[1]
|
Brožič, P., Turk, S., Adeniji, A.O., Konc, J., Janežič, D., Penning, T.M., et al. (2012) Selective Inhibitors of Aldo-Keto Reductases AKR1C1 and AKR1C3 Discovered by Virtual Screening of a Fragment Library. Journal of Medicinal Chemistry, 55, 7417-7424. https://doi.org/10.1021/jm300841n
|
[2]
|
Rižner, T.L. and Penning, T.M. (2020) Aldo-keto Reductase 1C3—Assessment as a New Target for the Treatment of Endometriosis. Pharmacological Research, 152, Article ID: 104446. https://doi.org/10.1016/j.phrs.2019.104446
|
[3]
|
Penning, T.M. (2019) AKR1C3 (Type 5 17β-Hydroxysteroid Dehydrogenase/Prostaglandin F Synthase): Roles in Malignancy and Endocrine Disorders. Molecular and Cellular Endocrinology, 489, 82-91. https://doi.org/10.1016/j.mce.2018.07.002
|
[4]
|
Yepuru, M., Wu, Z., Kulkarni, A., Yin, F., Barrett, C.M., Kim, J., et al. (2013) Steroidogenic Enzyme AKR1C3 Is a Novel Androgen Receptor-Selective Coactivator That Promotes Prostate Cancer Growth. Clinical Cancer Research, 19, 5613-5625. https://doi.org/10.1158/1078-0432.ccr-13-1151
|
[5]
|
Zeng, C., Chang, L., Ying, M., Cao, J., He, Q., Zhu, H., et al. (2017) Aldo-Keto Reductase AKR1C1-AKR1C4: Functions, Regulation, and Intervention for Anti-Cancer Therapy. Frontiers in Pharmacology, 8, Article 119. https://doi.org/10.3389/fphar.2017.00119
|
[6]
|
Penning, T.M., Steckelbroeck, S., Bauman, D.R., Miller, M.W., Jin, Y., Peehl, D.M., et al. (2006) Aldo-Keto Reductase (AKR) 1C3: Role in Prostate Disease and the Development of Specific Inhibitors. Molecular and Cellular Endocrinology, 248, 182-191. https://doi.org/10.1016/j.mce.2005.12.009
|
[7]
|
Brawley, O.W. (2012) Prostate Cancer Epidemiology in the United States. World Journal of Urology, 30, 195-200. https://doi.org/10.1007/s00345-012-0824-2
|
[8]
|
Jemal, A., Siegel, R., Xu, J. and Ward, E. (2010) Cancer Statistics, 2010. CA: A Cancer Journal for Clinicians, 60, 277-300. https://doi.org/10.3322/caac.20073
|
[9]
|
Miyamoto, H., Messing, E.M. and Chang, C. (2004) Androgen Deprivation Therapy for Prostate Cancer: Current Status and Future Prospects. The Prostate, 61, 332-353. https://doi.org/10.1002/pros.20115
|
[10]
|
Kirby, M., Hirst, C. and Crawford, E.D. (2011) Characterising the Castration-Resistant Prostate Cancer Population: A Systematic Review. International Journal of Clinical Practice, 65, 1180-1192. https://doi.org/10.1111/j.1742-1241.2011.02799.x
|
[11]
|
Wadosky, K.M. and Koochekpour, S. (2017) Androgen Receptor Splice Variants and Prostate Cancer: From Bench to Bedside. Oncotarget, 8, 18550-18576. https://doi.org/10.18632/oncotarget.14537
|
[12]
|
Locke, J.A., Guns, E.S., Lubik, A.A., Adomat, H.H., Hendy, S.C., Wood, C.A., et al. (2008) Androgen Levels Increase by Intratumoral de Novo Steroidogenesis during Progression of Castration-Resistant Prostate Cancer. Cancer Research, 68, 6407-6415. https://doi.org/10.1158/0008-5472.can-07-5997
