抗抑郁药物的现状与新靶点的探索
The Current Status of Antidepressant Drugs and the Exploration of New Targets
DOI: 10.12677/hjmce.2025.132021, PDF, HTML, XML,   
作者: 张陈平, 张 翔*:中国医学科学院、北京协和医学院药物研究所,活性物质发现与适药化研究北京市重点实验室,北京
关键词: 谷氨酸系统神经肽系统内源性大麻素系统炎症标志物离子通道Glutamate System Neuropeptide System Endocannabinoid System Inflammatory Markers Ion Channel
摘要: 抑郁症是一种常见的病因复杂、影响着全球数百万人的精神障碍,药物治疗是主要的治疗方式。但当前的抗抑郁药多基于“单胺神经递质假说”开发,如SSRI和SNRI。这些药物通过调节5-HT和NE的浓度来缓解抑郁症状。然而,这些药物起效慢(通常需2~3周)且存在胃肠道不适、性功能障碍等副作用,长期用药后存在复发风险等。此外,约20%~30%的患者对这些药物无显著反应。为了解决现有治疗药物的局限性,近年来开发了多种基于新型的抗抑郁靶点的药物,如谷氨酸系统中的NMDA受体拮抗剂氯胺酮,已被证明对难治性抑郁症有快速起效的效果。同时,针对其他新型靶点如AMPA受体、mGluR受体、神经肽系统、离子通道和炎症标志物等的新药也显示出良好的治疗前景。这些新型药物不仅能改善情绪,还可能提高认知功能和神经可塑性。本文对这些研究进展进行了简要但系统的综述。
Abstract: Depression, a prevalent mental disorder with multifaceted origins, impacts millions globally. Pharmacological interventions form the primary treatment approach. However, most current antidepressants are grounded in the “monoamine neurotransmitter hypothesis,” including SSRIs and SNRIs, which alleviate depressive symptoms by modulating 5-HT and NE levels. Despite their efficacy, these medications exhibit a delayed onset of action (usually 2~3 weeks) and can cause side effects like gastrointestinal issues and sexual dysfunction. Moreover, there is a risk of relapse following prolonged use, and about 20%~30% of patients do not respond significantly to these treatments. To address these limitations, recent years have seen the development of novel antidepressants targeting different mechanisms. For example, ketamine, an NMDA receptor antagonist within the glutamate system, has shown rapid efficacy in treating resistant depression. Concurrently, emerging drugs that target other innovative pathways, such as AMPA receptors, mGluR receptors, neuropeptide systems, ion channel and inflammatory markers, also hold promising therapeutic potential. These new agents not only enhance mood but may also improve cognitive function and neuroplasticity. This paper offers a concise yet comprehensive overview of these advancements in research.
文章引用:张陈平, 张翔. 抗抑郁药物的现状与新靶点的探索[J]. 药物化学, 2025, 13(2): 194-209. https://doi.org/10.12677/hjmce.2025.132021

1. 引言

抑郁症(Depression)是一种常见的精神障碍,目前全球约有3.8%的人口患有抑郁症[1]。抑郁症的发病机制尚不清晰且缺乏特定的生物学诊断指标,目前普遍认为抑郁症是一种多因素疾病,由社会、心理和生物学等多方面的原因相互作用而引起[2]。抑郁症的影响不仅限于个人的心理健康,还与多种身体健康问题有关,如心血管疾病、糖尿病和癌症等[3]。除了心理治疗和相关方法外,药物是治疗抑郁症的最主要手段,然而研究数据表明单用抗抑郁药治疗的缓解率仅为50%,且某些抗抑郁药物对部分患者疗效甚微[4]。目前已上市的抗抑郁药大都以单胺为靶点,基于“单胺神经递质假说”开发的抗抑郁药仍然是一线治疗方法[5]。但这些药物存在诸多缺点,例如通常在服药2~3周后才能减轻抑郁症状,长期使用这些药物治疗会引起不良反应,停止治疗后可能会复发等[6]。本文结合已上市和处于研究阶段的抗抑郁药的调研,针对抗抑郁药的新靶点及前景作综述。

2. 单胺神经递质

传统的单胺神经递质假说认为抑郁症的病因与不同单胺神经递质的异常分布密切相关,如脑内突触中5-羟色胺(5-Hydroxytryptamine, 5-HT)、多巴胺(dopamine, DA)去甲肾上腺素(Norepinephrine, NE)浓度的降低可能诱导抑郁症发生[7]。该假说认为单胺类神经递质的信号网络从中脑核开始,传递至脑边缘、前额和海马区,与其它的神经递质通路构成了一个复杂的神经化学网络,协同作用于抑郁症的发生[8],故通过调节脑内突触的相关的单胺类神经递质浓度能缓解甚至治愈抑郁症。目前已上市的绝大部分抗抑郁药物,如选择性5-羟色胺再摄取抑制剂(Selective Serotonin Reuptake Inhibitor, SSRI)、选择性5-羟色胺和去甲肾上腺素再摄取抑制剂(Selective Serotonin and Norepinephrine Reuptake Inhibitor, SNRI)均是基于这种理论开发。然而单胺假说存在无法合理解释的问题,即在患者服用药物后,尽管相关单胺的含量会在短时间内降低,但抗抑郁效果却在几周后才显示出来[6],同时部分患者对抗抑郁药的耐药性也无法得到很好的解释。

3. 谷氨酸(Glutamic Acid, Glu)与γ-氨基丁酸(Gamma-Aminobutyric Acid, GABA)

不同于传统的单胺神经递质假说,该理论认为抑郁症不仅仅是单一神经递质的缺乏或过剩,大脑兴奋性与抑制性神经递质的不平衡在抑郁症病理生理中也起到关键作用。谷氨酸是主要的兴奋性神经递质,而GABA是主要的抑制性神经递质。抑郁症的病理机制之一是这种兴奋-抑制平衡被打破,谷氨酸活动增强,而GABA活性降低。这种不平衡可能导致神经网络的整体过度兴奋状态,进一步加剧情绪调节功能的紊乱[9] [10]。此外,谷氨酸还通过多种不同的受体亚型进行作用,包括离子型受体和代谢型受体,每种受体亚型在抑郁症的病理生理学中发挥不同作用[11]。研究发现抑郁症患者某些脑区的谷氨酸水平异常升高,尤其是与情绪调节相关的区域,如前额叶皮层、海马和杏仁核。作为一种主要的兴奋性神经递质,谷氨酸通过与离子型谷氨酸受体结合,激活这些受体后导致钙离子(Ca²⁺)和钠离子(Na⁺)内流,最终引发兴奋性突触传递[12]。这种过度兴奋的状态如果长期存在,会导致细胞内Ca²⁺水平异常升高,继而触发一系列下游信号通路,例如钙依赖的酶类活性增强(如钙蛋白酶、蛋白激酶),这些酶类会引发蛋白质降解和氧化应激,最终导致神经元损伤甚至凋亡,这一过程被称为兴奋毒性,是神经元损伤的主要机制之一,抑郁症患者中观察到的神经元退化和脑区体积减小,可能与这种兴奋毒性相关[12] [13]

