[1]
|
蒋林青, 邹应腾. 低升糖水稻在降低血糖指数方面研究进展及发展前景[J]. 中外食品工业, 2024(19): 79-81.
|
[2]
|
Bloomgarden, Z. and Handelsman, Y. (2023) Diabetes Epidemiology and Its Implications. In: Jenkins, A.J. and Toth, P.P., Eds., Lipoproteins in Diabetes Mellitus, Springer International Publishing, 881-890. https://doi.org/10.1007/978-3-031-26681-2_31
|
[3]
|
安然, 安晓宁, 刘宝宁, 等. 大米发展及米饭蒸煮技术研究进展[J]. 中外食品工业, 2024(12): 120-122.
|
[4]
|
郑兴飞, 谢海, 王红波, 等. 低GI功能性稻米的研究进展与展望[J]. 湖北农业科学, 2022, 61(S1): 1-3+10.
|
[5]
|
Compart, J., Singh, A., Fettke, J. and Apriyanto, A. (2023) Customizing Starch Properties: A Review of Starch Modifications and Their Applications. Polymers, 15, Article No. 3491. https://doi.org/10.3390/polym15163491
|
[6]
|
乔瀚, 高嫚, 孟翔烁, 等. 低GI米制品研究进展[J]. 粮食与油脂, 2023, 36(10): 8-10+62.
|
[7]
|
Ngo, T.V., Kunyanee, K. and Luangsakul, N. (2023) Insights into Recent Updates on Factors and Technologies That Modulate the Glycemic Index of Rice and Its Products. Foods, 12, Article No. 3659. https://doi.org/10.3390/foods12193659
|
[8]
|
王勇, 应剑, 董志忠, 等. 低升糖指数大米研究进展[J]. 生物产业技术, 2017(4): 41-47.
|
[9]
|
Wang, H., Zhang, B., Chen, L. and Li, X. (2016) Understanding the Structure and Digestibility of Heat-Moisture Treated Starch. International Journal of Biological Macromolecules, 88, 1-8. https://doi.org/10.1016/j.ijbiomac.2016.03.046
|
[10]
|
董志雄. 基于RS2型抗性淀粉和苦荞的低GI米线配方研制[D]: [硕士学位论文]. 武汉: 武汉轻工大学, 2023.
|
[11]
|
马永轩, 张名位, 魏振承, 等. 挤压膨化对大米和糙米理化与营养特性的影响[J]. 食品研究与开发, 2017, 38(12): 9-12.
|
[12]
|
Téllez-Morales, J.A. and Rodríguez-Miranda, J. (2023) Improved Extrusion Cooking Technology: A Mini Review of Starch Modification. Journal of Culinary Science & Technology, 23, 1-10. https://doi.org/10.1080/15428052.2022.2163952
|
[13]
|
Neder‐Suárez, D., Amaya‐Guerra, C.A., Pérez‐Carrillo, E., Quintero‐Ramos, A., Mendez‐Zamora, G., Sánchez‐Madrigal, M.Á., et al. (2019) Optimization of an Extrusion Cooking Process to Increase Formation of Resistant Starch from Corn Starch with Addition of Citric Acid. Starch-Stärke, 72, Article ID: 1900150. https://doi.org/10.1002/star.201900150
|
[14]
|
Liu, R., Geng, Z., Li, T., Zhang, M., Zhang, C., Ma, T., et al. (2024) Effects of Different Extrusion Temperatures on the Physicochemical Properties, Edible Quality and Digestive Attributes of Multigrain Reconstituted Rice. Food & Function, 15, 6000-6014. https://doi.org/10.1039/d4fo00044g
|
[15]
|
Yılmaz, A. and Tugrul, N. (2023) Effect of Ultrasound-Microwave and Microwave-Ultrasound Treatment on Physicochemical Properties of Corn Starch. Ultrasonics Sonochemistry, 98, Article ID: 106516. https://doi.org/10.1016/j.ultsonch.2023.106516
|
[16]
|
Guo, Y., Song, R., Zhu, S., Liu, X. and Wang, X. (2024) Effects of Ultrasonic Treatment on the Texture Quality of Aged Rice Flour. Journal of Cereal Science, 117, Article ID: 103918. https://doi.org/10.1016/j.jcs.2024.103918
|
[17]
|
张楚佳, 贾健辉, 高嫚, 等. 3种物理方法制备抗性粳米淀粉的结构与物化特性[J]. 中国食品学报, 2025, 25(1): 193-207.
