| [1] | Zhu, H., Luo, W., Ciesielski, P.N., Fang, Z., Zhu, J.Y., Henriksson, G., et al. (2016) Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical Reviews, 116, 9305-9374. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Curvello, R., Raghuwanshi, V.S. and Garnier, G. (2019) Engineering Nanocellulose Hydrogels for Biomedical Applications. Advances in Colloid and Interface Science, 267, 47-61. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Ma, L., Wang, T., Liu, Q., Zhang, X., Ma, W. and Zhang, Q. (2012) A Review of Thermal-Chemical Conversion of Lignocellulosic Biomass in China. Biotechnology Advances, 30, 859-873. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Lane, M.K.M., Rudel, H.E., Wilson, J.A., Erythropel, H.C., Backhaus, A., Gilcher, E.B., et al. (2023) Green Chemistry as Just Chemistry. Nature Sustainability, 6, 502-512. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [5] | 朱旭冉, 李潇, 李平, 等. 木质纤维素预处理技术研究进展[J]. 广东化工, 2024, 51(7): 72-75. | 
                     
                                
                                    
                                        | [6] | 付时雨. 纤维素的研究进展[J]. 中国造纸, 2019, 38(6): 54-64. | 
                     
                                
                                    
                                        | [7] | Long, L., Weng, Y.-X. and Wang, Y.-Z. (2018) Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers, 10, Article No. 623. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Beck, S., Bouchard, J. and Berry, R. (2010) Controlling the Reflection Wavelength of Iridescent Solid Films of Nanocrystalline Cellulose. Biomacromolecules, 12, 167-172. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Koshani, R. and Madadlou, A. (2018) A Viewpoint on the Gastrointestinal Fate of Cellulose Nanocrystals. Trends in Food Science & Technology, 71, 268-273. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [10] | 刘莹莹, 夏明凤, 徐柯, 等. 纤维素纳米纤丝复合材料在药物缓释中的应用[J]. 中国造纸, 2023, 42(1): 111-120. | 
                     
                                
                                    
                                        | [11] | 张思航, 付润芳, 董立琴, 等. 纳米纤维素的制备及其复合材料的应用研究进展[J]. 中国造纸, 2017, 36(1): 67-74. | 
                     
                                
                                    
                                        | [12] | Shu, D., Xi, P., Cheng, B., Wang, Y., Yang, L., Wang, X., et al. (2020) One-Step Electrospinning Cellulose Nanofibers with Superhydrophilicity and Superoleophobicity Underwater for High-Efficiency Oil-Water Separation. International Journal of Biological Macromolecules, 162, 1536-1545. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | de Oliveira, J.P., Bruni, G.P., el Halal, S.L.M., Bertoldi, F.C., Dias, A.R.G. and Zavareze, E.d.R. (2019) Cellulose Nanocrystals from Rice and Oat Husks and Their Application in Aerogels for Food Packaging. International Journal of Biological Macromolecules, 124, 175-184. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Jacek, P., Kubiak, K., Ryngajłło, M., Rytczak, P., Paluch, P. and Bielecki, S. (2019) Modification of Bacterial Nanocellulose Properties through Mutation of Motility Related Genes in Komagataeibacter hansenii ATCC 53582. New Biotechnology, 52, 60-68. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | 王淑红. 静电纺丝制备几种聚合物/无机复合纳米纤维与性能研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工程大学, 2012. | 
                     
                                
                                    
                                        | [16] | 刘慰, 司传领, 杜海顺, 等. 纳米纤维素基水凝胶的制备及其在生物医学领域的应用进展[J]. 林业工程学报, 2019, 4(5): 11-19. | 
                     
                                
                                    
                                        | [17] | 吕天艺, 张书敏, 陈媛, 等. 不同形态纳米纤维素的制备方法研究进展[J]. 食品与发酵工业, 2022, 48(8): 281-288. | 
                     
                                
                                    