|
[13]
|
Penning, T.M. (2014) Androgen Biosynthesis in Castration-Resistant Prostate Cancer. Endocrine-Related Cancer, 21, T67-T78. https://doi.org/10.1530/erc-14-0109
|
[14]
|
Li, M., Zhang, L., Yu, J., Wang, X., Cheng, L., Ma, Z., et al. (2024) AKR1C3 in Carcinomas: From Multifaceted Roles to Therapeutic Strategies. Frontiers in Pharmacology, 15, Article 1378292. https://doi.org/10.3389/fphar.2024.1378292
|
[15]
|
Liu, C., Lou, W., Zhu, Y., Yang, J.C., Nadiminty, N., Gaikwad, N.W., et al. (2015) Intracrine Androgens and AKR1C3 Activation Confer Resistance to Enzalutamide in Prostate Cancer. Cancer Research, 75, 1413-1422. https://doi.org/10.1158/0008-5472.can-14-3080
|
[16]
|
Neuwirt, H., Bouchal, J., Kharaishvili, G., Ploner, C., Jöhrer, K., Pitterl, F., et al. (2020) Cancer-Associated Fibroblasts Promote Prostate Tumor Growth and Progression through Upregulation of Cholesterol and Steroid Biosynthesis. Cell Communication and Signaling, 18, Article No. 11. https://doi.org/10.1186/s12964-019-0505-5
|
[17]
|
Wang, S., Yang, Q., Fung, K. and Lin, H. (2008) AKR1C2 and AKR1C3 Mediated Prostaglandin D2 Metabolism Augments the PI3K/Akt Proliferative Signaling Pathway in Human Prostate Cancer Cells. Molecular and Cellular Endocrinology, 289, 60-66. https://doi.org/10.1016/j.mce.2008.04.004
|
[18]
|
Wang, B., Wu, S., Fang, Y., Sun, G., He, D., Hsieh, J., et al. (2020) The AKR1C3/AR‐V7 Complex Maintains CRPC Tumour Growth by Repressing B4GALT1 Expression. Journal of Cellular and Molecular Medicine, 24, 12032-12043. https://doi.org/10.1111/jcmm.15831
|
[19]
|
Mozar, F., Sharma, V., Gorityala, S., Albert, J.M., Xu, Y. and Montano, M.M. (2021) Downregulation of Dihydrotestosterone and Estradiol Levels by HEXIM1. Endocrinology, 163, bqab236. https://doi.org/10.1210/endocr/bqab236
|
[20]
|
Fan, L., Peng, G., Hussain, A., Fazli, L., Guns, E., Gleave, M., et al. (2015) The Steroidogenic Enzyme AKR1C3 Regulates Stability of the Ubiquitin Ligase Siah2 in Prostate Cancer Cells. Journal of Biological Chemistry, 290, 20865-20879. https://doi.org/10.1074/jbc.m115.662155
|
[21]
|
Park, S., Song, C., Lin, C., Jiang, S., Osmulski, P.A., Wang, C., et al. (2020) Inhibitory Interplay of SULT2B1b Sulfotransferase with AKR1C3 Aldo-Keto Reductase in Prostate Cancer. Endocrinology, 161, bqz042. https://doi.org/10.1210/endocr/bqz042
|
[22]
|
Thiery, J.P., Acloque, H., Huang, R.Y.J. and Nieto, M.A. (2009) Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 139, 871-890. https://doi.org/10.1016/j.cell.2009.11.007
|
[23]
|
Dozmorov, M.G., Azzarello, J.T., Wren, J.D., Fung, K., Yang, Q., Davis, J.S., et al. (2010) Elevated AKR1C3 Expression Promotes Prostate Cancer Cell Survival and Prostate Cell-Mediated Endothelial Cell Tube Formation: Implications for Prostate Cancer Progressioan. BMC Cancer, 10, Article No. 672. https://doi.org/10.1186/1471-2407-10-672