过度活跃的谷氨酸传递还会影响脑中的能量代谢,特别是谷氨酸-谷氨酰胺循环。这一循环对于神经元和胶质细胞的能量平衡和代谢功能至关重要。神经元释放的谷氨酸会被胶质细胞吸收,并通过谷氨酰胺合成酶转化为谷氨酰胺,然后再释放到神经元中以维持神经递质的供应。然而,在抑郁症患者中,长期的谷氨酸过度释放可能导致这一循环的耗竭,进而影响大脑的能量代谢和神经递质供应,导致更广泛的功能障碍[14]。基于此假说,目前已有数个已上市的抗抑郁药物,且多种潜在的抗抑郁靶点正在被研究,下面将具体做出介绍,具体的作用机制如图1所示。

Figure 1. Mechanism of rapid-acting antidepressants based on Glu and GABA hypothesis [9]

1. 基于谷氨酸假说和GABA假说的快速起效抗抑郁药的机制[9]

3.1. N-甲基-D-天冬氨酸受体拮抗剂(N-Methyl-D-Aspartate Receptor Antagonists)

N-甲基-D-天冬氨酸(N-methyl-D-aspartate, NMDA)受体是谷氨酸系统中一个关键的离子通道受体,参与突触的可塑性和神经发育。研究表明,NMDA受体的过度激活可能与抑郁症的病理过程有关。NMDA受体的激活通常与突触的长期抑制或长期增强相关。NMDA受体拮抗剂通过抑制过度激活的NMDA受体,从而恢复突触可塑性,促进突触连接的重新组织。NMDA受体的过度激活会导致神经毒性,抑制NMDA受体可以减轻这一毒性作用,保护神经元。此外,NMDA受体拮抗剂还可以提高脑源性神经营养因子(Brain-Derived Neurotrophic Factor, BDNF)的水平,BDNF对神经元的生存、突触形成和可塑性具有重要作用[15]

氯胺酮(Ketamine)是一种非竞争性NMDA受体拮抗剂,能够快速缓解抑郁症症状,特别是在治疗抵抗性抑郁症方面具有显著的效果,在注射给药后几小时内便能显示抗抑郁效果[16]。氯胺酮通过抑制NMDA受体,增强AMPA受体的信号传导,进而恢复突触可塑性,发挥抗抑郁作用[17],其快速的抗抑郁效果和对抗药物耐药性抑郁症的潜力,使其成为研究和临床应用中的重要药物。艾司氯胺酮(S-Ketamine)是氯胺酮的S型异构体,已经被批准用于治疗抑郁症。艾司氯胺酮在治疗治疗耐药性抑郁症中表现出显著的效果,最近的研究还探讨了其长期效果和安全性,包括其对副作用的管理。研究者们继续探索艾司氯胺酮的具体作用机制,包括其对大脑不同区域的影响,以及其在不同类型抑郁症中的效果,同时还在研究如何优化艾司氯胺酮的使用方法,包括给药途径、剂量调整以及与其他药物的联合治疗策略[18]

研究者们还在探索新型NMDA受体拮抗剂,这些药物可能具有更好的疗效和更少的副作用。D-环丝氨酸(D-Cycloserine)是一种抗结核药物,具有NMDA受体部分拮抗作用。它能够与NMDA受体结合,调节其活性,故也开始探索其在治疗抑郁症和焦虑症中的潜力,其与其他抗抑郁药物的联合使用带来益处的可行性研究也在进行中[19]

3.2. AMPA受体激动剂(α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole-Propionate Receptor Agonists, AMPA Receptor Agonists)

AMPA受体激动剂是一类通过激活α-氨基-3-羟基-5-甲基异恶唑-4-酸(α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate, AMPA)受体的药物。AMPA受体是谷氨酸的主要离子型受体之一,参与快速兴奋性突触传递,并在神经塑性和学习记忆中发挥重要作用,这使得AMPA受体激动剂在抑郁症治疗中的应用展示了巨大的潜力[20]。在动物模型中,AMPA受体激动剂如Ampakine和其他类似药物已显示出改善抑郁症状的潜力。Ampakine能够增强海马体的突触传递,改善动物模型中的抑郁样行为[21]。AMPA受体激动剂的临床研究尚处于早期阶段,当前的研究主要集中在评估AMPA受体激动剂的安全性、有效性以及适应症[22]。未来的研究可能会集中在开发新的AMPA受体激动剂,以期发现具有更好的特异性、更少的副作用以及更强的抗抑郁效果的药物。

3.3. 代谢型谷氨酸受体拮抗剂(Metabotropic Glutamate Receptors Agonists, mGluR Agonists)

mGluR受体属于G蛋白偶联受体家族,分为三组共八个亚型[23]。mGluR可能通过一系列影响线粒体介导的程序性细胞死亡的下游蛋白激酶和半胱氨酸蛋白酶信号通路来调节神经元损伤和存活,此外它们还可能通过促进Ca2+转运在谷氨酸诱导的神经元死亡中发挥作用。因此,mGluR成为神经保护药物开发的潜在靶点[24] [25]。mGluR拮抗剂通过减少突触兴奋性和神经毒性,可能对抑郁症具有疗效。

MPEP(2-Methyl-6-(phenylethynyl)pyridine)是一种新型的mGluR5拮抗剂。mGluR5受体在中枢神经系统中广泛分布,尤其在海马和前额叶皮质。MPEP通过选择性地抑制mGluR5受体的功能,改善过度兴奋地神经回路,调节神经传递和突触可塑性,具有潜在的抗抑郁效果。MPEP在抑郁症和焦虑症的动物模型中表现出一定的抗抑郁效果。研究表明,MPEP能够显著减少抑郁样行为,并改善动物模型的认知功能,同时在后续的研究中已经取得了一些积极的结果[26]

3.4. GABAA受体调节剂

GABA作为大脑中的主要抑制性神经递质,主要通过激活称为GABAA受体的GABA门控氯离子通道,介导神经细胞外氯离子内流从而抑制神经的兴奋性发挥作用[27]。不同类型的GABA受体介导GABA能抑制的方式也各不相同,突触GABA能抑制由突触后浓缩受体介导,这些受体含有γ2亚基作为其独特特征,可快速脱敏并介导瞬时GABA能抑制。强直性GABA能抑制是一种持续性抑制,由非脱敏性突触外GABAA受体介导,这些GABAA受体与突触后GABAA受体的区别在于存在α4、α5、α6以及δ亚基[28]。有临床前研究预测,选择性增强锥体细胞树突的GABA能抑制对抑郁症具有治疗作用,特别是含有α5亚基的GABAA受体[29]