                                        | [18] | Seabra, A.B., Bernardes, J.S., Fávaro, W.J., Paula, A.J. and Durán, N. (2018) Cellulose Nanocrystals as Carriers in Medicine and Their Toxicities: A Review. Carbohydrate Polymers, 181, 514-527. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | 王力. 纳米纤维素复合材料的制备及其生物医学应用[D]: [博士学位论文]. 上海: 华东师范大学, 2022. | 
                     
                                
                                    
                                        | [20] | Plackett, D., Letchford, K., Jackson, J. and Burt, H. (2014) A Review of Nanocellulose as a Novel Vehicle for Drug Delivery. Nordic Pulp & Paper Research Journal, 29, 105-118. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [21] | 王潇潇, 陈燕, 柳炜. 纳米纤维素在生物医学领域的研究进展与应用[J]. 中国造纸学报, 2023, 38(4): 126-133. | 
                     
                                
                                    
                                        | [22] | Chen, Q., Yang, Z., Liu, H., Man, J., Oladejo, A.O., Ibrahim, S., et al. (2024) Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics, 16, Article No. 674. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [23] | Khan, S.A.R., Tabish, M. and Yu, Z. (2023) Mapping and Visualizing of Research Output on Waste Management and Green Technology: A Bibliometric Review of Literature. Waste Management & Research: The Journal for a Sustainable Circular Economy, 41, 1203-1218. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Khorsandi, D., Jenson, S., Zarepour, A., Khosravi, A., Rabiee, N., Iravani, S., et al. (2024) Catalytic and Biomedical Applications of Nanocelluloses: A Review of Recent Developments. International Journal of Biological Macromolecules, 268, Article ID: 131829. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [25] | Lossada, F., Hoenders, D., Guo, J., Jiao, D. and Walther, A. (2020) Self-Assembled Bioinspired Nanocomposites. Accounts of Chemical Research, 53, 2622-2635. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | 刘健弘, 张欣橦, 李颖娴, 等. 药物缓释体系的研究进展[J]. 广东化工, 2024, 51(15): 90-92+45. | 
                     
                                
                                    
                                        | [27] | Yadav, D. and Dewangan, H.K. (2020) PEGYLATION: An Important Approach for Novel Drug Delivery System. Journal of Biomaterials Science, Polymer Edition, 32, 266-280. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Lavoine, N., Desloges, I., Dufresne, A. and Bras, J. (2012) Microfibrillated Cellulose—Its Barrier Properties and Applications in Cellulosic Materials: A Review. Carbohydrate Polymers, 90, 735-764. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | 王凯晴. MOF@纤维素纳米纤丝复合材料的制备及其应用研究[D]: [硕士学位论文]. 天津: 天津科技大学, 2023. | 
                     
                                
                                    
                                        | [30] | Yi, T., Zhao, H., Mo, Q., Pan, D., Liu, Y., Huang, L., et al. (2020) From Cellulose to Cellulose Nanofibrils—A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils. Materials, 13, Article No. 5062. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Luo, J., Chang, H., Bakhtiary Davijani, A.A., Liu, H.C., Wang, P., Moon, R.J., et al. (2017) Influence of High Loading of Cellulose Nanocrystals in Polyacrylonitrile Composite Films. Cellulose, 24, 1745-1758. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [32] | 张艳, 孙怡然, 于飞, 等. 细菌纤维素及其复合材料在环境领域应用的研究进展[J]. 复合材料学报, 2021, 38(8): 2418-2427. | 
                     
                                
                                    
                                        | [33] | Kumari, D. and Singh, R. (2018) Pretreatment of Lignocellulosic Wastes for Biofuel Production: A Critical Review. Renewable and Sustainable Energy Reviews, 90, 877-891. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [34] | 张赛, 侯刘涛, 林钰程, 等. 酸解法制备生物基纳米纤维素研究进展[J]. 林产化学与工业, 2024, 44(5): 159-172. | 
                     