|
[24]
|
Byrns, M.C., Jin, Y. and Penning, T.M. (2011) Inhibitors of Type 5 17β-Hydroxysteroid Dehydrogenase (AKR1C3): Overview and Structural Insights. The Journal of Steroid Biochemistry and Molecular Biology, 125, 95-104. https://doi.org/10.1016/j.jsbmb.2010.11.004
|
[25]
|
Byrns, M.C. and Penning, T.M. (2009) Type 5 17β-Hydroxysteroid Dehydrogenase/Prostaglandin F Synthase (AKR1C3): Role in Breast Cancer and Inhibition by Non-Steroidal Anti-Inflammatory Drug Analogs. Chemico-Biological Interactions, 178, 221-227. https://doi.org/10.1016/j.cbi.2008.10.024
|
[26]
|
Yoda, T., Kikuchi, K., Miki, Y., Onodera, Y., Hata, S., Takagi, K., et al. (2015) 11β-Prostaglandin F2α, a Bioactive Metabolite Catalyzed by AKR1C3, Stimulates Prostaglandin F Receptor and Induces Slug Expression in Breast Cancer. Molecular and Cellular Endocrinology, 413, 236-247. https://doi.org/10.1016/j.mce.2015.07.008
|
[27]
|
Yin, Y.D., Fu, M., Brooke, D.G., Heinrich, D.M., Denny, W.A. and Jamieson, S.M.F. (2014) The Activity of SN33638, an Inhibitor of AKR1C3, on Testosterone and 17β-Estradiol Production and Function in Castration-Resistant Prostate Cancer and ER-Positive Breast Cancer. Frontiers in Oncology, 4, Article 159. https://doi.org/10.3389/fonc.2014.00159
|
[28]
|
Lewis, M.J., Wiebe, J.P. and Heathcote, J.G. (2004) Expression of Progesterone Metabolizing Enzyme Genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) Is Altered in Human Breast Carcinoma. BMC Cancer, 4, Article No. 27. https://doi.org/10.1186/1471-2407-4-27
|
[29]
|
Zhao, S., Wagn, S., Zhao, Z. and Li, W. (2019) AKR1C1-3, Notably AKR1C3, Are Distinct Biomarkers for Liver Cancer Diagnosis and Prognosis: Database Mining in Malignancies. Oncology Letters, 18, 4515-4522. https://doi.org/10.3892/ol.2019.10802
|
[30]
|
Zhu, P., Feng, R., Lu, X., Liao, Y., Du, Z., Zhai, W., et al. (2021) Diagnostic and Prognostic Values of AKR1C3 and AKR1D1 in Hepatocellular Carcinoma. Aging, 13, 4138-4156. https://doi.org/10.18632/aging.202380
|
[31]
|
Zhou, Q., Tian, W., Jiang, Z., Huang, T., Ge, C., Liu, T., et al. (2021) A Positive Feedback Loop of AKR1C3-Mediated Activation of NF-κB and STAT3 Facilitates Proliferation and Metastasis in Hepatocellular Carcinoma. Cancer Research, 81, 1361-1374. https://doi.org/10.1158/0008-5472.can-20-2480
|
[32]
|
Pan, D., Yang, W., Zeng, Y., Qin, H., Xu, Y., Gui, Y., et al. (2022) AKR1C3 Regulated by NRF2/MAFG Complex Promotes Proliferation via Stabilizing PARP1 in Hepatocellular Carcinoma. Oncogene, 41, 3846-3858. https://doi.org/10.1038/s41388-022-02379-7
|
[33]
|
Wu, C., Dai, C., Li, X., Sun, M., Chu, H., Xuan, Q., et al. (2022) AKR1C3-Dependent Lipid Droplet Formation Confers Hepatocellular Carcinoma Cell Adaptability to Targeted Therapy. Theranostics, 12, 7681-7698. https://doi.org/10.7150/thno.74974