布瑞诺龙(Brexanolone)与祖拉诺龙(Zuranolone)是一种GABAA受体阳性变构调节剂,前者于2019年由FDA批准用于产后抑郁症。后者在一项随机、安慰剂对照的2期试验中改善了重度抑郁症患者的生活质量[30],并在一项双盲2期试验中对重度抑郁症患者发挥了抗抑郁作用[31],已于2023年由FDA获批用于治疗产后抑郁。但FDA在一份完全回复函中称,目前缺乏“有效的实质性证据”来支持其批准该药对重度抑郁症的治疗,需要补充研究。加奈索酮(Ganaxolone)与祖拉诺龙类似,在一项针对患有抑郁和失眠症的绝经后女性的开放标签、非对照试点研究中,加奈索酮已证明具有抗抑郁作用[32],进一步确定其抗抑郁作用仍在进行中。

4. 神经肽系统(Neuropeptide System)

神经肽系统在抗抑郁药物研究中逐渐受到关注,因为其在调节情绪、行为和神经递质系统中发挥着重要作用。神经肽系统涉及一系列小分子蛋白质,这些蛋白质在神经系统中发挥调节作用,包括调控神经传递、情绪状态和应激反应。以下是一些主要神经肽及其在抗抑郁药物研究中的潜力。

4.1. 皮质醇释放因子(Corticotropin-Releasing Factor, CRF)受体激动剂

CRF是下丘脑–垂体–肾上腺(hypothalamus-pituitary-adrenal, HPA)轴的主要调节因子,负责应激反应的启动和调节。在应激状态下,CRF促进垂体释放促肾上腺皮质激素(adrenocortical hormones, ACTH),继而刺激肾上腺皮质分泌糖皮质激素。这种应激反应有助于机体在短期内适应外部环境的压力,但长期的HPA轴过度激活却与多种心理疾病,包括抑郁症和焦虑症密切相关。在抑郁症患者中,CRF的异常释放是常见的特征,表现为CRF水平升高以及HPA轴功能的持久性亢进。这种过度的应激反应可能导致神经递质系统的失衡,尤其是5-HT、DA和NE系统的紊乱,从而产生抑郁症状。此外,CRF还直接影响中枢神经系统的其他区域,包括边缘系统中的杏仁核和海马,进而影响情绪调控、记忆以及行为反应[33]

CRF通过与其两种受体CRF1和CRF2结合,调节应激反应及其他生理功能。CRF1受体在应激反应的启动过程中起着至关重要的作用。CRF与CRF1受体结合后,导致ACTH释放,从而引发一系列应激反应。大量证据表明,CRF1受体在抑郁症患者中表现出过度活跃,特别是在应激诱导的抑郁症模型中[34]。通过抑制CRF1受体,可以有效减少CRF信号传导带来的不良影响,从而缓解抑郁症状。

许多临床前研究表明,CRF1受体拮抗剂在动物模型中具有显著的抗抑郁样作用,例如,CRF1受体拮抗剂Antalarmin在慢性应激模型中显著减少了应激引发的焦虑和抑郁样行为[35]。虽然临床前研究结果较为乐观,但CRF1拮抗剂在临床试验中的进展相对缓慢。在一项针对酒精使用障碍和高焦虑水平患者的研究中,CRF1受体拮抗剂Pexacerfont对压力状态下自我观察的神经反应没有影响,并且Pexacerfont对皮质醇和ACTH的血浆浓度也没有影响,这说明CRF1拮抗剂可能以独立于HPA轴的方式发挥作用[36]。部分CRF1拮抗剂在临床试验中未能表现出预期的抗抑郁效果,可能是由于受试者个体差异、药物透过血脑屏障的效率不佳以及长期使用导致的副作用[37],后续研究应致力于优化CRF1拮抗剂的分子结构,同时进一步研究相关的信号通路以提高其在临床中的疗效和安全性。

与CRF1受体不同,CRF2受体在应激反应中的作用较为复杂。一些研究表明,CRF2受体可能具有应激调节和缓解的功能,特别是在长期应激下发挥保护性作用[38]。因此,CRF2受体激动剂也被视为潜在的抗抑郁靶点,尽管这一领域的研究仍处于初期阶段。中枢神经系统中与CRF1和CRF2受体相关的信号通路如图2所示。

Figure 2. The response of intracellular signaling pathways after activating CRF1 and CRF2 receptors in the central nervous system [38]

2. 激活中枢神经系统CRF1和CRF2受体后细胞内信号通路的反应[38]

4.2. 神经肽Y (Neuropeptide Y, NPY)受体激动剂

NPY是一种广泛存在于中枢神经系统中的神经肽,主要在边缘系统、下丘脑、杏仁核和海马等脑区表达。这些脑区与情绪调控、应激反应和食欲密切相关。NPY具有强烈的抗应激、抗焦虑及抗抑郁作用,被视为应对情绪障碍的重要调节剂。在抑郁症患者中,NPY水平的下降与应激反应的过度活跃密切相关,调节NPY系统成为抗抑郁药物研究的一个重要方向[39]。如图3所示,NYP通过G蛋白的多条通路发挥抗抑郁作用。

在抗抑郁和抗应激中,NPY主要通过Y1和Y2受体发挥作用。NPY通过激活Y1受体来减少HPA轴的过度激活,抑制CRF的释放,减轻应激引起的焦虑和抑郁症状[40]。Y1受体的激活有助于维持情绪稳定,抑制长期应激导致的负面情绪反应。Y2受体通常具有与Y1受体相反的作用。Y2受体激动剂被认为是抑制性受体,能够减少突触前NPY的释放,调节大脑中NPY的水平和功能[41]。然而,Y2受体拮抗剂的使用在一些研究中显示出抗抑郁效果,这提示通过减少Y2受体活性可以提升NPY的功能,进而缓解抑郁症状。此外,NPY还可以通过调节其他神经递质(如5-HT、NE和DA)的释放,间接发挥抗抑郁作用。NPY与这些神经递质之间的相互作用能够改善情绪障碍中的情绪失调状态,增加大脑的正性情绪反应[42]

近年来,NPY在抗抑郁领域的研究取得了显著进展。通过激动NPY的Y1受体,研究者们开发了多个潜在的抗抑郁药物,这些药物能够有效减少慢性应激引发的抑郁样行为,并且在多种抑郁症动物模型中表现出显著的行为改善效果。例如Y1受体激动剂BIBP3226,通过与Y1受体竞争性结合,阻止内源性NPY激活Y1受体,从而减少了NPY对应激和焦虑的缓解作用[43]。目前针对NPY Y1受体激动剂的研究正在向个性化治疗方向迈进。未来的研究可能会结合遗传学和分子生物学手段,筛选出对Y1受体激动剂反应良好的患者亚群,从而提高药物的治疗效果。此外,Y1受体激动剂与其他抗抑郁药物的联合治疗也是一个值得探索的方向,通过协同作用提高治疗的总体效果[44]

Figure 3. The multiple signaling pathways of NPY receptors via G proteins [39]

