|
[1]
|
WHO (2023) Depressive Disorder (Depression). https://www.who.int/news-room/fact-sheets/detail/depression
|
|
[2]
|
Bao, H. (2023) Progress in Etiology and Diagnosis of Depression. Advances in Clinical Medicine, 13, 5641-5645. [Google Scholar] [CrossRef]
|
|
[3]
|
O’Leary, K. (2021) Global Increase in Depression and Anxiety. Nature Medicine. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Mrazek, D.A., Hornberger, J.C., Altar, C.A. and Degtiar, I. (2014) A Review of the Clinical, Economic, and Societal Burden of Treatment-Resistant Depression: 1996-2013. Psychiatric Services, 65, 977-987. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hirschfeld, R.M. (2000) History and Evolution of the Monoamine Hypothesis of Depression. The Journal of Clinical Psychiatry, 61, 4-6.
|
|
[6]
|
Krishnan, V. and Nestler, E.J. (2008) The Molecular Neurobiology of Depression. Nature, 455, 894-902. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Han, Y., Khodr, C.E., Sapru, M.K., Pedapati, J. and Bohn, M.C. (2011) A MicroRNA Embedded AAV Alpha-Synuclein Gene Silencing Vector for Dopaminergic Neurons. Brain Research, 1386, 15-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Palazidou, E. (2012) The Neurobiology of Depression. British Medical Bulletin, 101, 127-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Duman, R.S., Sanacora, G. and Krystal, J.H. (2019) Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron, 102, 75-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sarawagi, A., Soni, N.D. and Patel, A.B. (2021) Glutamate and GABA Homeostasis and Neurometabolism in Major Depressive Disorder. Frontiers in Psychiatry, 12, Article 637863. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Krystal, J.H., Abdallah, C.G., Sanacora, G., Charney, D.S. and Duman, R.S. (2019) Ketamine: A Paradigm Shift for Depression Research and Treatment. Neuron, 101, 774-778. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Murrough, J.W., Abdallah, C.G. and Mathew, S.J. (2017) Targeting Glutamate Signalling in Depression: Progress and Prospects. Nature Reviews Drug Discovery, 16, 472-486. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wong, D., Atiya, S., Fogarty, J., Montero-Odasso, M., Pasternak, S.H., Brymer, C., et al. (2020) Reduced Hippocampal Glutamate and Posterior Cingulate N-Acetyl Aspartate in Mild Cognitive Impairment and Alzheimer’s Disease Is Associated with Episodic Memory Performance and White Matter Integrity in the Cingulum: A Pilot Study. Journal of Alzheimer’s Disease, 73, 1385-1405. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Abdallah, C.G., Jiang, L., De Feyter, H.M., Fasula, M., Krystal, J.H., Rothman, D.L., et al. (2014) Glutamate Metabolism in Major Depressive Disorder. American Journal of Psychiatry, 171, 1320-1327. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Abdallah, C.G., Sanacora, G., Duman, R.S. and Krystal, J.H. (2018) The Neurobiology of Depression, Ketamine and Rapid-Acting Antidepressants: Is It Glutamate Inhibition or Activation? Pharmacology & Therapeutics, 190, 148-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kavalali, E.T. and Monteggia, L.M. (2012) Synaptic Mechanisms Underlying Rapid Antidepressant Action of Ketamine. American Journal of Psychiatry, 169, 1150-1156. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zanos, P. and Gould, T.D. (2018) Mechanisms of Ketamine Action as an Antidepressant. Molecular Psychiatry, 23, 801-811. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, Y., Wang, X., Lei, L., Guo, Z., Kan, F., Hu, D., et al. (2023) A Systematic Review and Meta-Analysis of the Efficacy of Ketamine and Esketamine on Suicidal Ideation in Treatment-Resistant Depression. European Journal of Clinical Pharmacology, 80, 287-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Rodrigues, H., Figueira, I., Lopes, A., Gonçalves, R., Mendlowicz, M.V., Coutinho, E.S.F., et al. (2014) Does D-Cycloserine Enhance Exposure Therapy for Anxiety Disorders in Humans? a Meta-analysis. PLOS ONE, 9, e93519. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Jiménez-Sánchez, L., Castañé, A., Pérez-Caballero, L., Grifoll, M., López-Gil, X., Campa, L., et al. (2015) Activation of AMPA Receptors Mediates the Antidepressant Action of Deep Brain Stimulation of the Infralimbic Prefrontal Cortex. Cerebral Cortex, 26, 2778-2789. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lynch, G. (2004) AMPA Receptor Modulators as Cognitive Enhancers. Current Opinion in Pharmacology, 4, 4-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kadriu, B., Musazzi, L., Johnston, J.N., Kalynchuk, L.E., Caruncho, H.J., Popoli, M., et al. (2021) Positive AMPA Receptor Modulation in the Treatment of Neuropsychiatric Disorders: A Long and Winding Road. Drug Discovery Today, 26, 2816-2838. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Vaidya, A., Jain, S., Jain, A., Agrawal, A., Kashaw, S., Jain, S., et al. (2013) Metabotropic Glutamate Receptors: A Review on Prospectives and Therapeutic Aspects. Mini-Reviews in Medicinal Chemistry, 13, 1967-1981. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
