|
[1]
|
Zheng, Y., Ley, S.H. and Hu, F.B. (2017) Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nature Reviews Endocrinology, 14, 88-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Clapham, J.C. (2019) Sixty Years of Drug Discovery for Type 2 Diabetes: Where Are We Now? In: Stocker, C., Ed., Methods in Molecular Biology, Springer, 1-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Böni-Schnetzler, M. and Meier, D.T. (2019) Islet Inflammation in Type 2 Diabetes. Seminars in Immunopathology, 41, 501-513. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Cnop, M., Welsh, N., Jonas, J., Jörns, A., Lenzen, S. and Eizirik, D.L. (2005) Mechanisms of Pancreatic β-Cell Death in Type 1 and Type 2 Diabetes. Diabetes, 54, S97-S107. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wang, N., Yi, W.J., Tan, L., Zhang, J.H., Xu, J., Chen, Y., et al. (2017) Apigenin Attenuates Streptozotocin-Induced Pancreatic β Cell Damage by Its Protective Effects on Cellular Antioxidant Defense. In Vitro Cellular & Developmental Biology-Animal, 53, 554-563. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Vanitha, P., Senthilkumar, S., Dornadula, S., Anandhakumar, S., Rajaguru, P. and Ramkumar, K.M. (2017) Morin Activates the Nrf2-ARE Pathway and Reduces Oxidative Stress-Induced DNA Damage in Pancreatic Beta Cells. European Journal of Pharmacology, 801, 9-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, N., Zhang, J., Qin, M., Yi, W., Yu, S., Chen, Y., et al. (2017) Amelioration of Streptozotocin-Induced Pancreatic β Cell Damage by Morin: Involvement of the AMPK-FOXO3-Catalase Signaling Pathway. International Journal of Molecular Medicine, 41, 1409-1418. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Roy, S., Metya, S.K., Sannigrahi, S., Rahaman, N. and Ahmed, F. (2013) Treatment with Ferulic Acid to Rats with Streptozotocin-Induced Diabetes: Effects on Oxidative Stress, Pro-Inflammatory Cytokines, and Apoptosis in the Pancreatic β Cell. Endocrine, 44, 369-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sameermahmood, Z., Raji, L., Saravanan, T., Vaidya, A., Mohan, V. and Balasubramanyam, M. (2010) Gallic Acid Protects Rinm5f β‐Cells from Glucolipotoxicity by Its Antiapoptotic and Insulin‐Secretagogue Actions. Phytotherapy Research, 24, S83-S94. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hao, F., Kang, J., Cao, Y., et al. (2015) Curcumin Attenuates Palmitate-Induced Apoptosis in MIN6 Pancreatic β-Cells through PI3K/Akt/FoxO1 and Mitochondrial Survival Pathways. Apoptosis, 20, 1420-1432. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Vinayagam, R. and Xu, B. (2017) 7, 8-Dihydroxycoumarin (Daphnetin) Protects INS-1 Pancreatic β-Cells against Streptozotocin-Induced Apoptosis. Phytomedicine, 24, 119-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
王鹏程, 曹泽彧, 许冶良, 等. 以2型糖尿病胰岛β细胞为靶点的天然产物研究进展[J]. 中草药, 2019, 50(18): 4502-4510.
|
|
[13]
|
Chou, D.H., Duvall, J.R., Gerard, B., Liu, H., Pandya, B.A., Suh, B., et al. (2011) Synthesis of a Novel Suppressor of β-Cell Apoptosis via Diversity-Oriented Synthesis. ACS Medicinal Chemistry Letters, 2, 698-702. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Huang, Z., Tremblay, M.S., Wu, T.Y.-H., Ding, Q., Hao, X., Baaten, J., et al. (2019) Discovery of 5-(3,4-Difluorophenyl)-3-(Pyrazol-4-Yl)-7-Azaindole (GNF3809) for β-Cell Survival in Type 1 Diabetes. ACS Omega, 4, 3571-3581. [Google Scholar] [CrossRef]
|
|
[15]
|
Kong, W., Wang, W. and An, J. (2020) Prediction of 5-Hydroxytryptamine Transporter Inhibitors Based on Machine Learning. Computational Biology and Chemistry, 87, Article 107303. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Small, J.C., Joblin-Mills, A., Carbone, K., Kost-Alimova, M., Ayukawa, K., Khodier, C., et al. (2022) Phenotypic Screening for Small Molecules That Protect β-Cells from Glucolipotoxicity. ACS Chemical Biology, 17, 1131-1142. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Duan, H., Li, Y., Arora, D., Xu, D., Lim, H. and Wang, W. (2017) Discovery of a Benzamide Derivative That Protects Pancreatic β-Cells against Endoplasmic Reticulum Stress. Journal of Medicinal Chemistry, 60, 6191-6204. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Duan, H., Lee, J.W., Moon, S.W., Arora, D., Li, Y., Lim, H., et al. (2016) Discovery, Synthesis, and Evaluation of 2,4-Diaminoquinazolines as a Novel Class of Pancreatic β-Cell-Protective Agents against Endoplasmic Reticulum (ER) Stress. Journal of Medicinal Chemistry, 59, 7783-7800. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Cereto-Massagué, A., Ojeda, M.J., Valls, C., Mulero, M., Garcia-Vallvé, S. and Pujadas, G. (2015) Molecular Fingerprint Similarity Search in Virtual Screening. Methods, 71, 58-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yap, C.W. (2010) PaDEL‐Descriptor: An Open Source Software to Calculate Molecular Descriptors and Fingerprints. Journal of Computational Chemistry, 32, 1466-1474. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Uddin, S., Khan, A., Hossain, M.E. and Moni, M.A. (2019) Comparing Different Supervised Machine Learning Algorithms for Disease Prediction. BMC Medical Informatics and Decision Making, 19, Article No. 281. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Fan, T., Sun, G., Zhao, L., Cui, X. and Zhong, R. (2018) QSAR and Classification Study on Prediction of Acute Oral Toxicity of N-Nitroso Compounds. International Journal of Molecular Sciences, 19, Article 3015. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Pérez-Garrido, A., Helguera, A.M., Borges, F., Cordeiro, M.N.D.S., Rivero, V. and Escudero, A.G. (2011) Two New Parameters Based on Distances in a Receiver Operating Characteristic Chart for the Selection of Classification Models. Journal of Chemical Information and Modeling, 51, 2746-2759. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chen, Z., Zhang, L., Zhang, P., Guo, H., Zhang, R., Li, L., et al. (2023) Prediction of Cytochrome P450 Inhibition Using a Deep Learning Approach and Substructure Pattern Recognition. Journal of Chemical Information and Modeling, 64, 2528-2538. [Google Scholar] [CrossRef] [PubMed]
|