3. NPY受体通过G蛋白的多种信号通路[39]

5. 内源性大麻素系统(Endocannabinoid System, ECS)

ECS主要包括内源性大麻素花生四烯酸乙醇胺(Anandamide, AEA)和2-花生四烯酸甘油(2-Arachidonoylglycerol, 2-AG)、两类大麻素受体大麻素Ⅰ型受体(cannabinoid type 1 receptor, CB1 receptor)和麻素Ⅱ型受体(cannabinoid type 2 receptor, CB2 receptor),以及相关的合成和降解酶类。ECS不仅在情绪调节中起着至关重要的作用,还与抑郁症的病理机制有着密切的关系[45]。研究发现,抑郁症患者体内的AEA和2-AG水平显著低于健康人群,并且AEA水平与抑郁症的严重程度呈负相关[46],同时CB1受体表达的改变也被观察到[47]

目前尚未有基于ECS的靶向抗抑郁药被批准或应用,但ECS仍不失为一种极具潜力的新型抗抑郁药靶点。利莫那班(Rimonabant)是全球首个CB1抑制剂类药物,2003年在欧盟批准上市,但有研究指明其可能增加服用者的抑郁及自杀倾向,最终经评估后于2008年被撤回[48]。这进一步表明CB1受体功能与情绪调节之间存在关联,至少直接抑制CB1受体可能导致抑郁症状,未来基于CB1受体开发抗抑郁药的策略重点应是开发更具选择性和更温和的CB1受体调节剂。

除了直接影响ECS,通过影响ECS相关代谢的酶来间接调控ECS也是一种优秀的策略。脂肪酸酰胺水解酶(Fatty Acid Amide Hydrolase, FAAH)主要是降解AEA的酶,通过抑制FAAH,能够提高体内AEA的水平,从而产生抗抑郁和抗焦虑的效果。URB597是一种经典的FAAH抑制剂,在动物模型中表现出抗焦虑和抗抑郁的特性,通过增加AEA的水平,它间接调节CB1受体的活性,增强内源性大麻素信号,该药物被认为有可能作为一种新型的抗抑郁治疗方案[49]。单酰甘油酯酶(Monoacylglycerol Lipase, MAGL)抑制剂则是主要负责降解2-AG的酶,JZL184是一个选择性的MAGL抑制剂,可通过增加2-AG水平,激活ECS系统。动物研究表明,JZL184能产生抗抑郁样效应,尤其在慢性应激诱导的抑郁模型中[50] [51]图4展示了AEA在体内的代谢以及发挥作用的过程。

Figure 4. A simplified schematic diagram illustrating the life cycle of the AEA [47]

4. AEA生命周期的简化示意图[47]

6. 炎症(Inflammatory)

炎症与抑郁症的关系是近年来精神疾病研究领域研究的重要方向。抑郁症的“炎症假说”认为,慢性炎症通过激活体内免疫反应,导致细胞因子水平升高,进而影响大脑的神经化学环境和神经网络功能,最终引发抑郁症状[52]。抑郁症患者常常表现出一些慢性炎症的特征,如全身性炎症标志物水平升高。慢性炎症通过多种途径影响大脑,通常情况下,外周炎症标志物通过血脑屏障进入中枢神经系统,引起神经炎症,改变脑中的神经递质水平,如减少血清素和多巴胺的合成与释放,进而导致抑郁[53]。同时炎症标志物可激活HPA,引发皮质醇水平升高,进一步影响情绪和压力应对能力[54]。此外,炎症可能抑制脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)的表达,降低神经可塑性,使大脑在应对压力时更容易产生功能障碍[55]

研究表明,一些传统的抗抑郁药物(如SSRIs)可以通过降低炎症标志物的水平起到抗抑郁作用[56]。另一方面,针对炎症的治疗,如使用抗炎药物(如非甾体抗炎药,non-steroidal anti-inflammatory drugs, NSAIDs),在某些炎症标志物高的抑郁症患者中,也展示出一定的疗效[57]。尽管炎症标志物与抑郁症之间的关联已有大量研究支持,但仍有一些未解的问题,即炎症与抑郁症之间的因果关系究竟如何,部分研究表明,炎症可能是抑郁症的诱因,而另一些研究则认为抑郁症状本身可能引发炎症反应[58] [59]。因此基于炎症标志物开发抗抑郁药仍处于研究早期,目前仅有极少的临床数据支持,例如英夫利昔单抗作为一种肿瘤坏死因子α(TNF-α)拮抗剂,其对于具有高炎症标志物(如CRP、IL-6)的抗抑郁治疗无效的患者显示出一定的抗抑郁作用,然而对于无明显炎症标志物的患者,该药物的效果并不显著[60]。又例如塞来昔布(Celecoxib),作为抗抑郁药的辅助治疗,可以在部分抑郁症患者中降低炎症标志物水平,从而改善抑郁症状,特别是对于那些高炎症状态的患者,塞来昔布的抗抑郁效果更为显著[61]

除此之外,肠道微生物群紊乱也被证实与抑郁症相关,尽管人们对其作用原理知之甚少。肠道微生物群是中枢神经系统发育的重要和直接环境贡献者,由庞大的细菌和病毒群落组成,可以显著影响宿主的健康[62] [63],据推测,它通过微生物群–肠–脑轴在各种精神疾病中发挥关键作用[64]。有研究通过16S核糖体RNA测序的方法观察到重度抑郁症患者肠道内细菌微生物群的紊乱[65],结合粪便移植实验,将重度抑郁患者的微生物群移植到微生物群耗尽的大鼠体内同样可以诱导受体动物的抑郁样行为[66],这些结果阐明了肠道微生物群与抑郁症之间存在某种关联。另有一项多组学的研究数据表明,重度抑郁的特征是肠道噬菌体、细菌和粪便代谢物的紊乱,此外,微生物氨基酸代谢的紊乱是MDD肠道生态系统的一个标志[67]

图5所示,抑郁症患者促炎细胞因子的增加可能会引发神经炎症过程和外周炎症,这些机制反过来又会导致肠道微生物群失调,进而增加抑郁的风险。目前进一步探索其在抑郁症中的治疗潜力具有广阔前景。

7. 离子通道

抑郁症的离子通道假说是一种新兴的病理机制理论,由于离子通道是神经元信号传递的关键,负责调控钾离子(K⁺)、钠离子(Na⁺)、钙离子(Ca²⁺)和氯离子(Cl⁻)等的跨膜运输,从而影响神经兴奋性、神经网络活动和突触可塑性,故抑郁症的发生可能与神经元膜上的离子通道功能异常密切相关[69]