McGahon, B. and Lynch, M.A. (1996) The Synergism between ACPD and Arachidonic Acid on Glutamate Release in Hippocampus Is Age-Dependent. European Journal of Pharmacology, 309, 323-326. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Izumi, Y., Zarrin, A.R. and Zorumski, C.F. (2000) Arachidonic Acid Rescues Hippocampal Long-Term Potentiation Blocked by Group I Metabotropic Glutamate Receptor Antagonists. Neuroscience, 100, 485-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Barnes, S.A., Sheffler, D.J., Semenova, S., Cosford, N.D.P. and Bespalov, A. (2018) Metabotropic Glutamate Receptor 5 as a Target for the Treatment of Depression and Smoking: Robust Preclinical Data but Inconclusive Clinical Efficacy. Biological Psychiatry, 83, 955-962. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Luscher, B., Maguire, J.L., Rudolph, U. and Sibille, E. (2023) GABAA Receptors as Targets for Treating Affective and Cognitive Symptoms of Depression. Trends in Pharmacological Sciences, 44, 586-600. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Jacob, T.C., Moss, S.J. and Jurd, R. (2008) GABAA Receptor Trafficking and Its Role in the Dynamic Modulation of Neuronal Inhibition. Nature Reviews Neuroscience, 9, 331-343. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Woodward, E., Rangel-Barajas, C., Ringland, A., Logrip, M.L. and Coutellier, L. (2023) Sex-Specific Timelines for Adaptations of Prefrontal Parvalbumin Neurons in Response to Stress and Changes in Anxiety-and Depressive-Like Behaviors. Eneuro, 10. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Suthoff, E., Kosinski, M., Arnaud, A., Hodgkins, P., Gunduz-Bruce, H., Lasser, R., et al. (2022) Patient-Reported Health-Related Quality of Life from a Randomized, Placebo-Controlled Phase 2 Trial of Zuranolone in Adults with Major Depressive Disorder. Journal of Affective Disorders, 308, 19-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Gunduz-Bruce, H., Silber, C., Kaul, I., Rothschild, A.J., Riesenberg, R., Sankoh, A.J., et al. (2019) Trial of SAGE-217 in Patients with Major Depressive Disorder. New England Journal of Medicine, 381, 903-911. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Dichtel, L.E., Nyer, M., Dording, C., Fisher, L.B., Cusin, C., Shapero, B.G., et al. (2020) Effects of Open-Label, Adjunctive Ganaxolone on Persistent Depression Despite Adequate Antidepressant Treatment in Postmenopausal Women. The Journal of Clinical Psychiatry, 81, 19m12887. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Bale, T.L. and Vale, W.W. (2004) CRF and CRF Receptors: Role in Stress Responsivity and Other Behaviors. Annual Review of Pharmacology and Toxicology, 44, 525-557. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zorrilla, E.P. and Koob, G.F. (2004) The Therapeutic Potential of CRF1 Antagonists for Anxiety. Expert Opinion on Investigational Drugs, 13, 799-828. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Furman, B.L. (2017) Antalarmin. In: Reference Module in Biomedical Sciences, Elsevier. [Google Scholar] [CrossRef]
|
|
[36]
|
Lee, M.R., Rio, D., Kwako, L., George, D.T., Heilig, M. and Momenan, R. (2022) Corticotropin-Releasing Factor Receptor 1 (CRF1) Antagonism in Patients with Alcohol Use Disorder and High Anxiety Levels: Effect on Neural Response during Trier Social Stress Test Video Feedback. Neuropsychopharmacology, 48, 816-820. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Spierling, S.R. and Zorrilla, E.P. (2017) Don’t Stress about CRF: Assessing the Translational Failures of Crf1antagonists. Psychopharmacology, 234, 1467-1481. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Domin, H. and Śmiałowska, M. (2024) The Diverse Role of Corticotropin-Releasing Factor (CRF) and Its CRF1 and CRF2 Receptors under Pathophysiological Conditions: Insights into Stress/anxiety, Depression, and Brain Injury Processes. Neuroscience & Biobehavioral Reviews, 163, Article 105748. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Sah, R. and Geracioti, T.D. (2012) Neuropeptide Y and Posttraumatic Stress Disorder. Molecular Psychiatry, 18, 646-655. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Enman, N.M., Sabban, E.L., McGonigle, P. and Van Bockstaele, E.J. (2015) Targeting the Neuropeptide Y System in Stress-Related Psychiatric Disorders. Neurobiology of Stress, 1, 33-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Nahvi, R.J., Tanelian, A., Nwokafor, C., Hollander, C.M., Peacock, L. and Sabban, E.L. (2021) Intranasal Neuropeptide Y as a Potential Therapeutic for Depressive Behavior in the Rodent Single Prolonged Stress Model in Females. Frontiers in Behavioral Neuroscience, 15, Article 705579. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Reichmann, F. and Holzer, P. (2016) Neuropeptide Y: A Stressful Review. Neuropeptides, 55, 99-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kask, A., Harro, J., von Hörsten, S., Redrobe, J.P., Dumont, Y. and Quirion, R. (2002) The Neurocircuitry and Receptor Subtypes Mediating Anxiolytic-Like Effects of Neuropeptide Y. Neuroscience & Biobehavioral Reviews, 26, 259-283. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Borroto-Escuela, D., Serrano-Castro, P., Sánchez-Pérez, J.A., Barbancho-Fernández, M.A., Fuxe, K. and Narváez, M. (2024) Enhanced Neuronal Survival and BDNF Elevation via Long-Term Co-Activation of Galanin 2 (GALR2) and Neuropeptide Y1 Receptors (NPY1R): Potential Therapeutic Targets for Major Depressive Disorder. Expert Opinion on Therapeutic Targets, 28, 295-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Paudel, P., Ross, S. and Li, X. (2022) Molecular Targets of Cannabinoids Associated with Depression. Current Medicinal Chemistry, 29, 1827-1850. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Romero-Sanchiz, P., Nogueira-Arjona, R., Pastor, A., Araos, P., Serrano, A., Boronat, A., et al. (2019) Plasma Concentrations of Oleoylethanolamide in a Primary Care Sample of Depressed Patients Are Increased in Those Treated with Selective Serotonin Reuptake Inhibitor-Type Antidepressants. Neuropharmacology, 149, 212-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Bambico, F.R. and Gobbi, G. (2008) The Cannabinoid CB1 Receptor and the Endocannabinoid Anandamide: Possible Antidepressant Targets. Expert Opinion on Therapeutic Targets, 12, 1347-1366. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Lee, H., Choi, E. and Pak, C. (2009) The Current Status and Future Perspectives of Studies of Cannabinoid Receptor 1 Antagonists as Anti-Obesity Agents. Current Topics in Medicinal Chemistry, 9, 482-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kathuria, S., Gaetani, S., Fegley, D., Valiño, F., Duranti, A., Tontini, A., et al. (2002) Modulation of Anxiety through Blockade of Anandamide Hydrolysis. Nature Medicine, 9, 76-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Long, J.Z. and Cravatt, B.F. (2011) The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease. Chemical Reviews, 111, 6022-6063. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Ahn, K., McKinney, M.K. and Cravatt, B.F. (2008) Enzymatic Pathways That Regulate Endocannabinoid Signaling in the Nervous System. Chemical Reviews, 108, 1687-1707. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Miller, A.H. and Raison, C.L. (2015) The Role of Inflammation in Depression: From Evolutionary Imperative to Modern Treatment Target. Nature Reviews Immunology, 16, 22-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Felger, J.C. and Miller, A.H. (2012) Cytokine Effects on the Basal Ganglia and Dopamine Function: The Subcortical Source of Inflammatory Malaise. Frontiers in Neuroendocrinology, 33, 315-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Pariante, C.M. (2017) Why Are Depressed Patients Inflamed? A Reflection on 20 Years of Research on Depression, Glucocorticoid Resistance and Inflammation. European Neuropsychopharmacology, 27, 554-559. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Zhang, J., Yao, W. and Hashimoto, K. (2016) Brain-Derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-Related Depression and Potential Therapeutic Targets. Current Neuropharmacology, 14, 721-731. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Strawbridge, R., Arnone, D., Danese, A., Papadopoulos, A., Herane Vives, A. and Cleare, A.J. (2015) Inflammation and Clinical Response to Treatment in Depression: A Meta-analysis. European Neuropsychopharmacology, 25, 1532-1543. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Köhler, O., Benros, M.E., Nordentoft, M., Farkouh, M.E., Iyengar, R.L., Mors, O., et al. (2014) Effect of Anti-Inflammatory Treatment on Depression, Depressive Symptoms, and Adverse Effects: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. JAMA Psychiatry, 71, 1381-1391. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Dantzer, R. and Walker, A.K. (2014) Is There a Role for Glutamate-Mediated Excitotoxicity in Inflammation-Induced Depression? Journal of Neural Transmission, 121, 925-932. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Miller, A.H., Haroon, E., Raison, C.L. and Felger, J.C. (2013) Cytokine Targets in the Brain: Impact on Neurotransmitters and Neurocircuits. Depression and Anxiety, 30, 297-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Raison, C.L., Rutherford, R.E., Woolwine, B.J., Shuo, C., Schettler, P., Drake, D.F., et al. (2013) A Randomized Controlled Trial of the Tumor Necrosis Factor Antagonist Infliximab for Treatment-Resistant Depression: The Role of Baseline Inflammatory Biomarkers. JAMA Psychiatry, 70, 31-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Na, K., Jung, H. and Kim, Y. (2014) The Role of Pro-Inflammatory Cytokines in the Neuroinflammation and Neurogenesis of Schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 48, 277-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Clemente, J.C., Ursell, L.K., Parfrey, L.W. and Knight, R. (2012) The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell, 148, 1258-1270. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Castro-Mejía, J.L., Muhammed, M.K., Kot, W., Neve, H., Franz, C.M.A.P., Hansen, L.H., et al. (2015) Optimizing Protocols for Extraction of Bacteriophages Prior to Metagenomic Analyses of Phage Communities in the Human Gut. Microbiome, 3, Article No. 64. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Cryan, J.F., O’Riordan, K.J., Cowan, C.S.M., Sandhu, K.V., Bastiaanssen, T.F.S., Boehme, M., et al. (2019) The Microbiota-Gut-Brain Axis. Physiological Reviews, 99, 1877-2013. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Zheng, P., Yang, J., Li, Y., Wu, J., Liang, W., Yin, B., et al. (2020) Gut Microbial Signatures Can Discriminate Unipolar from Bipolar Depression. Advanced Science, 7, Article 1902862. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Kelly, J.R., Borre, Y., O' Brien, C., Patterson, E., El Aidy, S., Deane, J., et al. (2016) Transferring the Blues: Depression-Associated Gut Microbiota Induces Neurobehavioural Changes in the Rat. Journal of Psychiatric Research, 82, 109-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Yang, J., Zheng, P., Li, Y., Wu, J., Tan, X., Zhou, J., et al. (2020) Landscapes of Bacterial and Metabolic Signatures and Their Interaction in Major Depressive Disorders. Science Advances, 6, eaba8555. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Kouba, B.R., de Araujo Borba, L., Borges de Souza, P., Gil-Mohapel, J. and Rodrigues, A.L.S. (2024) Role of Inflammatory Mechanisms in Major Depressive Disorder: From Etiology to Potential Pharmacological Targets. Cells, 13, Article 423. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Faulkner, I.E., Pajak, R.Z., Harte, M.K., Glazier, J.D. and Hager, R. (2024) Voltage-Gated Potassium Channels as a Potential Therapeutic Target for the Treatment of Neurological and Psychiatric Disorders. Frontiers in Cellular Neuroscience, 18, Article 1449151. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Smolin, B., Karry, R., Gal-Ben-Ari, S. and Ben-Shachar, D. (2011) Differential Expression of Genes Encoding Neuronal Ion-Channel Subunits in Major Depression, Bipolar Disorder and Schizophrenia: Implications for Pathophysiology. The International Journal of Neuropsychopharmacology, 15, 869-882. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Zhang, J., Zhu, Y., Zhang, M., Yan, J., Zheng, Y., Yao, L., et al. (2024) Potassium Channels in Depression: Emerging Roles and Potential Targets. Cell & Bioscience, 14, 869-882. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Meshkat, S., Kwan, A.T.H., Le, G.H., Wong, S., Rhee, T.G., Ho, R., et al. (2024) The Role of KCNQ Channel Activators in Management of Major Depressive Disorder. Journal of Affective Disorders, 359, 364-372. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Friedman, A.K., Juarez, B., Ku, S.M., Zhang, H., Calizo, R.C., Walsh, J.J., et al. (2016) KCNQ Channel Openers Reverse Depressive Symptoms via an Active Resilience Mechanism. Nature Communications, 7, Article No. 11671. [Google Scholar] [CrossRef] [PubMed]
|