PARP1/CDK2双靶点抑制剂的合成及生物活性评价
Design, Synthesis and Biological Evaluation of PARP1/CDK2 Dual-Target Inhibitors
DOI: 10.12677/hjmce.2025.132020, PDF, HTML, XML,   
作者: 崔 阳, 魏佳妮, 谌伦华:华北理工大学药学院,河北 唐山
关键词: PARP1-CDK2双靶点抑制剂乳腺癌PARP1-CDK2 Dual-Target Inhibitor Breast Cancer
摘要: PARP1和CDK2在癌症发生发展中起关键作用,二者过度活化与多种肿瘤相关,同时抑制二者活性可能为乳腺癌治疗提供有效策略。本文以PARP1抑制剂Olaparib和CDK抑制剂Ribociclib为基础,通过分子对接分析选择分子尾部游离基团作为改造位点,设计合成了5个具有全新结构的PARP-CDK双靶点抑制剂。利用核磁共振氢谱对其结构进行表征,通过测试酶抑制活性和体外抗细胞增殖活性进行生物活性评价。结果显示,双杂环链接化合物活性优于单杂环化合物,其中链接链为3,9-二氮杂螺[5.5]十一烷的化合物12c对PARP1与CDK2显示出良好的抗肿瘤效果。本研究为开发更多PARP1双靶点抑制剂奠定了重要基础。
Abstract: The proteins PARP1 and CDK2 are pivotal in the progression of cancer, with their excessive activation being implicated in a wide range of tumors. Targeting and simultaneously inhibiting the activities of both PARP1 and CDK2 may hold promise as a highly effective therapeutic strategy for the treatment of breast cancer. In this paper, five PARP-CDK dual-target inhibitors with a novel structure were designed and synthesized based on the PARP1 inhibitor Olaparib and the CDK inhibitor Ribociclib. The molecular docking analysis was used to select the free groups at the molecular tail as the modification sites. The structures of the inhibitors were characterized by nuclear magnetic resonance spectroscopy, and their biological activities were evaluated by testing the enzyme inhibitory activity and in vitro anti-cell proliferation activity. The results showed that the activity of the compounds with double heterocyclic linkers was better than that of the single heterocyclic compounds, and the compound 12c with a 3,9-diazaspiro [5.5] undecane linker exhibited good antitumor effects against both PARP1 and CDK2. This study lays an important foundation for the development of more PARP1 dual-target inhibitors.
文章引用:崔阳, 魏佳妮, 谌伦华. PARP1/CDK2双靶点抑制剂的合成及生物活性评价[J]. 药物化学, 2025, 13(2): 186-193. https://doi.org/10.12677/hjmce.2025.132020

1. 引言

1.1. 乳腺癌

乳腺癌是一种起源于乳腺上皮组织的恶性肿瘤,近年来已成为威胁女性健康的最常见恶性肿瘤之一。根据世界卫生组织国际癌症研究机构(IARC)最新发布的全球癌症负担报告,乳腺癌的发病率已居全球恶性肿瘤之首,凸显出其在女性健康领域所面临的严峻挑战,其新发病例占新发病例总数的11.7%,同时也成为全球女性最常见且死亡率最高的癌种[1] [2]

1.2. PARP1与CDK2的功能

多聚(ADP-核糖)聚合酶(PARP)是一个由17个蛋白质成员组成的家族,是DNA依赖性核酶,通过识别和快速结合DNA单链断裂(SSB)参与DNA损伤修复。然后,通过基底切除修复途径修复SSB[3]。在这个家族中,PARP1是研究最广泛的。PARP1参与广泛的细胞功能,例如细胞分裂和分化,以及细胞凋亡和染色体稳定性。PARP1敲除的动物和细胞在暴露于烷化剂时表现出高灵敏度。在许多疾病中总是观察到PARP1表达升高,例如乳腺癌、黑色素瘤和肺癌。由于其在DNA损伤反应中起关键作用,抑制PARP1正在成为一种有用的癌症治疗方法[4]。到目前为止,在开发PARP1抑制剂方面已经取得了重大进展和突破。

