[1]
|
McLellan, T.M., Caldwell, J.A. and Lieberman, H.R. (2016) A Review of Caffeine’s Effects on Cognitive, Physical and Occupational Performance. Neuroscience & Biobehavioral Reviews, 71, 294-312. https://doi.org/10.1016/j.neubiorev.2016.09.001
|
[2]
|
尹小明, 阮文浩, 张玺, 高艺航, 黄清坤. 植物多酚在食品中的应用和研究进展[J]. 食品与营养科学, 2024, 13: 367-374.
|
[3]
|
Naveed, M., Hejazi, V., Abbas, M., Kamboh, A.A., Khan, G.J., Shumzaid, M., et al. (2018) Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomedicine & Pharmacotherapy, 97, 67-74. https://doi.org/10.1016/j.biopha.2017.10.064
|
[4]
|
Tajik, N., Tajik, M., Mack, I. and Enck, P. (2017) The Potential Effects of Chlorogenic Acid, the Main Phenolic Components in Coffee, on Health: A Comprehensive Review of the Literature. European Journal of Nutrition, 56, 2215-2244. https://doi.org/10.1007/s00394-017-1379-1
|
[5]
|
罗发美, 谭文涵, 金红芳, 胡圆圆, 张晓花. 基于高效液相色谱法分析烘焙程度对咖啡中绿原酸含量的影响[J]. 粮油食品科技, 2023, 31(4): 102-110.
|
[6]
|
Moon, J., Yoo, H.S. and Shibamoto, T. (2009) Role of Roasting Conditions in the Level of Chlorogenic Acid Content in Coffee Beans: Correlation with Coffee Acidity. Journal of Agricultural and Food Chemistry, 57, 5365-5369. https://doi.org/10.1021/jf900012b
|
[7]
|
Istyastono, E.P., Yuniarti, N., Prasasty, V.D., Mungkasi, S., Waskitha, S.S.W., Yanuar, M.R.S., et al. (2023) Caffeic Acid in Spent Coffee Grounds as a Dual Inhibitor for MMP-9 and DPP-4 Enzymes. Molecules, 28, Article No. 7182. https://doi.org/10.3390/molecules28207182
|
[8]
|
Pavlíková, N. (2022) Caffeic Acid and Diseases—Mechanisms of Action. International Journal of Molecular Sciences, 24, Article No. 588. https://doi.org/10.3390/ijms24010588
|
[9]
|
袁栋勇, 周湧智, 毛玮琪, 毕建辛, 张黔文, 纪晓娜. 高效液相色谱法测定手冲咖啡中绿原酸与咖啡酸含量[J]. 科技创新与应用, 2022, 12(35): 54-56+60.
|
[10]
|
Colomban, S., Guercia, E. and Navarini, L. (2020) Validation of a Rapid Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Quantification of Chlorogenic Acids in Roasted Coffee. Journal of Mass Spectrometry, 55, e4634. https://doi.org/10.1002/jms.4634
|
[11]
|
Angeloni, S., Nzekoue, F.K., Navarini, L., Sagratini, G., Torregiani, E., Vittori, S., et al. (2020) An Analytical Method for the Simultaneous Quantification of 30 Bioactive Compounds in Spent Coffee Ground by HPLC-MS/MS. Journal of Mass Spectrometry, 55, e4519. https://doi.org/10.1002/jms.4519
|
[12]
|
Santanatoglia, A., Angeloni, S., Bartolucci, D., Fioretti, L., Sagratini, G., Vittori, S., et al. (2023) Effect of Brewing Methods on Acrylamide Content and Antioxidant Activity: Studying Eight Different Filter Coffee Preparations. Antioxidants, 12, Article No. 1888. https://doi.org/10.3390/antiox12101888
|
[13]
|
Oteef, M.D.Y. (2022) Comparison of Different Extraction Techniques and Conditions for Optimizing an HPLC-DAD Method for the Routine Determination of the Content of Chlorogenic Acids in Green Coffee Beans. Separations, 9, Article No. 396. https://doi.org/10.3390/separations9120396
|
[14]
|
Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., et al. (2011) In Vitro and in Vivo Antioxidant Properties of Chlorogenic Acid and Caffeic Acid. International Journal of Pharmaceutics, 403, 136-138. https://doi.org/10.1016/j.ijpharm.2010.09.035