                                
                                    
                                        | [35] | 张关涛, 张东杰, 李娟, 等. 纳米纤维素的制备及其在食品包装材料中应用的研究进展[J]. 食品工业科技, 2022, 43(3): 430-437. | 
                     
                                
                                    
                                        | [36] | Tang, Z., Lin, X., Yu, M., Mondal, A.K. and Wu, H. (2024) Recent Advances in Tempo-Oxidized Cellulose Nanofibers: Oxidation Mechanism, Characterization, Properties and Applications. International Journal of Biological Macromolecules, 259, Article ID: 129081. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | Bi, X., Guo, J., Wen, J. and Yu, C. (2023) Mechanistic Analysis of Nanocellulose Formation Tuned by Deep Eutectic Solvents. Cellulose, 30, 9349-9364. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [38] | Siqueira, G., Bras, J. and Dufresne, A. (2010) Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers, 2, 728-765. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [39] | 任海伟, 徐志航, 邢雪晔, 等. 纳米纤维素的制备、结构性质及应用研究进展[J]. 食品科学, 2023, 44(17): 215-224. | 
                     
                                
                                    
                                        | [40] | 贾丽佳, 王汉琛, 黄彪, 等. 纳米纤维素的制备及功能应用[J]. 生物质化学工程, 2024, 58(4): 43-56. | 
                     
                                
                                    
                                        | [41] | Brown, A.J. (1886) XLIII.—On an Acetic Ferment Which Forms Cellulose. Journal of the Chemical Society, Transactions, 49, 432-439. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [42] | Satyamurthy, P., Jain, P., Balasubramanya, R.H. and Vigneshwaran, N. (2011) Preparation and Characterization of Cellulose Nanowhiskers from Cotton Fibres by Controlled Microbial Hydrolysis. Carbohydrate Polymers, 83, 122-129. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [43] | Jirathampinyo, S., Chumchoochart, W. and Tinoi, J. (2023) Integrated Biobased Processes for Nanocellulose Preparation from Rice Straw Cellulose. Processes, 11, Article No. 1006. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [44] | Yang, H., Bai, L., Duan, Y., Xie, H., Wang, X., Zhang, R., et al. (2023) Upcycling Corn Straw into Nanocelluloses via Enzyme-Assisted Homogenization: Application as Building Blocks for High-Performance Films. Journal of Cleaner Production, 390, Article ID: 136215. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [45] | 王兴雪, 王海涛, 钟伟, 等. 静电纺丝纳米纤维的方法与应用现状[J]. 非织造布, 2007(2): 14-20. | 
                     
                                
                                    