|
[18]
|
Niu, R., Raza, H. and Wang, M. (2025) Introducing Vitexin in Rice Starch Using Ultrasound to Enhance V-Type Resistant Starch. LWT, 215, Article ID: 117287. https://doi.org/10.1016/j.lwt.2024.117287
|
[19]
|
Tang, J., Liang, Q., Ren, X., Raza, H. and Ma, H. (2022) Insights into Ultrasound-Induced Starch-Lipid Complexes to Understand Physicochemical and Nutritional Interventions. International Journal of Biological Macromolecules, 222, 950-960. https://doi.org/10.1016/j.ijbiomac.2022.09.242
|
[20]
|
He, C., Zhang, R., Fan, R., Yu, J., Hu, J., Peng, Q., et al. (2024) Starch Modification by Low-Dose Electron Beam Irradiation: A Comprehensive Study between Buckwheat Starch, Potato Starch and Pea Starch. International Journal of Biological Macromolecules, 283, Article ID: 137810. https://doi.org/10.1016/j.ijbiomac.2024.137810
|
[21]
|
魏常锦. 农产品抗性淀粉制备的研究进展[J]. 农业与技术, 2021, 41(17): 28-30.
|
[22]
|
Lei, X., Yu, J., Hu, Y., Bai, J., Feng, S. and Ren, Y. (2023) Comparative Investigation of the Effects of Electron Beam and X-Ray Irradiation on Potato Starch: Structure and Functional Properties. International Journal of Biological Macromolecules, 236, Article ID: 123909. https://doi.org/10.1016/j.ijbiomac.2023.123909
|
[23]
|
Peng, Z., Wang, X., Liu, Z., Zhang, L., Cheng, L., Nia, J., et al. (2024) Modifying the Resistant Starch Content and the Retrogradation Characteristics of Potato Starch through High-Dose Gamma Irradiation. Gels, 10, Article No. 763. https://doi.org/10.3390/gels10120763
|
[24]
|
Wang, N., Dong, Y., Zhang, H., Wang, B., Cao, J., Dai, Y., et al. (2023) Exploring the Mechanism of High Hydrostatic Pressure on the Chemical Activity of Starch Based on Its Structure and Properties Changes. Food Chemistry, 418, Article ID: 136058. https://doi.org/10.1016/j.foodchem.2023.136058
|
[25]
|
Chen, Z.-G., et al. (2020) The Analysis of the Effects of High Hydrostatic Pressure (HHP) on Amylose Molecular Conformation at Atomic Level Based on Molecular Dynamics Simulation. Food Chemistry, 327, Article ID: 127047. https://doi.org/10.1016/j.foodchem.2020.127047
|
[26]
|
Hsiao, Y. and Wang, C. (2020) Microbial Shelf-Life, Starch Physicochemical Properties, and in Vitro Digestibility of Pigeon Pea Milk Altered by High Pressure Processing. Molecules, 25, Article No. 2516. https://doi.org/10.3390/molecules25112516
|
[27]
|
Hong, J., Zeng, X., Han, Z. and Brennan, C.S. (2018) Effect of Pulsed Electric Fields Treatment on the Nanostructure of Esterified Potato Starch and Their Potential Glycemic Digestibility. Innovative Food Science & Emerging Technologies, 45, 438-446. https://doi.org/10.1016/j.ifset.2017.11.009
|
[28]
|
Chen, B., Xiao, Y., Ali, M., Xu, F., Li, J., Wang, R., et al. (2024) Improving Resistant Starch Content of Cassava Starch by Pulsed Electric Field-Assisted Esterification. International Journal of Biological Macromolecules, 276, Article ID: 133272. https://doi.org/10.1016/j.ijbiomac.2024.133272
|
[29]
|
Duque, S.M.M., Leong, S.Y., Agyei, D., Singh, J., Larsen, N., Sutton, K., et al. (2022) Understanding the Mechanism of How Pulsed Electric Fields Treatment Affects the Digestibility and Characteristics of Starch in Oat Flour. Applied Sciences, 12, Article ID: 10293. https://doi.org/10.3390/app122010293
|
[30]
|
韩春然, 牙韩琴, 那治国, 等. 发酵方式对玉米粉加工特性及淀粉精细结构的影响[J]. 中国调味品, 2025, 50(2): 93-100.
|
[31]
|
廖卢艳, 吴卫国. 发酵技术在淀粉改性上的应用[J]. 中国酿造, 2014, 33(1): 20-22.
|
[32]
|
Wei, C., Ge, Y., Zhao, S., Liu, D., Jiliu, J., Wu, Y., et al. (2022) Effect of Fermentation Time on Molecular Structure and Physicochemical Properties of Corn Ballast Starch. Frontiers in Nutrition, 9, Article ID: 885662. https://doi.org/10.3389/fnut.2022.885662
|
[33]
|
张玉荣, 周显青, 李庆光, 等. 植物乳杆菌发酵大米粉及其淀粉特性变化[J]. 粮食与饲料工业, 2012(8): 18-22+25.