|
[15]
|
Liang, N. and Kitts, D. (2015) Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients, 8, Article No. 16. https://doi.org/10.3390/nu8010016
|
[16]
|
Murai, T. and Matsuda, S. (2023) The Chemopreventive Effects of Chlorogenic Acids, Phenolic Compounds in Coffee, against Inflammation, Cancer, and Neurological Diseases. Molecules, 28, Article No. 2381. https://doi.org/10.3390/molecules28052381
|
[17]
|
Singh, A.K., Singla, R.K. and Pandey, A.K. (2023) Chlorogenic Acid: A Dietary Phenolic Acid with Promising Pharmacotherapeutic Potential. Current Medicinal Chemistry, 30, 3905-3926. https://doi.org/10.2174/0929867329666220816154634
|
[18]
|
Chauhan, P.S., Satti, N.K., Sharma, P., Sharma, V.K., Suri, K.A. and Bani, S. (2011) Differential Effects of Chlorogenic Acid on Various Immunological Parameters Relevant to Rheumatoid Arthritis. Phytotherapy Research, 26, 1156-1165. https://doi.org/10.1002/ptr.3684
|
[19]
|
Wang, H., Zhao, Y., Zhang, Y., Yang, T., Zhao, S., Sun, N., et al. (2022) Effect of Chlorogenic Acid via Upregulating Resolvin D1 Inhibiting the NF-κB Pathway on Chronic Restraint Stress-Induced Liver Inflammation. Journal of Agricultural and Food Chemistry, 70, 10532-10542. https://doi.org/10.1021/acs.jafc.2c04593
|
[20]
|
Yuan, S., Wang, M., Han, J., Feng, C., Wang, M., Wang, M., et al. (2023) Improved Colonic Inflammation by Nervonic Acid via Inhibition of NF-kappaB Signaling Pathway of DSS-Induced Colitis Mice. Phytomedicine, 112, Article ID: 154702. https://doi.org/10.1016/j.phymed.2023.154702
|
[21]
|
Bakuradze, T., Lang, R., Hofmann, T., Eisenbrand, G., Schipp, D., Galan, J., et al. (2014) Consumption of a Dark Roast Coffee Decreases the Level of Spontaneous DNA Strand Breaks: A Randomized Controlled Trial. European Journal of Nutrition, 54, 149-156. https://doi.org/10.1007/s00394-014-0696-x
|
[22]
|
Kunutsor, S.K., Lehoczki, A. and Laukkanen, J.A. (2024) Coffee Consumption, Cancer, and Healthy Aging: Epidemiological Evidence and Underlying Mechanisms. GeroScience, 47, 1517-1555. https://doi.org/10.1007/s11357-024-01332-8
|
[23]
|
Elansary, O.H., Szopa, A., Klimek-Szczykutowicz, M., Jafernik, K., Ekiert, H., Mahmoud, E.A., et al. (2019) Mammillaria Species—Polyphenols Studies and Anti-Cancer, Anti-Oxidant, and Anti-Bacterial Activities. Molecules, 25, Article No. 131. https://doi.org/10.3390/molecules25010131
|
[24]
|
Puangpraphant, S., Berhow, M.A., Vermillion, K., Potts, G. and Gonzalez de Mejia, E. (2011) Dicaffeoylquinic Acids in Yerba Mate (Ilex paraguariensis St. Hilaire) Inhibit NF-kappaB Nucleus Translocation in Macrophages and Induce Apoptosis by Activating Caspases-8 and-3 in Human Colon Cancer Cells. Molecular Nutrition & Food Research, 55, 1509-1522. https://doi.org/10.1002/mnfr.201100128
|
[25]
|
Matsunaga, K., Katayama, M., Sakata, K., et al. (2002) Inhibitory Effects of Chlorogenic Acid on Azoxymethane-Induced Colon Carcinogenesis in Male F344 Rats. Asian Pacific Journal of Cancer Prevention, 3, 163-166.