研究表明,细胞周期蛋白依赖性激酶CDK2在多种癌症中过度活化,与肿瘤的发展和进展密切相关。CDK2及与其相关的Cyclin A、Cyclin E在胶质母细胞瘤、B细胞淋巴瘤、黑色素瘤等多种肿瘤中过度表达,具有诱导肿瘤细胞生长停滞和凋亡的潜能[5] [6]。实验表明,在多种癌症中的关键致癌过程,均观测到Cyclin A/E的过表达。实验还表明,缺乏Cyclin E的细胞对致癌转化具有抗性,Cyclin E过表达与多种肿瘤类型患者的不良预后相关[7]。因此,鉴于Cyclin E对CDK2的相对特异性及其在某些类型癌症中的失调,CDK2已成为抗癌药物研发的重要靶点之一[8]。细胞周期蛋白依赖性激酶CDK2磷酸化后,PAR聚合酶PARP1激活加速了多聚ADP-核糖基化的修饰[9]。CDK2在催化结构域内对PARP1的激素依赖性磷酸化增强了其酶促能力。激活的PARP1有助于组蛋白H1的置换,对于调节大多数激素反应基因和孕激素对细胞周期进程的影响至关重要[10]。增加癌细胞的死亡。开发同时抑制PARP1/2和CDK2酶活性的小分子可能是治疗乳腺癌的一种有希望的、更有效的治疗策略[11]

本研究聚焦于探索PARP1抑制剂Olaparib和CDK抑制剂Ribociclib的结构类似物在乳腺癌治疗中的协同抗肿瘤作用。Olaparib作为一种已获批的PARP1/2抑制剂,通过阻断PARP酶的活性,限制癌细胞修复受损DNA的能力,从而促进肿瘤细胞凋亡。而Ribociclib作为CDK抑制剂,能够有效抑制CDK2蛋白,进而抑制肿瘤细胞增殖。基于这两种药物的协同作用机制,我们设计、合成并优化了多个候选化合物。这些化合物在体外实验中展现出对PARP1和CDK2的良好抑制活性,并在MDA-MB-231和MCF-7两种人乳腺癌细胞系中进行了增殖抑制活性评价。实验结果表明,这些新型化合物在抑制乳腺癌细胞增殖方面表现出显著的抑制作用,显著的抑制了肿瘤细胞的增殖情况。尤其是化合物12c,其对MDA-MB-231和MCF-7人乳腺癌细胞系中的增殖抑制效果尤为突出。

1.3. 目标双功能抑制剂的设计

在设计双功能抑制剂中,筛选出适于改造的抑制剂是至关重要的一步。首先,我们对现有的抑制剂进行了深入的构效关系分析,旨在精准地识别出具有合适改造位点的抑制剂。经过严谨的评估与筛选,我们最终确定将PARP1抑制剂Olaparib和CDK抑制剂Ribociclib作为改造对象。从与相应目标蛋白的对接结果(如图1所示)来看。Olaparib分子尾部的环丙基基团游离在蛋白外侧,并未与靶蛋白发生直接的结合作用。这一特性使得分子尾部成为了一个合适的改造位点。同样地,Ribociclib的分子结构也展现出了类似的改造潜力。其分子尾部的苯环与哌嗪基团同样游离于蛋白表面,并未深入到活性口袋内部。更为关键的是,哌嗪基团并未与氨基酸残基发生有效的结合作用。这表明,这一部分结构在药物与蛋白的相互作用中并未发挥明显作用,因此可以用于进一步的修饰改造。