有研究表明,重度抑郁症患者大脑纹状体样本中,Kir2.3钾通道的KCNJ4和KCNJ1亚基以及SK3通道的KCNN3亚基显著上调,KV1.1通道的KCNA1亚基和KV9.3通道的KCNS3亚基表达下调。纹状体-伏隔核区域钾通道基因表达的这些变化表明该脑区域的电活动减少,这可能与抑郁症的症状和治疗反应有关[70]。尽管目前尚无基于钾离子通道开发的抗抑郁药,但越来越多的研究表明,钾通道是神经元兴奋性和信号传递的基础,与抑郁症的发病和治疗密切相关[71],在重度抑郁症患者中对KCNQ2/3通道开放剂伊佐加宾进行的临床试验表明,调节KCNQ通道可以调节奖赏回路中的神经元兴奋性[72],抑郁症状和快感缺乏症得到显著改善[73],为缓解抑郁症状提供了潜在的靶点。表1为钾离子通道不同亚型的功能及其在抑郁症中的作用。

Figure 5. Inflammatory Pathways in depression [68]

5. 抑郁症中的炎症途径[68]

Table 1. Functions of different subtypes of potassium channels and their role in depression

1. 不同亚型的钾通道的功能及其在抑郁症中的作用

Channels

Types

Properties and functional relevance

Potassium channels in different brain regions

Activity changes in depression

KV

KV1

Increases the threshold of action potentials, reduces the width of action potentials, and inhibits neuronal excitability.

Hippocampal, NAc

Increase

KV3

Achieves rapid repolarization of action potentials to enable high-frequency firing with temporal precision.

Hippocampal

Decrease

KV4

Modulates the frequency and morphology of action potentials, prolonging the duration of action potentials during repetitive firing.

NAc

Decrease

KV7

Slows the afterhyperpolarization and adjusted the RMP to stabilize neuronal excitability

mPFC, hippocampal

Decrease

Kir

Kir3.1

Maintains RMP, cellular excitability, and modulating inhibitory neurotransmitters to preserve homeostasis and specific synaptic plasticities within the body.

hippocampal

Increase

Kir4.1

Maintains high K+ conductivity in astrocytes and preserves RMP

mPFC, hippocampal, LHb

Increase

Kir6.1

Leads to hyperpolarization of postsynaptic membranes and inhibition of neuronal activity, reducing neuronal excitability.

Hippocampal

Increase

KCa

BK

The opening of BK channels can repolarize the membrane and prevent Ca2+ entry into the cell.

mPFC

Decrease

SK

An increase in intracellular Ca2+ following synaptic stimulation activates SK channels, which inhibits membrane excitability, promotes dendritic integration, and regulates the induction of synaptic plasticity.

mPFC,VTA

Increase

K2P

TERK-1

Maintaines the RMP near the potassium equilibrium potential to regulate cellular excitability.

mPFC, hippocampal

Increase

TASK-3

Regulates neuronal activity by influencing the RMP of neurons.

Hippocampal

Increase

Table 2. Chemical structure of various antidepressants appeared in the article

2. 文中出现的各种抗抑郁药的化学结构

Name

Types

Chemical structure

Ketamine

NMDA receptor antagonists

S-Ketamine

NMDA receptor antagonists

D-Cycloserine

NMDA receptor antagonists

Ampakine

AMPA receptor agonists

MPEP

mGluR5 agonists

Brexanolone

GABAA receptor modulator

Zuranolone

GABAA receptor modulator

Ganaxolone

GABAA receptor modulator

Antalarmin

CRF1 receptor antagonists

Pexacerfont

CRF1 receptor antagonists

BIBP3226

Y1 receptor agonists

Rimonabant

CB1 receptor antagonists

URB597

FAAH antagonists

JZL184

MAGL antagonists

Celecoxib

NSAIDs

8. 总结与展望

在本文中,我们对新型抗抑郁靶点的研究进展进行了梳理。当前大多数抗抑郁药物仍以单胺神经递质系统为主要靶点,如5-HT、DA和NE。这些药物通过调节大脑中的单胺类神经递质水平,缓解抑郁症状。然而,单胺类药物存在疗效起效缓慢、副作用较大、以及部分患者无应答等问题,特别是在难治性抑郁症患者中,其疗效有限。

近年来,针对目前药物治疗的局限性问题,科学家们开始探索新的治疗策略。谷氨酸系统和GABA系统逐渐成为焦点,其中NMDA受体拮抗剂氯胺酮因其在难治性抑郁症中的快速起效作用,引发了广泛关注。与此同时,AMPA受体激动剂和mGluR受体拮抗剂也展现出潜在的抗抑郁效果。此外,神经肽系统、内源性大麻素系统、炎症标志物以及离子通道在调节情绪、应激反应及神经递质平衡中的重要作用逐步被揭示,这些新型靶点有望突破传统药物的局限性,为抗抑郁治疗带来新的可能性。

展望未来,抗抑郁药物的研发方向将不仅限于改善情绪症状,还将聚焦于提升认知功能、增强神经可塑性以及修复应激导致的神经损伤。新型靶点和多模式治疗方案的结合有望为患者提供更加快速、全面和持久的治疗效果。随着生物标志物的发现与应用,个性化、精准化的抗抑郁治疗方案将逐渐成为现实,这些将为广大抑郁症患者带来希望。