|
[34]
|
Chen, J., Zhang, J., Tian, W., Ge, C., Su, Y., Li, J., et al. (2023) AKR1C3 Suppresses Ferroptosis in Hepatocellular Carcinoma through Regulation of YAP/SLC7A11 Signaling Pathway. Molecular Carcinogenesis, 62, 833-844. https://doi.org/10.1002/mc.23527
|
[35]
|
Garg, M., Nagata, Y., Kanojia, D., Mayakonda, A., Yoshida, K., Haridas Keloth, S., et al. (2015) Profiling of Somatic Mutations in Acute Myeloid Leukemia with FLT3-ITD at Diagnosis and Relapse. Blood, 126, 2491-2501. https://doi.org/10.1182/blood-2015-05-646240
|
[36]
|
Short, N.J., Rytting, M.E. and Cortes, J.E. (2018) Acute Myeloid Leukaemia. The Lancet, 392, 593-606. https://doi.org/10.1016/s0140-6736(18)31041-9
|
[37]
|
Morell, A., Čermáková, L., Novotná, E., Laštovičková, L., Haddad, M., Haddad, A., et al. (2020) Bruton’s Tyrosine Kinase Inhibitors Ibrutinib and Acalabrutinib Counteract Anthracycline Resistance in Cancer Cells Expressing AKR1C3. Cancers, 12, Article 3731. https://doi.org/10.3390/cancers12123731
|
[38]
|
Wu, Z., Ou, J., Liu, N., Wang, Z., Chen, J., Cai, Z., et al. (2022) Upregulation of Tim‐3 Is Associated with Poor Prognosis in Acute Myeloid Leukemia. Cancer Medicine, 12, 8956-8969. https://doi.org/10.1002/cam4.5549
|
[39]
|
Verma, K., Zang, T., Gupta, N., Penning, T.M. and Trippier, P.C. (2016) Selective AKR1C3 Inhibitors Potentiate Chemotherapeutic Activity in Multiple Acute Myeloid Leukemia (AML) Cell Lines. ACS Medicinal Chemistry Letters, 7, 774-779. https://doi.org/10.1021/acsmedchemlett.6b00163
|
[40]
|
Penning, T.M., Jonnalagadda, S., Trippier, P.C. and Rižner, T.L. (2021) Aldo-keto Reductases and Cancer Drug Resistance. Pharmacological Reviews, 73, 1150-1171. https://doi.org/10.1124/pharmrev.120.000122
|
[41]
|
Wang, Y., Liu, Y., Zhou, C., Wang, C., Zhang, N., Cao, D., et al. (2020) An AKR1C3-Specific Prodrug with Potent Anti-Tumor Activities against T-ALL. Leukemia & Lymphoma, 61, 1660-1668. https://doi.org/10.1080/10428194.2020.1728746
|
[42]
|
He, P., Wang, C., Wang, Y., Wang, C., Zhou, C., Cao, D., et al. (2021) A Novel AKR1C3 Specific Prodrug TH3424 with Potent Antitumor Activity in Liver Cancer. Clinical Pharmacology & Therapeutics, 110, 229-237. https://doi.org/10.1002/cpt.2171
|
[43]
|
Evans, K., Duan, J., Pritchard, T., Jones, C.D., McDermott, L., Gu, Z., et al. (2019) OBI-3424, a Novel AKR1C3-Activated Prodrug, Exhibits Potent Efficacy against Preclinical Models of T-ALL. Clinical Cancer Research, 25, 4493-4503. https://doi.org/10.1158/1078-0432.ccr-19-0551
|
[44]
|
Reddi, D., Seaton, B.W., Woolston, D., Aicher, L., Monroe, L.D., Mao, Z.J., et al. (2022) AKR1C3 Expression in T Acute Lymphoblastic Leukemia/Lymphoma for Clinical Use as a Biomarker. Scientific Reports, 12, Article No. 5809. https://doi.org/10.1038/s41598-022-09697-6
|