                                        | [46] | Nelson, K. and Retsina, T. (2014) Innovative Nanocellulose Process Breaks the Cost Barrier. TAPPI Journal, 13, 19-23. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [47] | Nelson, K., Retsina, T., Iakovlev, M., van Heiningen, A., Deng, Y., Shatkin, J.A., et al. (2016) American Process: Production of Low Cost Nanocellulose for Renewable, Advanced Materials Applications. In: Madsen, L.D. and Svedberg, E.B., Eds., Materials Research for Manufacturing: An Industrial Perspective of Turning Materials into New Products, Springer International Publishing, 267-302. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [48] | Kyle, S., Jessop, Z.M., Al-Sabah, A., Hawkins, K., Lewis, A., Maffeis, T., et al. (2018) Characterization of Pulp Derived Nanocellulose Hydrogels Using AVAP® Technology. Carbohydrate Polymers, 198, 270-280. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [49] | Mohan, D., Khairullah, N.F., How, Y.P., Sajab, M.S. and Kaco, H. (2020) 3D Printed Laminated CaCO3-Nanocellulose Films as Controlled-Release 5-Fluorouracil. Polymers, 12, Article No. 986. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [50] | Liu, S., Qamar, S.A., Qamar, M., Basharat, K. and Bilal, M. (2021) Engineered Nanocellulose-Based Hydrogels for Smart Drug Delivery Applications. International Journal of Biological Macromolecules, 181, 275-290. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [51] | Kopač, T., Lisac, A., Mravljak, R., Ručigaj, A., Krajnc, M. and Podgornik, A. (2021) Bacteriophage Delivery Systems Based on Composite polyHIPE/Nanocellulose Hydrogel Particles. Polymers, 13, Article No. 2648. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [52] | Chen, J., Huang, H., Lu, R., Wan, X., Yao, Y., Yang, T., et al. (2022) Hydrogen-Bond Super-Amphiphile Based Drug Delivery System: Design, Synthesis, and Biological Evaluation. RSC Advances, 12, 6076-6082. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [53] | Zou, R., Li, B., Duan, W., Lin, G. and Cui, Y. (2022) Synthesis of 3‐Carene‐Derived Nanocellulose/1,3,4‐Thiadiazole‐amide Complexes with Antifungal Activity for Plant Protection. Pest Management Science, 78, 3277-3286. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [54] | Li, S., Hu, X., Zhou, J., Zheng, S., Ma, Q., Fu, H., et al. (2024) Biomass-Derived Cellulose Nanocrystals Modified nZVI for Enhanced Tetrabromobisphenol a (TBBPA) Removal. International Journal of Biological Macromolecules, 268, Article ID: 131625. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [55] | 肖博. 稻秆纤维素缓释材料的研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2014. | 
                     
                                
                                    
                                        | [56] | Ning, L., Jia, Y., Zhao, X., Tang, R., Wang, F. and You, C. (2022) Nanocellulose-Based Drug Carriers: Functional Design, Controllable Synthesis, and Therapeutic Applications. International Journal of Biological Macromolecules, 222, 1500-1510. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [57] | 梁渝廷. 温度、pH双重响应性智能纳米纤维的制备及其药物缓释性能研究[D]: [硕士学位论文]. 南宁: 广西大学, 2020. | 
                     
                                
                                    
                                        | [58] | 李婷婷, 张志明, 韩正波. 基于静电纺丝技术的聚合物基MOFs纳米纤维膜的研究进展[J]. 无机材料学报, 2021, 36(6): 592-600. | 
                     
                                
                                    
                                        | [59] | Pandey, A. (2021) Pharmaceutical and Biomedical Applications of Cellulose Nanofibers: A Review. Environmental Chemistry Letters, 19, 2043-2055. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [60] | Huo, Y., Liu, Y., Xia, M., Du, H., Lin, Z., Li, B., et al. (2022) Nanocellulose-Based Composite Materials Used in Drug Delivery Systems. Polymers, 14, Article No. 2648. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [61] | Teo, S.H., Chee, C.Y., Fahmi, M.Z., Wibawa Sakti, S.C. and Lee, H.V. (2022) Review of Functional Aspects of Nanocellulose-Based Pickering Emulsifier for Non-Toxic Application and Its Colloid Stabilization Mechanism. Molecules, 27, Article No. 7170. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [62] | Ghamari, M., Sun, D., Dai, Y., See, C.H., Yu, H., Edirisinghe, M., et al. (2024) Valorization of Diverse Waste-Derived Nanocellulose for Multifaceted Applications: A Review. International Journal of Biological Macromolecules, 280, Article ID: 136130. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [63] | 田彦. 基于纳米纤维素、姜黄素和纳米金的多重疗效抗肿瘤药物研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2021. | 
                     
                                
                                    