综合以上分析,我们可以将化合物Olaparib与Ribociclib的分子尾部作为重点改造区域。选取不含有1-环丙甲酰基哌嗪的Olaparib类似物作为抑制PARP蛋白的弹头抑制物,并选取不含哌嗪基团的Ribociclib类似物作为抑制CDK2蛋白的弹头抑制物。通过设计和引入合适的Linker (连接子),将这两个分子的尾部进行连接。在确保在不影响化合物核心药效团的前提下,成功构建出具有同时抑制双靶点的新型双功能抑制剂。

Figure 1. Molecular docking between PARP inhibitor Olaparib and CDK inhibitor Ribociclib

1. PARP抑制剂Olaparib与CDK抑制剂Ribociclib分子对接结果图

2. 实验

2.1. 仪器与试剂

RCT-basic IKA恒温加热磁力搅拌器(德国艾卡集团);RV-8V型旋转蒸发仪(德国艾卡集团);ZF-C三用紫外分析仪(上海沪西分析仪器厂);有机反应玻璃仪器(重庆欣维尔玻璃有限公司);A-1000S循环水式真空水泵(日本EYELA东京理化器械株式会社);XPR204S/AC电子天平(瑞士梅特勒–托利多集团);Bruker ACF-300型核磁共振仪(德国布鲁克公司)。所有化学原料试剂均购买于上海泰坦科技有限公司,纯度97%,化学溶剂购买于阿达玛斯–贝塔试剂公司,纯度分析纯。

2.2. 目标化合物的合成

本文在查阅Olaparib与Ribociclib的相关文献及现有合成路线的基础上,合理设计出以Olaparib为基础的弹头化合物(4)的合成路线,如图2所示。以邻羧基苯甲醛(1)与亚磷酸二甲酯为反应原料得到中间体化合物(2),化合物2经维蒂希-霍纳尔反应得到目标化合物2-氟-5-(3-氧代-3H-异苯并呋喃-1-基亚甲基)苯腈(3),化合物3首先经过水解反应得到反应中间体随后将水合肼加入至反应体系中发生反应后环和,调节反应体系PH至酸性后得到以Olaparib为基础的弹头化合物(4)。

Reagents and conditions: (a) HPO(OCH3)2, 90˚C, 10 h; (b) 2-fluoro-5-formylbenzonitrile, DIEA, THF, rt, over night; (c) N2H4·H2O, NaOH, 70˚C, 18 h.

Figure 2. The synthetic route of compound 4

2. 化合物4合成路线图

Ribociclib类似物的合成如图3所示,化合物2,4-二氯嘧啶为起始原料,经亲核取代反应生成目标化合物2-氯-N-环戊胺嘧啶-4-胺(6),随后在L-脯氨酸促进的CuI催化反应中得到化合物2-氯-7-环戊基-N,N-二甲基-7H-吡咯并[2,3-d]嘧啶-6-甲酰胺(7),7与对氨基苯甲酸叔丁酯发生取代反应生成化合物(8),经三氟乙酸脱叔丁基保护基后得目标化合物(9)。

Reagents and conditions: (a) cyclopentanamine, DIEA, DMF,50˚C, over night; (b) 3-bromo-N, N-dimethyl-2-oxopropanamide, CuI, L-proline, Cs2CO3, THF, 50˚C, 3 h; (c) Pd(OAc)2, BINAP, CS2O3, 1,4-Dioxane, reflux, 18 h; (d) TFA, CH2Cl2, 0.5 h.

Figure 3. The synthetic route of compound 9

3. 化合物9合成路线图

化合物12a-12e合成路线如图4所示,化合物4与不同类型的含氮杂环反应,生成中间体10a-10e,随后脱除叔丁氧羰基保护基得到化合物11a-11e,并与化合物9反应得化合物12a-12e。

2.3. 化合物的结构表征

7-环戊基-2-((4-(4-(2-氟-5-((4-氧代-3,4-二氢酞嗪-1-基)甲基)苯甲酰基)哌嗪-1-羰基)苯基)氨基)-NN-二甲基-7H-吡咯并[2,3-d]嘧啶-6-甲酰胺(12a)白色固体,产率81.7%。1H NMR (400 MHz, Methanol-d4) δ

Reagents and conditions: (a) HATU, DIEA,DMF, rt, 6 h; (b) TFA,CH2Cl2 1 h; (c) HATU, DIEA,DMF, rt, 10 h.