[45]
|
Moradi Manesh, D., El-Hoss, J., Evans, K., Richmond, J., Toscan, C.E., Bracken, L.S., et al. (2015) AKR1C3 Is a Biomarker of Sensitivity to PR-104 in Preclinical Models of T-Cell Acute Lymphoblastic Leukemia. Blood, 126, 1193-1202. https://doi.org/10.1182/blood-2014-12-618900
|
[46]
|
Frycz, B.A., Murawa, D., Borejsza-Wysocki, M., Wichtowski, M., Spychała, A., Marciniak, R., et al. (2016) Transcript Level of AKR1C3 Is Down-Regulated in Gastric Cancer. Biochemistry and Cell Biology, 94, 138-146. https://doi.org/10.1139/bcb-2015-0096
|
[47]
|
Li, Y., Tang, J., Li, J., Du, Y., Bai, F., Yang, L., et al. (2022) ARID3A Promotes the Chemosensitivity of Colon Cancer by Inhibiting AKR1C3. Cell Biology International, 46, 965-975. https://doi.org/10.1002/cbin.11789
|
[48]
|
Kafka, M., Mayr, F., Temml, V., Möller, G., Adamski, J., Höfer, J., et al. (2020) Dual Inhibitory Action of a Novel AKR1C3 Inhibitor on Both Full-Length AR and the Variant AR-V7 in Enzalutamide Resistant Metastatic Castration Resistant Prostate Cancer. Cancers, 12, Article 2092. https://doi.org/10.3390/cancers12082092
|
[49]
|
Zhao, J., Ning, S., Lou, W., Yang, J.C., Armstrong, C.M., Lombard, A.P., et al. (2020) Cross-Resistance among Next-Generation Antiandrogen Drugs through the AKR1C3/AR-V7 Axis in Advanced Prostate Cancer. Molecular Cancer Therapeutics, 19, 1708-1718. https://doi.org/10.1158/1535-7163.mct-20-0015
|
[50]
|
Xu, D., Zhang, Y. and Jin, F. (2021) The Role of AKR1 Family in Tamoxifen Resistant Invasive Lobular Breast Cancer Based on Data Mining. BMC Cancer, 21, Article No. 1321. https://doi.org/10.1186/s12885-021-09040-8
|
[51]
|
Zang, T., Verma, K., Chen, M., Jin, Y., Trippier, P.C. and Penning, T.M. (2015) Screening Baccharin Analogs as Selective Inhibitors against Type 5 17β-Hydroxysteroid Dehydrogenase (AKR1C3). Chemico-Biological Interactions, 234, 339-348. https://doi.org/10.1016/j.cbi.2014.12.015
|
[52]
|
Verma, K., Gupta, N., Zang, T., Wangtrakluldee, P., Srivastava, S.K., Penning, T.M., et al. (2018) AKR1C3 Inhibitor KV-37 Exhibits Antineoplastic Effects and Potentiates Enzalutamide in Combination Therapy in Prostate Adenocarcinoma Cells. Molecular Cancer Therapeutics, 17, 1833-1845. https://doi.org/10.1158/1535-7163.mct-17-1023
|
[53]
|
Endo, S., Hu, D., Matsunaga, T., Otsuji, Y., El-Kabbani, O., Kandeel, M., et al. (2014) Synthesis of Non-Prenyl Analogues of Baccharin as Selective and Potent Inhibitors for Aldo-Keto Reductase 1C3. Bioorganic & Medicinal Chemistry, 22, 5220-5233. https://doi.org/10.1016/j.bmc.2014.08.007
|
[54]
|
Verma, K., Zang, T., Penning, T.M. and Trippier, P.C. (2019) Potent and Highly Selective Aldo-Keto Reductase 1C3 (AKR1C3) Inhibitors Act as Chemotherapeutic Potentiators in Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia. Journal of Medicinal Chemistry, 62, 3590-3616. https://doi.org/10.1021/acs.jmedchem.9b00090