                                        | [64] | Li, Y., Yao, S., Chen, Y., Wu, L., Xiang, D. and Zhang, W. (2024) Synthesis and Characterization of Zinc Ion-Integrated Quercetin Delivery System Using Areca Nut Seeds Nanocellulose. LWT, 192, Article ID: 115673. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [65] | Samanta, A.P., Ali, M.S., Orasugh, J.T., Ghosh, S.K. and Chattopadhyay, D. (2022) Crosslinked Nanocollagen-Cellulose Nanofibrils Reinforced Electrospun Polyvinyl Alcohol/Methylcellulose/Polyethylene Glycol Bionanocomposites: Study of Material Properties and Sustained Release of Ketorolac Tromethamine. Carbohydrate Polymer Technologies and Applications, 3, Article ID: 100195. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [66] | Ding, Y., Zhong, B., Yang, T., Zhang, F., Liu, C. and Chi, Z. (2024) Carboxyl-Modified Nanocellulose (cNC) Enhances the Stability of cNC/Pullulan Bio-Nanocomposite Hard Capsule against Moisture Variation. Carbohydrate Polymers, 328, Article ID: 121706. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [67] | Das, S., Ghosh, B. and Sarkar, K. (2022) Nanocellulose as Sustainable Biomaterials for Drug Delivery. Sensors International, 3, Article ID: 100135. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [68] | Pandey, M., Mohamad, N. and Amin, M.C.I.M. (2014) Bacterial Cellulose/Acrylamide pH-Sensitive Smart Hydrogel: Development, Characterization, and Toxicity Studies in ICR Mice Model. Molecular Pharmaceutics, 11, 3596-3608. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [69] | Del Valle, L., Díaz, A. and Puiggalí, J. (2017) Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives. Gels, 3, Article No. 27. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [70] | Raghav, N., Sharma, M.R. and Kennedy, J.F. (2021) Nanocellulose: A Mini-Review on Types and Use in Drug Delivery Systems. Carbohydrate Polymer Technologies and Applications, 2, Article ID: 100031. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [71] | Wan Ishak, W.H., Rosli, N.A., Ahmad, I., Ramli, S. and Mohd Amin, M.C.I. (2021) Drug Delivery and in Vitro Biocompatibility Studies of Gelatin-Nanocellulose Smart Hydrogels Cross-Linked with Gamma Radiation. Journal of Materials Research and Technology, 15, 7145-7157. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [72] | 陈甜甜. 以抗炎药为模型制备纤维素纳米纤丝载药体系[D]: [硕士学位论文]. 天津: 天津科技大学, 2021. | 
                     
                                
                                    
                                        | [73] | Khan, N.R., Sharmin, T. and Bin Rashid, A. (2024) Exploring the Versatility of Aerogels: Broad Applications in Biomedical Engineering, Astronautics, Energy Storage, Biosensing, and Current Progress. Heliyon, 10, e23102. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [74] | Pantić, M., Nowak, M., Lavrič, G., Knez, Ž., Novak, Z. and Zizovic, I. (2024) Enhancing the Properties and Morphology of Starch Aerogels with Nanocellulose. Food Hydrocolloids, 156, Article ID: 110345. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [75] | Lu, T., Li, Q., Chen, W. and Yu, H. (2014) Composite Aerogels Based on Dialdehyde Nanocellulose and Collagen for Potential Applications as Wound Dressing and Tissue Engineering Scaffold. Composites Science and Technology, 94, 132-138. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [76] | Albert, C., Beladjine, M., Tsapis, N., Fattal, E., Agnely, F. and Huang, N. (2019) Pickering Emulsions: Preparation Processes, Key Parameters Governing Their Properties and Potential for Pharmaceutical Applications. Journal of Controlled Release, 309, 302-332. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [77] | Ilkar Erdagi, S., Ngwabebhoh, F.A. and Yildiz, U. (2020) Pickering Stabilized Nanocellulose-Alginate: A Diosgenin-Mediated Delivery of Quinalizarin as a Potent Cyto-Inhibitor in Human Lung/Breast Cancer Cell Lines. Materials Science and Engineering: C, 109, Article ID: 110621. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [78] | 张梦. 芒果核维素纳米纤维的结构表征、乳液制备及应用研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2023. |