Figure 4. The synthetic route of compound 12a-12e

4. 化合物12a-12e合成路线图

10.89 (s, 1H), 9.54 (s, 1H), 9.01 (d, J = 1.5 Hz, 1H), 8.14 - 8.05 (m, 1H), 8.02 (d, J = 1.5 Hz, 1H), 7.85 (dq, J = 5.1, 1.3 Hz, 1H), 7.78 - 7.71 (m, 5H), 7.71 - 7.62 (m, 2H), 7.40 - 7.32 (m, 1H), 7.30 (d, J = 7.6 Hz, 1H), 4.85 (p, J = 6.9 Hz, 1H), 4.17 (t, J = 0.9 Hz, 2H), 3.78 - 3.70 (m, 4H), 3.70 - 3.62 (m, 4H), 2.99 (s, 6H), 1.94 - 1.81 (m, 4H), 1.81 - 1.66 (m, 4H). 13C NMR (100 MHz, Methanol-d4) δ 169.97, 165.25, 163.95, 160.37, 159.12, 155.39, 152.74, 144.34, 141.11, 134.74, 133.06, 132.34, 132.27, 131.28, 130.61, 129.89, 129.75, 129.41, 127.97, 126.98, 126.24, 126.04, 124.68, 121.00, 113.61, 108.24, 68.46, 47.22, 47.19, 47.13, 38.24, 35.96, 33.08, 25.12. MS-ESI (m/z): 742.33 [M + H+]。

7-环戊基-2-(4-(4-(2-氟-5-((4-氧代-3,4-二氢酞嗪-1-基)甲基)苯甲酰基)-1,4-二氮杂-1-羰基)苯基)氨基)-NN-二甲基-7H-吡咯并[2,3-d]嘧啶-6-甲酰胺(12b)白色固体,产率74.5%。1H NMR (400 MHz, Methanol-d4) δ 10.89 (s, 1H), 9.54 (s, 1H), 9.01 (d, J = 1.5 Hz, 1H), 8.14 - 8.06 (m, 1H), 8.02 (d, J = 1.5 Hz, 1H), 7.83 (dq, J = 5.1, 1.2 Hz, 1H), 7.78 - 7.69 (m, 5H), 7.69 - 7.62 (m, 2H), 7.40 - 7.27 (m, 2H), 4.85 (p, J = 6.9 Hz, 1H), 4.19 - 4.14 (m, 2H), 3.69 - 3.57 (m, 4H), 3.44 (td, J = 7.1, 2.3 Hz, 4H), 2.99 (s, 6H), 1.95 - 1.87 (m, 3H), 1.87 - 1.81 (m, 3H), 1.81 - 1.66 (m, 4H). 13C NMR (100 MHz, Methanol-d4) δ 170.02, 165.71, 164.27, 160.37, 159.12, 156.84, 155.39, 152.74, 144.34, 141.12, 134.64, 132.74, 132.13, 131.72, 131.28, 130.06, 129.87, 129.79, 129.63, 127.96, 126.96, 126.17, 124.68, 121.65, 121.04, 113.81, 109.85, 68.46, 46.41, 44.58, 38.02, 35.96, 33.34, 25.34. MS-ESI (m/z): 756.33 [M + H+]。