|
[55]
|
Hulcová, D., Breiterová, K., Zemanová, L., Siatka, T., Šafratová, M., Vaněčková, N., et al. (2017) AKR1C3 Inhibitory Potency of Naturally-Occurring Amaryllidaceae Alkaloids of Different Structural Types. Natural Product Communications, 12, 245-246. https://doi.org/10.1177/1934578x1701200226
|
[56]
|
Li, J., Tian, Y., Zhao, L., Wang, Y., Zhang, H., Xu, D., et al. (2016) Berberine Inhibits Androgen Synthesis by Interaction with Aldo-Keto Reductase 1C3 in 22Rv1 Prostate Cancer Cells. Asian Journal of Andrology, 18, 607-612. https://doi.org/10.4103/1008-682x.169997
|
[57]
|
Santos, A.R.N., Sheldrake, H.M., Ibrahim, A.I.M., Danta, C.C., Bonanni, D., Daga, M., et al. (2019) Exploration of [2 + 2 + 2] Cyclotrimerisation Methodology to Prepare Tetrahydroisoquinoline-Based Compounds with Potential Aldo-Keto Reductase 1C3 Target Affinity. MedChemComm, 10, 1476-1480. https://doi.org/10.1039/c9md00201d
|
[58]
|
Novotná, E., Büküm, N., Hofman, J., Flaxová, M., Kouklíková, E., Louvarová, D., et al. (2018) Roscovitine and Purvalanol a Effectively Reverse Anthracycline Resistance Mediated by the Activity of Aldo-Keto Reductase 1C3 (AKR1C3): A Promising Therapeutic Target for Cancer Treatment. Biochemical Pharmacology, 156, 22-31. https://doi.org/10.1016/j.bcp.2018.08.001
|
[59]
|
Novotná, E., Büküm, N., Hofman, J., Flaxová, M., Kouklíková, E., Louvarová, D., et al. (2018) Aldo-Keto Reductase 1C3 (AKR1C3): A Missing Piece of the Puzzle in the Dinaciclib Interaction Profile. Archives of Toxicology, 92, 2845-2857. https://doi.org/10.1007/s00204-018-2258-0
|
[60]
|
Bukum, N., Novotna, E., Morell, A., Hofman, J. and Wsol, V. (2019) Buparlisib Is a Novel Inhibitor of Daunorubicin Reduction Mediated by Aldo-Keto Reductase 1C3. Chemico-Biological Interactions, 302, 101-107. https://doi.org/10.1016/j.cbi.2019.01.026
|
[61]
|
Zhao, Y., Zheng, X., Zhang, H., Zhai, J., Zhang, L., Li, C., et al. (2015) In Vitro Inhibition of AKR1CS by Sulphonylureas and the Structural Basis. Chemico-Biological Interactions, 240, 310-315. https://doi.org/10.1016/j.cbi.2015.09.006
|
[62]
|
Byrns, M.C., Steckelbroeck, S. and Penning, T.M. (2008) An Indomethacin Analogue, N-(4-Chlorobenzoyl)-Melatonin, Is a Selective Inhibitor of Aldo-Keto Reductase 1C3 (Type 2 3α-HSD, Type 5 17β-HSD, and Prostaglandin F Synthase), a Potential Target for the Treatment of Hormone Dependent and Hormone Independent Malignancies. Biochemical Pharmacology, 75, 484-493. https://doi.org/10.1016/j.bcp.2007.09.008
|
[63]
|
Flanagan, J.U., Yosaatmadja, Y., Teague, R.M., Chai, M.Z.L., Turnbull, A.P. and Squire, C.J. (2012) Crystal Structures of Three Classes of Non-Steroidal Anti-Inflammatory Drugs in Complex with Aldo-Keto Reductase 1C3. PLOS ONE, 7, e43965. https://doi.org/10.1371/journal.pone.0043965
|
[64]
|