NOTES

*通讯作者。

参考文献

[1] WHO (2023) Depressive Disorder (Depression).
https://www.who.int/news-room/fact-sheets/detail/depression
[2] Bao, H. (2023) Progress in Etiology and Diagnosis of Depression. Advances in Clinical Medicine, 13, 5641-5645.
https://doi.org/10.12677/acm.2023.134797
[3] O’Leary, K. (2021) Global Increase in Depression and Anxiety. Nature Medicine.
https://doi.org/10.1038/d41591-021-00064-y
[4] Mrazek, D.A., Hornberger, J.C., Altar, C.A. and Degtiar, I. (2014) A Review of the Clinical, Economic, and Societal Burden of Treatment-Resistant Depression: 1996-2013. Psychiatric Services, 65, 977-987.
https://doi.org/10.1176/appi.ps.201300059
[5] Hirschfeld, R.M. (2000) History and Evolution of the Monoamine Hypothesis of Depression. The Journal of Clinical Psychiatry, 61, 4-6.
[6] Krishnan, V. and Nestler, E.J. (2008) The Molecular Neurobiology of Depression. Nature, 455, 894-902.
https://doi.org/10.1038/nature07455
[7] Han, Y., Khodr, C.E., Sapru, M.K., Pedapati, J. and Bohn, M.C. (2011) A MicroRNA Embedded AAV Alpha-Synuclein Gene Silencing Vector for Dopaminergic Neurons. Brain Research, 1386, 15-24.
https://doi.org/10.1016/j.brainres.2011.02.041
[8] Palazidou, E. (2012) The Neurobiology of Depression. British Medical Bulletin, 101, 127-145.
https://doi.org/10.1093/bmb/lds004
[9] Duman, R.S., Sanacora, G. and Krystal, J.H. (2019) Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron, 102, 75-90.
https://doi.org/10.1016/j.neuron.2019.03.013
[10] Sarawagi, A., Soni, N.D. and Patel, A.B. (2021) Glutamate and GABA Homeostasis and Neurometabolism in Major Depressive Disorder. Frontiers in Psychiatry, 12, Article 637863.
https://doi.org/10.3389/fpsyt.2021.637863
[11] Krystal, J.H., Abdallah, C.G., Sanacora, G., Charney, D.S. and Duman, R.S. (2019) Ketamine: A Paradigm Shift for Depression Research and Treatment. Neuron, 101, 774-778.
https://doi.org/10.1016/j.neuron.2019.02.005
[12] Murrough, J.W., Abdallah, C.G. and Mathew, S.J. (2017) Targeting Glutamate Signalling in Depression: Progress and Prospects. Nature Reviews Drug Discovery, 16, 472-486.
https://doi.org/10.1038/nrd.2017.16
[13] Wong, D., Atiya, S., Fogarty, J., Montero-Odasso, M., Pasternak, S.H., Brymer, C., et al. (2020) Reduced Hippocampal Glutamate and Posterior Cingulate N-Acetyl Aspartate in Mild Cognitive Impairment and Alzheimer’s Disease Is Associated with Episodic Memory Performance and White Matter Integrity in the Cingulum: A Pilot Study. Journal of Alzheimer’s Disease, 73, 1385-1405.
https://doi.org/10.3233/jad-190773
[14] Abdallah, C.G., Jiang, L., De Feyter, H.M., Fasula, M., Krystal, J.H., Rothman, D.L., et al. (2014) Glutamate Metabolism in Major Depressive Disorder. American Journal of Psychiatry, 171, 1320-1327.
https://doi.org/10.1176/appi.ajp.2014.14010067
[15] Abdallah, C.G., Sanacora, G., Duman, R.S. and Krystal, J.H. (2018) The Neurobiology of Depression, Ketamine and Rapid-Acting Antidepressants: Is It Glutamate Inhibition or Activation? Pharmacology & Therapeutics, 190, 148-158.
https://doi.org/10.1016/j.pharmthera.2018.05.010
[16] Kavalali, E.T. and Monteggia, L.M. (2012) Synaptic Mechanisms Underlying Rapid Antidepressant Action of Ketamine. American Journal of Psychiatry, 169, 1150-1156.
https://doi.org/10.1176/appi.ajp.2012.12040531
[17] Zanos, P. and Gould, T.D. (2018) Mechanisms of Ketamine Action as an Antidepressant. Molecular Psychiatry, 23, 801-811.
https://doi.org/10.1038/mp.2017.255
[18] Wang, Y., Wang, X., Lei, L., Guo, Z., Kan, F., Hu, D., et al. (2023) A Systematic Review and Meta-Analysis of the Efficacy of Ketamine and Esketamine on Suicidal Ideation in Treatment-Resistant Depression. European Journal of Clinical Pharmacology, 80, 287-296.
https://doi.org/10.1007/s00228-023-03605-1
[19] Rodrigues, H., Figueira, I., Lopes, A., Gonçalves, R., Mendlowicz, M.V., Coutinho, E.S.F., et al. (2014) Does D-Cycloserine Enhance Exposure Therapy for Anxiety Disorders in Humans? a Meta-analysis. PLOS ONE, 9, e93519.
https://doi.org/10.1371/journal.pone.0093519
[20] Jiménez-Sánchez, L., Castañé, A., Pérez-Caballero, L., Grifoll, M., López-Gil, X., Campa, L., et al. (2015) Activation of AMPA Receptors Mediates the Antidepressant Action of Deep Brain Stimulation of the Infralimbic Prefrontal Cortex. Cerebral Cortex, 26, 2778-2789.
https://doi.org/10.1093/cercor/bhv133
[21] Lynch, G. (2004) AMPA Receptor Modulators as Cognitive Enhancers. Current Opinion in Pharmacology, 4, 4-11.
https://doi.org/10.1016/j.coph.2003.09.009
[22] Kadriu, B., Musazzi, L., Johnston, J.N., Kalynchuk, L.E., Caruncho, H.J., Popoli, M., et al. (2021) Positive AMPA Receptor Modulation in the Treatment of Neuropsychiatric Disorders: A Long and Winding Road. Drug Discovery Today, 26, 2816-2838.
https://doi.org/10.1016/j.drudis.2021.07.027
[23] Vaidya, A., Jain, S., Jain, A., Agrawal, A., Kashaw, S., Jain, S., et al. (2013) Metabotropic Glutamate Receptors: A Review on Prospectives and Therapeutic Aspects. Mini-Reviews in Medicinal Chemistry, 13, 1967-1981.
https://doi.org/10.2174/1389557511313130010
[24] McGahon, B. and Lynch, M.A. (1996) The Synergism between ACPD and Arachidonic Acid on Glutamate Release in Hippocampus Is Age-Dependent. European Journal of Pharmacology, 309, 323-326.
https://doi.org/10.1016/0014-2999(96)00463-3
[25] Izumi, Y., Zarrin, A.R. and Zorumski, C.F. (2000) Arachidonic Acid Rescues Hippocampal Long-Term Potentiation Blocked by Group I Metabotropic Glutamate Receptor Antagonists. Neuroscience, 100, 485-491.
https://doi.org/10.1016/s0306-4522(00)00301-8
[26] Barnes, S.A., Sheffler, D.J., Semenova, S., Cosford, N.D.P. and Bespalov, A. (2018) Metabotropic Glutamate Receptor 5 as a Target for the Treatment of Depression and Smoking: Robust Preclinical Data but Inconclusive Clinical Efficacy. Biological Psychiatry, 83, 955-962.
https://doi.org/10.1016/j.biopsych.2018.03.001
[27] Luscher, B., Maguire, J.L., Rudolph, U. and Sibille, E. (2023) GABAA Receptors as Targets for Treating Affective and Cognitive Symptoms of Depression. Trends in Pharmacological Sciences, 44, 586-600.