7-环戊基-2-((4-(9-(2-氟-5-((4-氧代-3,4-二氢酞嗪-1-基)甲基)苯甲酰基)-3,9-二氮杂螺[5.5]十一碳-3-羰基)苯基)氨基)-NN-二甲基-7H-吡咯并[2,3-d]嘧啶-6-甲酰胺(12c)白色固体,产率78.2%。1H NMR (400 MHz, Methanol-d4) δ 10.89 (s, 1H), 9.54 (s, 1H), 9.01 (d, J = 1.5 Hz, 1H), 8.13 - 8.06 (m, 1H), 8.02 (d, J = 1.5 Hz, 1H), 7.84 (dq, J = 5.0, 1.1 Hz, 1H), 7.78 - 7.62 (m, 7H), 7.40 - 7.33 (m, 1H), 7.30 (d, J = 7.5 Hz, 1H), 4.85 (p, J = 6.9 Hz, 1H), 4.17 (t, J = 0.9 Hz, 2H), 3.59 (dt, J = 11.8, 6.9 Hz, 8H), 2.99 (s, 6H), 1.96 - 1.68 (m, 16H). 13C NMR (100 MHz, Methanol-d4) δ 170.16, 166.06, 164.48, 160.37, 159.12, 156.84, 155.39, 152.74, 144.09, 141.12, 134.74, 132.67, 132.13, 131.31, 130.85, 130.06, 130.04, 129.79, 129.63, 128.02, 126.91, 126.57, 124.68, 121.57, 120.98, 113.81, 113.61, 109.85, 68.46, 43.49, 43.44, 43.43, 38.40, 35.96, 35.45, 35.42, 35.34, 35.25, 33.34, 25.27. MS-ESI (m/z): 810.38 [M+H+]。

7-环戊基-2-((4-(5-(2-氟-5-((4-氧代-3,4-二氢酞嗪-1-基)甲基)苯甲酰基)八氢吡咯并[3,4-c]吡咯-2-羰基)苯基)氨基)-NN-二甲基-7H-吡咯并[2,3-d]嘧啶-6-甲酰胺(12d)白色固体,产率77.3%。1H NMR (400 MHz, Methanol-d4) δ 10.89 (s, 1H), 9.54 (s, 1H), 9.01 (d, J = 1.5 Hz, 1H), 8.14 - 8.05 (m, 1H), 8.02 (d, J = 1.5 Hz, 1H), 7.84 (dq, J = 5.0, 1.1 Hz, 1H), 7.79 - 7.62 (m, 7H), 7.40 - 7.27 (m, 2H), 4.85 (p, J = 6.9 Hz, 1H), 4.23 - 4.10 (m, 2H), 3.74 - 3.62 (m, 4H), 3.57 (dtd, J = 12.5, 4.8, 2.0 Hz, 4H), 2.99 (s, 6H), 2.61 - 2.47 (m, 2H), 1.94 - 1.80 (m, 4H), 1.80 - 1.66 (m, 4H). 13C NMR (100 MHz, Methanol-d4) δ 169.58, 168.22, 164.10, 160.37, 159.12, 156.84, 155.39, 152.74, 144.09, 141.12, 134.74, 132.67, 132.13, 131.17, 130.84, 130.06, 130.04, 129.79, 129.63, 128.02, 126.96, 126.35, 124.68, 121.63, 120.98, 113.81, 113.61, 109.85, 68.46, 53.35, 53.27, 52.96, 41.70, 38.02, 35.96, 33.34, 25.27. MS-ESI (m/z): 768.34 [M+H+]。