Liedtke, A.J., Adeniji, A.O., Chen, M., Byrns, M.C., Jin, Y., Christianson, D.W., et al. (2013) Development of Potent and Selective Indomethacin Analogues for the Inhibition of AKR1C3 (Type 5 17β-Hydroxysteroid Dehydrogenase/Prostaglandin F Synthase) in Castrate-Resistant Prostate Cancer. Journal of Medicinal Chemistry, 56, 2429-2446. https://doi.org/10.1021/jm3017656
|
[65]
|
Adeniji, A.O., Twenter, B.M., Byrns, M.C., Jin, Y., Chen, M., Winkler, J.D., et al. (2012) Development of Potent and Selective Inhibitors of Aldo-Keto Reductase 1C3 (Type 5 17-Hydroxysteroid Dehydrogenase) Based on n-Phenyl-Aminobenzoates and Their Structure-Activity Relationships. Journal of Medicinal Chemistry, 55, 2311-2323. https://doi.org/10.1021/jm201547v
|
[66]
|
Pippione, A.C., Carnovale, I.M., Bonanni, D., Sini, M., Goyal, P., Marini, E., et al. (2018) Potent and Selective Aldo-Keto Reductase 1C3 (AKR1C3) Inhibitors Based on the Benzoisoxazole Moiety: Application of a Bioisosteric Scaffold Hopping Approach to Flufenamic Acid. European Journal of Medicinal Chemistry, 150, 930-945. https://doi.org/10.1016/j.ejmech.2018.03.040
|
[67]
|
Pippione, A.C., Giraudo, A., Bonanni, D., Carnovale, I.M., Marini, E., Cena, C., et al. (2017) Hydroxytriazole Derivatives as Potent and Selective Aldo-Keto Reductase 1C3 (AKR1C3) Inhibitors Discovered by Bioisosteric Scaffold Hopping Approach. European Journal of Medicinal Chemistry, 139, 936-946. https://doi.org/10.1016/j.ejmech.2017.08.046
|
[68]
|
Hendriks, C.M.M., Penning, T.M., Zang, T., Wiemuth, D., Gründer, S., Sanhueza, I.A., et al. (2015) Pentafluorosulfanyl-containing Flufenamic Acid Analogs: Syntheses, Properties and Biological Activities. Bioorganic & Medicinal Chemistry Letters, 25, 4437-4440. https://doi.org/10.1016/j.bmcl.2015.09.012
|
[69]
|
Féau, C., Arnold, L.A., Kosinski, A., Zhu, F., Connelly, M. and Guy, R.K. (2009) Novel Flufenamic Acid Analogues as Inhibitors of Androgen Receptor Mediated Transcription. ACS Chemical Biology, 4, 834-843. https://doi.org/10.1021/cb900143a
|
[70]
|
Chen, M., Adeniji, A.O., Twenter, B.M., Winkler, J.D., Christianson, D.W. and Penning, T.M. (2012) Crystal Structures of AKR1C3 Containing an N-(Aryl)amino-Benzoate Inhibitor and a Bifunctional AKR1C3 Inhibitor and Androgen Receptor Antagonist. Therapeutic Leads for Castrate Resistant Prostate Cancer. Bioorganic & Medicinal Chemistry Letters, 22, 3492-3497. https://doi.org/10.1016/j.bmcl.2012.03.085
|
[71]
|
Wangtrakuldee, P., Adeniji, A.O., Zang, T., Duan, L., Khatri, B., Twenter, B.M., et al. (2019) A 3-(4-Nitronaphthen-1-Yl) Amino-Benzoate Analog as a Bifunctional AKR1C3 Inhibitor and AR Antagonist: Head to Head Comparison with Other Advanced AKR1C3 Targeted Therapeutics. The Journal of Steroid Biochemistry and Molecular Biology, 192, Article ID: 105283. https://doi.org/10.1016/j.jsbmb.2019.01.001
|