https://doi.org/10.1016/j.tips.2023.06.009
[28] Jacob, T.C., Moss, S.J. and Jurd, R. (2008) GABAA Receptor Trafficking and Its Role in the Dynamic Modulation of Neuronal Inhibition. Nature Reviews Neuroscience, 9, 331-343.
https://doi.org/10.1038/nrn2370
[29] Woodward, E., Rangel-Barajas, C., Ringland, A., Logrip, M.L. and Coutellier, L. (2023) Sex-Specific Timelines for Adaptations of Prefrontal Parvalbumin Neurons in Response to Stress and Changes in Anxiety-and Depressive-Like Behaviors. Eneuro, 10.
https://doi.org/10.1523/eneuro.0300-22.2023
[30] Suthoff, E., Kosinski, M., Arnaud, A., Hodgkins, P., Gunduz-Bruce, H., Lasser, R., et al. (2022) Patient-Reported Health-Related Quality of Life from a Randomized, Placebo-Controlled Phase 2 Trial of Zuranolone in Adults with Major Depressive Disorder. Journal of Affective Disorders, 308, 19-26.
https://doi.org/10.1016/j.jad.2022.03.068
[31] Gunduz-Bruce, H., Silber, C., Kaul, I., Rothschild, A.J., Riesenberg, R., Sankoh, A.J., et al. (2019) Trial of SAGE-217 in Patients with Major Depressive Disorder. New England Journal of Medicine, 381, 903-911.
https://doi.org/10.1056/nejmoa1815981
[32] Dichtel, L.E., Nyer, M., Dording, C., Fisher, L.B., Cusin, C., Shapero, B.G., et al. (2020) Effects of Open-Label, Adjunctive Ganaxolone on Persistent Depression Despite Adequate Antidepressant Treatment in Postmenopausal Women. The Journal of Clinical Psychiatry, 81, 19m12887.
https://doi.org/10.4088/jcp.19m12887
[33] Bale, T.L. and Vale, W.W. (2004) CRF and CRF Receptors: Role in Stress Responsivity and Other Behaviors. Annual Review of Pharmacology and Toxicology, 44, 525-557.
https://doi.org/10.1146/annurev.pharmtox.44.101802.121410
[34] Zorrilla, E.P. and Koob, G.F. (2004) The Therapeutic Potential of CRF1 Antagonists for Anxiety. Expert Opinion on Investigational Drugs, 13, 799-828.
https://doi.org/10.1517/13543784.13.7.799
[35] Furman, B.L. (2017) Antalarmin. In: Reference Module in Biomedical Sciences, Elsevier.
https://doi.org/10.1016/b978-0-12-801238-3.96834-x
[36] Lee, M.R., Rio, D., Kwako, L., George, D.T., Heilig, M. and Momenan, R. (2022) Corticotropin-Releasing Factor Receptor 1 (CRF1) Antagonism in Patients with Alcohol Use Disorder and High Anxiety Levels: Effect on Neural Response during Trier Social Stress Test Video Feedback. Neuropsychopharmacology, 48, 816-820.
https://doi.org/10.1038/s41386-022-01521-z
[37] Spierling, S.R. and Zorrilla, E.P. (2017) Don’t Stress about CRF: Assessing the Translational Failures of Crf1antagonists. Psychopharmacology, 234, 1467-1481.
https://doi.org/10.1007/s00213-017-4556-2
[38] Domin, H. and Śmiałowska, M. (2024) The Diverse Role of Corticotropin-Releasing Factor (CRF) and Its CRF1 and CRF2 Receptors under Pathophysiological Conditions: Insights into Stress/anxiety, Depression, and Brain Injury Processes. Neuroscience & Biobehavioral Reviews, 163, Article 105748.
https://doi.org/10.1016/j.neubiorev.2024.105748
[39] Sah, R. and Geracioti, T.D. (2012) Neuropeptide Y and Posttraumatic Stress Disorder. Molecular Psychiatry, 18, 646-655.
https://doi.org/10.1038/mp.2012.101
[40] Enman, N.M., Sabban, E.L., McGonigle, P. and Van Bockstaele, E.J. (2015) Targeting the Neuropeptide Y System in Stress-Related Psychiatric Disorders. Neurobiology of Stress, 1, 33-43.
https://doi.org/10.1016/j.ynstr.2014.09.007
[41] Nahvi, R.J., Tanelian, A., Nwokafor, C., Hollander, C.M., Peacock, L. and Sabban, E.L. (2021) Intranasal Neuropeptide Y as a Potential Therapeutic for Depressive Behavior in the Rodent Single Prolonged Stress Model in Females. Frontiers in Behavioral Neuroscience, 15, Article 705579.
https://doi.org/10.3389/fnbeh.2021.705579
[42] Reichmann, F. and Holzer, P. (2016) Neuropeptide Y: A Stressful Review. Neuropeptides, 55, 99-109.
https://doi.org/10.1016/j.npep.2015.09.008
[43] Kask, A., Harro, J., von Hörsten, S., Redrobe, J.P., Dumont, Y. and Quirion, R. (2002) The Neurocircuitry and Receptor Subtypes Mediating Anxiolytic-Like Effects of Neuropeptide Y. Neuroscience & Biobehavioral Reviews, 26, 259-283.
https://doi.org/10.1016/s0149-7634(01)00066-5
[44] Borroto-Escuela, D., Serrano-Castro, P., Sánchez-Pérez, J.A., Barbancho-Fernández, M.A., Fuxe, K. and Narváez, M. (2024) Enhanced Neuronal Survival and BDNF Elevation via Long-Term Co-Activation of Galanin 2 (GALR2) and Neuropeptide Y1 Receptors (NPY1R): Potential Therapeutic Targets for Major Depressive Disorder. Expert Opinion on Therapeutic Targets, 28, 295-308.
https://doi.org/10.1080/14728222.2024.2342517
[45] Paudel, P., Ross, S. and Li, X. (2022) Molecular Targets of Cannabinoids Associated with Depression. Current Medicinal Chemistry, 29, 1827-1850.
https://doi.org/10.2174/0929867328666210623144658
[46] Romero-Sanchiz, P., Nogueira-Arjona, R., Pastor, A., Araos, P., Serrano, A., Boronat, A., et al. (2019) Plasma Concentrations of Oleoylethanolamide in a Primary Care Sample of Depressed Patients Are Increased in Those Treated with Selective Serotonin Reuptake Inhibitor-Type Antidepressants. Neuropharmacology, 149, 212-220.
https://doi.org/10.1016/j.neuropharm.2019.02.026
[47] Bambico, F.R. and Gobbi, G. (2008) The Cannabinoid CB1 Receptor and the Endocannabinoid Anandamide: Possible Antidepressant Targets. Expert Opinion on Therapeutic Targets, 12, 1347-1366.
https://doi.org/10.1517/14728222.12.11.1347
[48] Lee, H., Choi, E. and Pak, C. (2009) The Current Status and Future Perspectives of Studies of Cannabinoid Receptor 1 Antagonists as Anti-Obesity Agents. Current Topics in Medicinal Chemistry, 9, 482-503.
https://doi.org/10.2174/156802609788897844
[49] Kathuria, S., Gaetani, S., Fegley, D., Valiño, F., Duranti, A., Tontini, A., et al. (2002) Modulation of Anxiety through Blockade of Anandamide Hydrolysis. Nature Medicine, 9, 76-81.
https://doi.org/10.1038/nm803
[50] Long, J.Z. and Cravatt, B.F. (2011) The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease. Chemical Reviews, 111, 6022-6063.