7-环戊基-2-((4-(8-(2-氟-5-((4-氧代-3,4-二氢酞嗪-1-基)甲基)苯甲酰基)-2,8-二氮杂螺[4.5]癸烷-2-羰基)苯基)氨基)-NN-二甲基-7H-吡咯并[2,3-d]嘧啶-6-甲酰胺(12e)白色固体,产率79.5%。1H NMR (400 MHz, Methanol-d4) δ 10.89 (s, 1H), 9.54 (s, 1H), 9.01 (d, J = 1.5 Hz, 1H), 8.13 - 8.06 (m, 1H), 8.02 (d, J = 1.5 Hz, 1H), 7.84 (dq, J = 5.0, 1.1 Hz, 1H), 7.79 - 7.62 (m, 7H), 7.40 - 7.27 (m, 2H), 4.85 (p, J = 6.9 Hz, 1H), 4.17 (d, J = 1.0 Hz, 2H), 3.68 - 3.51 (m, 5H), 3.51 - 3.39 (m, 3H), 2.99 (s, 6H), 1.95 - 1.80 (m, 10H), 1.80 - 1.72 (m, 3H), 1.72 - 1.66 (m, 1H). 13C NMR (100 MHz, Methanol-d4) δ 169.58, 166.06, 164.48, 160.37, 159.36, 159.12, 155.39, 152.74, 144.09, 141.12, 134.76, 134.74, 132.67, 132.13, 131.31, 130.85, 130.06, 130.04, 129.79, 129.63, 128.02, 126.91, 126.57, 126.37, 124.68, 121.63, 120.98, 113.61, 109.85, 68.46, 55.20, 47.78, 45.74, 44.24, 38.22, 36.88, 35.96, 35.49, 33.34, 25.27. MS-ESI (m/z): 796.37 [M+H+]。

3. 生物活性评价

为了深入研究目标化合物的抗肿瘤活性,我们对全部5个化合物的酶抑制活性进行了体外活性的测试,并进一步对其中2个化合物的体外抗细胞增殖活性进行了评估。实验中选取了两种经典的野生型人乳腺癌细胞系:MDA-MB-231和MCF-7。实验结果分别汇总于表1表2

表1的酶抑制活性数据可以看出,由双杂环连接的化合物展现出显著优于单杂环化合物的活性。这种活性差异可能源于双杂环结构为两端配体药物提供了更大的构型转换空间,从而增强了化合物与靶酶的结合能力。此外,3,9-二氮杂螺[5.5]十一烷作为连接链的化合物在活性方面显著优于其他类型的杂环结构,这表明其独特的化学结构在增强抑制活性方面发挥了关键作用。在体外细胞增殖抑制实验中,

Table 1. Compound biological activity results

1. 化合物生物活性结果

Compd.

Linker

IC50 (μM)

PARP1

CDK2

12a

12.34 ± 0.39

4.87 ± 3.82

12b

7.76 ± 4.23

19.23 ± 2.75

12c

2.57 ± 1.38

5.82 ± 1.77

12d

46.37 ± 3.39

17.39 ± 3.42

12e

8.64 ± 1.55

2.42 ± 0.97

Olaparib

1.93 ± 0.24

-

Ribociclib

-

6.33 ± 1.24

Table 2. Compound proliferation inhibition results

2. 化合物增值抑制结果

Compd.

Linker

IC50 (μM)

in MDA-MB-231

in MCF-7

12c

5.63 ± 1.46

4.64 ± 1.62

12e

8.68 ± 2.07

5.23 ± 2.16

Olaparib

6.32 ± 1.22

5.26 ± 1.02

Ribociclib

7.85 ± 1.47

3.47 ± 0.96

我们重点考察了化合物12c和12e对MDA-MB-231和MCF-7人乳腺癌细胞系的增殖抑制效果。实验结果显示,化合物12c对MDA-MB-231和MCF-7细胞的增殖水平表现出显著的抑制作用,其活性数据优于阳性对照组。这一结果证实了化合物12c在抑制乳腺癌细胞增殖方面的高效性。

4. 结论

在本研究中,为拓展应用于乳腺癌治疗的抑制剂结构多样性,我们设计并合成了5种新型PARP-CDK双靶点抑制剂。通过核磁共振氢谱对其结构进行了详细地表征。随后,我们对这些化合物进行了系统的生物活性评价,以评估其对PARP1和CDK2的抑制效果。构效关系分析表明,3,9-二氮杂螺[5.5]十一烷连接链的引入对生物活性具有显著影响,这一结构特征可能是提高抑制活性的关键因素。在所有合成的化合物中,化合物12c表现出对PARP1和CDK2的双重抑制活性,显示出良好的抗肿瘤效果。这一发现不仅为乳腺癌治疗提供了新的潜在药物候选物,还为开发更多基于PARP1和CDK2的双靶点抑制剂奠定了重要的基础。未来,我们将进一步优化这些化合物的结构,以提高其药理学性能,并探索其在乳腺癌及其他相关肿瘤治疗中的应用潜力。