|
[34]
|
王登宇, 孔垂琴, 王冰, 等. 乳酸菌发酵对混合米粉理化特性及年糕品质的影响[J]. 中国食品学报, 2023, 23(3): 229-239.
|
[35]
|
王东坤, 张佳艳, 李才明, 等. 植物乳杆菌强化发酵对鲜湿米粉品质的影响及作用机理分析[J]. 食品与发酵工业, 2022, 48(7): 134-139.
|
[36]
|
赵秋艳, 陈伊超, 王田林, 等. 酶法改性豌豆蛋白及其在食品工业中的应用研究进展[J]. 食品与发酵工业, 1-10.
|
[37]
|
Park, H.R., Kang, J., Rho, S. and Kim, Y. (2020) Structural and Physicochemical Properties of Enzymatically Modified Rice Starch as Influenced by the Degree of Enzyme Treatment. Journal of Carbohydrate Chemistry, 39, 250-266. https://doi.org/10.1080/07328303.2020.1788574
|
[38]
|
武晓莉. 酶法改性协同湿热处理调控糯米淀粉结晶结构及其体外消化行为评价[D]: [硕士学位论文]. 无锡: 江南大学, 2024.
|
[39]
|
徐佩琳. 酸热法和微波预处理-酶法制备山药抗性糊精及其特性研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2019.
|
[40]
|
李翠翠, 谢章艳, 贾笑莉, 等. 山药淀粉的改性及其在食品工业中的应用研究进展[J]. 粮食与油脂, 2024, 37(2): 6-9.
|
[41]
|
Woo, S., Kim, J., Jeong, H., Shin, Y., Hong, J., Choi, H., et al. (2021) Development of Freeze-Thaw Stable Starch through Enzymatic Modification. Foods, 10, Article No. 2269. https://doi.org/10.3390/foods10102269
|
[42]
|
Singla, D., Singh, A., Dhull, S.B., Kumar, P., Malik, T. and Kumar, P. (2020) Taro Starch: Isolation, Morphology, Modification and Novel Applications Concern—A Review. International Journal of Biological Macromolecules, 163, 1283-1290. https://doi.org/10.1016/j.ijbiomac.2020.07.093
|
[43]
|
Guan, Q., Ding, X., Jiang, R., Ouyang, P., Gui, J., Feng, L., et al. (2019) Effects of Hydrogen-Rich Water on the Nutrient Composition and Antioxidative Characteristics of Sprouted Black Barley. Food Chemistry, 299, Article ID: 125095. https://doi.org/10.1016/j.foodchem.2019.125095
|
[44]
|
Yıltırak, S., Kocadağlı, T., Çelik, E.E., Özkaynak Kanmaz, E. and Gökmen, V. (2021) Effects of Sprouting and Fermentation on Free Asparagine and Reducing Sugars in Wheat, Einkorn, Oat, Rye, Barley, and Buckwheat and on Acrylamide and 5-Hydroxymethylfurfural Formation during Heating. Journal of Agricultural and Food Chemistry, 69, 9419-9433. https://doi.org/10.1021/acs.jafc.1c03316
|
[45]
|
Ding, J., Johnson, J., Chu, Y.F. and Feng, H. (2019) Enhancement of γ-Aminobutyric Acid, Avenanthramides, and Other Health-Promoting Metabolites in Germinating Oats (Avena sativa L.) Treated with and without Power Ultrasound. Food Chemistry, 283, 239-247. https://doi.org/10.1016/j.foodchem.2018.12.136
|
[46]
|
Kayisoglu, C., Altikardes, E., Guzel, N. and Uzel, S. (2024) Germination: A Powerful Way to Improve the Nutritional, Functional, and Molecular Properties of White-and Red-Colored Sorghum Grains. Foods, 13, Article No. 662. https://doi.org/10.3390/foods13050662
|
[47]
|
Xing, B., Teng, C., Sun, M., Zhang, Q., Zhou, B., Cui, H., et al. (2021) Effect of Germination Treatment on the Structural and Physicochemical Properties of Quinoa Starch. Food Hydrocolloids, 115, Article ID: 106604. https://doi.org/10.1016/j.foodhyd.2021.106604
|
[48]
|
Zhou, X., Hao, T., Zhou, Y., Tang, W., Xiao, Y., Meng, X., et al. (2014) Relationships between Antioxidant Compounds and Antioxidant Activities of Tartary Buckwheat during Germination. Journal of Food Science and Technology, 52, 2458-2463. https://doi.org/10.1007/s13197-014-1290-1
|
[49]
|
Bhinder, S., Singh, N. and Kaur, A. (2022) Impact of Germination on Nutraceutical, Functional and Gluten Free Muffin Making Properties of Tartary Buckwheat (Fagopyrum tataricum). Food Hydrocolloids, 124, Article ID: 107268. https://doi.org/10.1016/j.foodhyd.2021.107268
|