|
[26]
|
Morishita, Y., Yoshimi, N., Kawabata, K., Matsunaga, K., Sugie, S., Tanaka, T., et al. (1997) Regressive Effects of Various Chemopreventive Agents on Azoxymethane-Induced Aberrant Crypt Foci in the Rat Colon. Japanese Journal of Cancer Research, 88, 815-820. https://doi.org/10.1111/j.1349-7006.1997.tb00456.x
|
[27]
|
Chen, Y., Ngoc, N.T.M., Chang, H., Su, Y., Chen, C., Goan, Y., et al. (2022) Chlorogenic Acid Inhibition of Esophageal Squamous Cell Carcinoma Metastasis via EGFR/p-Akt/Snail Signaling Pathways. Anticancer Research, 42, 3389-3402. https://doi.org/10.21873/anticanres.15826
|
[28]
|
Li, L., Su, C., Chen, X., Wang, Q., Jiao, W., Luo, H., et al. (2020) Chlorogenic Acids in Cardiovascular Disease: A Review of Dietary Consumption, Pharmacology, and Pharmacokinetics. Journal of Agricultural and Food Chemistry, 68, 6464-6484. https://doi.org/10.1021/acs.jafc.0c01554
|
[29]
|
Fuentes, E. and Palomo, I. (2014) Mechanisms of Endothelial Cell Protection by Hydroxycinnamic Acids. Vascular Pharmacology, 63, 155-161. https://doi.org/10.1016/j.vph.2014.10.006
|
[30]
|
Jiang, R., Hodgson, J.M., Mas, E., Croft, K.D. and Ward, N.C. (2016) Chlorogenic Acid Improves ex Vivo Vessel Function and Protects Endothelial Cells against HOCl-Induced Oxidative Damage, via Increased Production of Nitric Oxide and Induction of Hmox-1. The Journal of Nutritional Biochemistry, 27, 53-60. https://doi.org/10.1016/j.jnutbio.2015.08.017
|
[31]
|
Suzuki, A., Fujii, A., Yamamoto, N., Yamamoto, M., Ohminami, H., Kameyama, A., et al. (2006) Improvement of Hypertension and Vascular Dysfunction by Hydroxyhydroquinone-Free Coffee in a Genetic Model of Hypertension. FEBS Letters, 580, 2317-2322. https://doi.org/10.1016/j.febslet.2006.03.047
|
[32]
|
Ochiai, R., Jokura, H., Suzuki, A., Tokimitsu, I., Ohishi, M., Komai, N., et al. (2004) Green Coffee Bean Extract Improves Human Vasoreactivity. Hypertension Research, 27, 731-737. https://doi.org/10.1291/hypres.27.731
|
[33]
|
Mubarak, A., Bondonno, C.P., Liu, A.H., Considine, M.J., Rich, L., Mas, E., et al. (2012) Acute Effects of Chlorogenic Acid on Nitric Oxide Status, Endothelial Function, and Blood Pressure in Healthy Volunteers: A Randomized Trial. Journal of Agricultural and Food Chemistry, 60, 9130-9136. https://doi.org/10.1021/jf303440j
|
[34]
|
Lara-Guzmán, O.J., Arango-González, Á., Rivera, D.A., Muñoz-Durango, K. and Sierra, J.A. (2024) The Colonic Polyphenol Catabolite Dihydroferulic Acid (DHFA) Regulates Macrophages Activated by Oxidized LDL, 7-Ketocholesterol, and LPS Switching from Pro-to Anti-Inflammatory Mediators. Food & Function, 15, 10399-10413. https://doi.org/10.1039/d4fo02114b
|
[35]
|
Huang, S., Chuang, H., Wu, C. and Yen, G. (2008) Cytoprotective Effects of Phenolic Acids on Methylglyoxal-Induced Apoptosis in Neuro-2A Cells. Molecular Nutrition & Food Research, 52, 940-949. https://doi.org/10.1002/mnfr.200700360
|
[36]
|
Han, J., Miyamae, Y., Shigemori, H. and Isoda, H. (2010) Neuroprotective Effect of 3,5-Di-O-Caffeoylquinic Acid on SH-SY5Y Cells and Senescence-Accelerated-Prone Mice 8 through the Up-Regulation of Phosphoglycerate Kinase-1. Neuroscience, 169, 1039-1045. https://doi.org/10.1016/j.neuroscience.2010.05.049
|
[37]
|
Kwon, S., Lee, H., Kim, J., Hong, S., Kim, H., Jo, T., et al. (2010) Neuroprotective Effects of Chlorogenic Acid on Scopolamine-Induced Amnesia via Anti-Acetylcholinesterase and Anti-Oxidative Activities in Mice. European Journal of Pharmacology, 649, 210-217. https://doi.org/10.1016/j.ejphar.2010.09.001