参考文献

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2] Adamowicz, M., Hailstone, R., Demin, A.A., Komulainen, E., Hanzlikova, H., Brazina, J., et al. (2021) XRCC1 Protects Transcription from Toxic PARP1 Activity during DNA Base Excision Repair. Nature Cell Biology, 23, 1287-1298.
https://doi.org/10.1038/s41556-021-00792-w
[3] Gourley, C., Balmaña, J., Ledermann, J.A., Serra, V., Dent, R., Loibl, S., et al. (2019) Moving from Poly (ADP-Ribose) Polymerase Inhibition to Targeting DNA Repair and DNA Damage Response in Cancer Therapy. Journal of Clinical Oncology, 37, 2257-2269.
https://doi.org/10.1200/jco.18.02050
[4] Rajawat, J., Awasthi, P. and Banerjee, M. (2023) PARP Inhibitor Olaparib Induced Differential Protein Expression in Cervical Cancer Cells. Journal of Proteomics, 275, Article ID: 104823.
https://doi.org/10.1016/j.jprot.2023.104823
[5] Dolman, M.E.M., Poon, E., Ebus, M.E., den Hartog, I.J.M., van Noesel, C.J.M., Jamin, Y., et al. (2015) Cyclin-Dependent Kinase Inhibitor AT7519 as a Potential Drug for MYCN-Dependent Neuroblastoma. Clinical Cancer Research, 21, 5100-5109.
https://doi.org/10.1158/1078-0432.ccr-15-0313
[6] Faber, A.C. and Chiles, T.C. (2007) Inhibition of Cyclin-Dependent Kinase-2 Induces Apoptosis in Human Diffuse Large B-Cell Lymphomas. Cell Cycle, 6, 2982-2989.
https://doi.org/10.4161/cc.6.23.4994
[7] Akli, S., Van Pelt, C.S., Bui, T., Meijer, L. and Keyomarsi, K. (2011) CDK2 Is Required for Breast Cancer Mediated by the Low-Molecular-Weight Isoform of Cyclin E. Cancer Research, 71, 3377-3386.
https://doi.org/10.1158/0008-5472.can-10-4086
[8] Tadesse, S., Caldon, E.C., Tilley, W. and Wang, S. (2018) Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update. Journal of Medicinal Chemistry, 62, 4233-4251.
https://doi.org/10.1021/acs.jmedchem.8b01469
[9] Rao, S.S., Stoehr, J., Dokic, D., Wan, L., Decker, J.T., Konopka, K., et al. (2017) Synergistic Effect of Eribulin and CDK Inhibition for the Treatment of Triple Negative Breast Cancer. Oncotarget, 8, 83925-83939.
https://doi.org/10.18632/oncotarget.20202
[10] Wright, R.H.G., Castellano, G., Bonet, J., Le Dily, F., Font-Mateu, J., Ballaré, C., et al. (2012) CDK2-Dependent Activation of PARP-1 Is Required for Hormonal Gene Regulation in Breast Cancer Cells. Genes & Development, 26, 1972-1983.
https://doi.org/10.1101/gad.193193.112
[11] Aziz, D., Portman, N., Fernandez, K.J., Lee, C., Alexandrou, S., Llop-Guevara, A., et al. (2021) Synergistic Targeting of BRCA1 Mutated Breast Cancers with PARP and CDK2 Inhibition. npj Breast Cancer, 7, Article No. 111.
https://doi.org/10.1038/s41523-021-00312-x