https://doi.org/10.1021/cr200075y
[51] Ahn, K., McKinney, M.K. and Cravatt, B.F. (2008) Enzymatic Pathways That Regulate Endocannabinoid Signaling in the Nervous System. Chemical Reviews, 108, 1687-1707.
https://doi.org/10.1021/cr0782067
[52] Miller, A.H. and Raison, C.L. (2015) The Role of Inflammation in Depression: From Evolutionary Imperative to Modern Treatment Target. Nature Reviews Immunology, 16, 22-34.
https://doi.org/10.1038/nri.2015.5
[53] Felger, J.C. and Miller, A.H. (2012) Cytokine Effects on the Basal Ganglia and Dopamine Function: The Subcortical Source of Inflammatory Malaise. Frontiers in Neuroendocrinology, 33, 315-327.
https://doi.org/10.1016/j.yfrne.2012.09.003
[54] Pariante, C.M. (2017) Why Are Depressed Patients Inflamed? A Reflection on 20 Years of Research on Depression, Glucocorticoid Resistance and Inflammation. European Neuropsychopharmacology, 27, 554-559.
https://doi.org/10.1016/j.euroneuro.2017.04.001
[55] Zhang, J., Yao, W. and Hashimoto, K. (2016) Brain-Derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-Related Depression and Potential Therapeutic Targets. Current Neuropharmacology, 14, 721-731.
https://doi.org/10.2174/1570159x14666160119094646
[56] Strawbridge, R., Arnone, D., Danese, A., Papadopoulos, A., Herane Vives, A. and Cleare, A.J. (2015) Inflammation and Clinical Response to Treatment in Depression: A Meta-analysis. European Neuropsychopharmacology, 25, 1532-1543.
https://doi.org/10.1016/j.euroneuro.2015.06.007
[57] Köhler, O., Benros, M.E., Nordentoft, M., Farkouh, M.E., Iyengar, R.L., Mors, O., et al. (2014) Effect of Anti-Inflammatory Treatment on Depression, Depressive Symptoms, and Adverse Effects: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. JAMA Psychiatry, 71, 1381-1391.
https://doi.org/10.1001/jamapsychiatry.2014.1611
[58] Dantzer, R. and Walker, A.K. (2014) Is There a Role for Glutamate-Mediated Excitotoxicity in Inflammation-Induced Depression? Journal of Neural Transmission, 121, 925-932.
https://doi.org/10.1007/s00702-014-1187-1
[59] Miller, A.H., Haroon, E., Raison, C.L. and Felger, J.C. (2013) Cytokine Targets in the Brain: Impact on Neurotransmitters and Neurocircuits. Depression and Anxiety, 30, 297-306.
https://doi.org/10.1002/da.22084
[60] Raison, C.L., Rutherford, R.E., Woolwine, B.J., Shuo, C., Schettler, P., Drake, D.F., et al. (2013) A Randomized Controlled Trial of the Tumor Necrosis Factor Antagonist Infliximab for Treatment-Resistant Depression: The Role of Baseline Inflammatory Biomarkers. JAMA Psychiatry, 70, 31-41.
https://doi.org/10.1001/2013.jamapsychiatry.4
[61] Na, K., Jung, H. and Kim, Y. (2014) The Role of Pro-Inflammatory Cytokines in the Neuroinflammation and Neurogenesis of Schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 48, 277-286.
https://doi.org/10.1016/j.pnpbp.2012.10.022
[62] Clemente, J.C., Ursell, L.K., Parfrey, L.W. and Knight, R. (2012) The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell, 148, 1258-1270.
https://doi.org/10.1016/j.cell.2012.01.035
[63] Castro-Mejía, J.L., Muhammed, M.K., Kot, W., Neve, H., Franz, C.M.A.P., Hansen, L.H., et al. (2015) Optimizing Protocols for Extraction of Bacteriophages Prior to Metagenomic Analyses of Phage Communities in the Human Gut. Microbiome, 3, Article No. 64.
https://doi.org/10.1186/s40168-015-0131-4
[64] Cryan, J.F., O’Riordan, K.J., Cowan, C.S.M., Sandhu, K.V., Bastiaanssen, T.F.S., Boehme, M., et al. (2019) The Microbiota-Gut-Brain Axis. Physiological Reviews, 99, 1877-2013.
https://doi.org/10.1152/physrev.00018.2018
[65] Zheng, P., Yang, J., Li, Y., Wu, J., Liang, W., Yin, B., et al. (2020) Gut Microbial Signatures Can Discriminate Unipolar from Bipolar Depression. Advanced Science, 7, Article 1902862.
https://doi.org/10.1002/advs.201902862
[66] Kelly, J.R., Borre, Y., O' Brien, C., Patterson, E., El Aidy, S., Deane, J., et al. (2016) Transferring the Blues: Depression-Associated Gut Microbiota Induces Neurobehavioural Changes in the Rat. Journal of Psychiatric Research, 82, 109-118.
https://doi.org/10.1016/j.jpsychires.2016.07.019
[67] Yang, J., Zheng, P., Li, Y., Wu, J., Tan, X., Zhou, J., et al. (2020) Landscapes of Bacterial and Metabolic Signatures and Their Interaction in Major Depressive Disorders. Science Advances, 6, eaba8555.
https://doi.org/10.1126/sciadv.aba8555
[68] Kouba, B.R., de Araujo Borba, L., Borges de Souza, P., Gil-Mohapel, J. and Rodrigues, A.L.S. (2024) Role of Inflammatory Mechanisms in Major Depressive Disorder: From Etiology to Potential Pharmacological Targets. Cells, 13, Article 423.
https://doi.org/10.3390/cells13050423
[69] Faulkner, I.E., Pajak, R.Z., Harte, M.K., Glazier, J.D. and Hager, R. (2024) Voltage-Gated Potassium Channels as a Potential Therapeutic Target for the Treatment of Neurological and Psychiatric Disorders. Frontiers in Cellular Neuroscience, 18, Article 1449151.
https://doi.org/10.3389/fncel.2024.1449151
[70] Smolin, B., Karry, R., Gal-Ben-Ari, S. and Ben-Shachar, D. (2011) Differential Expression of Genes Encoding Neuronal Ion-Channel Subunits in Major Depression, Bipolar Disorder and Schizophrenia: Implications for Pathophysiology. The International Journal of Neuropsychopharmacology, 15, 869-882.
https://doi.org/10.1017/s1461145711001428
[71] Zhang, J., Zhu, Y., Zhang, M., Yan, J., Zheng, Y., Yao, L., et al. (2024) Potassium Channels in Depression: Emerging Roles and Potential Targets. Cell & Bioscience, 14, 869-882.
https://doi.org/10.1186/s13578-024-01319-0
[72] Meshkat, S., Kwan, A.T.H., Le, G.H., Wong, S., Rhee, T.G., Ho, R., et al. (2024) The Role of KCNQ Channel Activators in Management of Major Depressive Disorder. Journal of Affective Disorders, 359, 364-372.
https://doi.org/10.1016/j.jad.2024.05.067
[73] Friedman, A.K., Juarez, B., Ku, S.M., Zhang, H., Calizo, R.C., Walsh, J.J., et al. (2016) KCNQ Channel Openers Reverse Depressive Symptoms via an Active Resilience Mechanism. Nature Communications, 7, Article No. 11671.
https://doi.org/10.1038/ncomms11671