|
[38]
|
Ye, Y., Li, X., Chen, M., Wang, X., Li, M., Jiang, F., et al. (2024) The Extracts Derived from Artemisia Japonica Thunb. Leaves Mitigate Oxidative Stress and Inflammatory Response Induced by LPS in RAW264.7 Cells through Modulation of the Nrf2/Ho-1 Signaling Pathway. Molecules, 29, Article No. 1375. https://doi.org/10.3390/molecules29061375
|
[39]
|
Zhao, X., Yu, L., Zhang, S., Ping, K., Ni, H., Qin, X., et al. (2020) Cryptochlorogenic Acid Attenuates LPS-Induced Inflammatory Response and Oxidative Stress via Upregulation of the Nrf2/HO-1 Signaling Pathway in RAW264.7 Macrophages. International Immunopharmacology, 83, Article ID: 106436. https://doi.org/10.1016/j.intimp.2020.106436
|
[40]
|
Park, J.B. (2013) Isolation and Quantification of Major Chlorogenic Acids in Three Major Instant Coffee Brands and Their Potential Effects on H2O2-Induced Mitochondrial Membrane Depolarization and Apoptosis in PC-12 Cells. Food & Function, 4, 1632-1638. https://doi.org/10.1039/c3fo60138b
|
[41]
|
Cropley, V., Croft, R., Silber, B., Neale, C., Scholey, A., Stough, C., et al. (2011) Does Coffee Enriched with Chlorogenic Acids Improve Mood and Cognition after Acute Administration in Healthy Elderly? A Pilot Study. Psychopharmacology, 219, 737-749. https://doi.org/10.1007/s00213-011-2395-0
|
[42]
|
Song, S.J., Choi, S. and Park, T. (2014) Decaffeinated Green Coffee Bean Extract Attenuates Diet-Induced Obesity and Insulin Resistance in Mice. Evidence-Based Complementary and Alternative Medicine, 2014, Article ID: 718379. https://doi.org/10.1155/2014/718379
|
[43]
|
Rodriguez de Sotillo, D.V. and Hadley, M. (2002) Chlorogenic Acid Modifies Plasma and Liver Concentrations of: Cholesterol, Triacylglycerol, and Minerals in (fa/fa) Zucker Rats. The Journal of Nutritional Biochemistry, 13, 717-726. https://doi.org/10.1016/s0955-2863(02)00231-0
|
[44]
|
Thom, E. (2007) The Effect of Chlorogenic Acid Enriched Coffee on Glucose Absorption in Healthy Volunteers and Its Effect on Body Mass When Used Long-Term in Overweight and Obese People. Journal of International Medical Research, 35, 900-908. https://doi.org/10.1177/147323000703500620
|
[45]
|
Clifford, M.N., Kerimi, A. and Williamson, G. (2020) Bioavailability and Metabolism of Chlorogenic Acids (Acyl-Quinic Acids) in Humans. Comprehensive Reviews in Food Science and Food Safety, 19, 1299-1352. https://doi.org/10.1111/1541-4337.12518
|
[46]
|
He, D., Peng, X., Xing, Y., Wang, Y., Zeng, W., Su, N., et al. (2020) Increased Stability and Intracellular Antioxidant Activity of Chlorogenic Acid Depend on Its Molecular Interaction with Wheat Gluten Hydrolysate. Food Chemistry, 325, Article ID: 126873. https://doi.org/10.1016/j.foodchem.2020.126873
|
[47]
|
Li, Y., He, D., Li, B., Lund, M.N., Xing, Y., Wang, Y., et al. (2021) Engineering Polyphenols with Biological Functions via Polyphenol-Protein Interactions as Additives for Functional Foods. Trends in Food Science & Technology, 110, 470-482. https://doi.org/10.1016/j.tifs.2021.02.009
|
[48]
|
de Oliveira, D.M., Sampaio, G.R., Pinto, C.B., Catharino, R.R. and Bastos, D.H.M. (2016) Bioavailability of Chlorogenic Acids in Rats after Acute Ingestion of Maté Tea (Ilex paraguariensis) or 5-Caffeoylquinic Acid. European Journal of Nutrition, 56, 2541-2556. https://doi.org/10.1007/s00394-016-1290-1
|