanobody Cannabidiol Sensor. Nature Communications, 13, Article No. 815. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Miñarro-Lleonar, M., Bertran-Mostazo, A., Duro, J., Barril, X. and Juárez-Jiménez, J. (2023) Lenalidomide Stabilizes Protein-Protein Complexes by Turning Labile Intermolecular H-Bonds into Robust Interactions. Journal of Medicinal Chemistry, 66, 6037-6046. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Boichenko, I., Bär, K., Deiss, S., Heim, C., Albrecht, R., Lupas, A.N., et al. (2018) Chemical Ligand Space of Cereblon. ACS Omega, 3, 11163-11171. [Google Scholar] [CrossRef] [PubMed]
|