[1]
|
Zhu, H., Luo, W., Ciesielski, P.N., Fang, Z., Zhu, J.Y., Henriksson, G., et al. (2016) Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical Reviews, 116, 9305-9374. https://doi.org/10.1021/acs.chemrev.6b00225
|
[2]
|
Curvello, R., Raghuwanshi, V.S. and Garnier, G. (2019) Engineering Nanocellulose Hydrogels for Biomedical Applications. Advances in Colloid and Interface Science, 267, 47-61. https://doi.org/10.1016/j.cis.2019.03.002
|
[3]
|
Ma, L., Wang, T., Liu, Q., Zhang, X., Ma, W. and Zhang, Q. (2012) A Review of Thermal-Chemical Conversion of Lignocellulosic Biomass in China. Biotechnology Advances, 30, 859-873. https://doi.org/10.1016/j.biotechadv.2012.01.016
|
[4]
|
Lane, M.K.M., Rudel, H.E., Wilson, J.A., Erythropel, H.C., Backhaus, A., Gilcher, E.B., et al. (2023) Green Chemistry as Just Chemistry. Nature Sustainability, 6, 502-512. https://doi.org/10.1038/s41893-022-01050-z
|
[5]
|
朱旭冉, 李潇, 李平, 等. 木质纤维素预处理技术研究进展[J]. 广东化工, 2024, 51(7): 72-75.
|
[6]
|
付时雨. 纤维素的研究进展[J]. 中国造纸, 2019, 38(6): 54-64.
|
[7]
|
Long, L., Weng, Y.-X. and Wang, Y.-Z. (2018) Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers, 10, Article No. 623. https://doi.org/10.3390/polym10060623
|
[8]
|
Beck, S., Bouchard, J. and Berry, R. (2010) Controlling the Reflection Wavelength of Iridescent Solid Films of Nanocrystalline Cellulose. Biomacromolecules, 12, 167-172. https://doi.org/10.1021/bm1010905
|
[9]
|
Koshani, R. and Madadlou, A. (2018) A Viewpoint on the Gastrointestinal Fate of Cellulose Nanocrystals. Trends in Food Science & Technology, 71, 268-273. https://doi.org/10.1016/j.tifs.2017.10.023
|
[10]
|
刘莹莹, 夏明凤, 徐柯, 等. 纤维素纳米纤丝复合材料在药物缓释中的应用[J]. 中国造纸, 2023, 42(1): 111-120.
|
[11]
|
张思航, 付润芳, 董立琴, 等. 纳米纤维素的制备及其复合材料的应用研究进展[J]. 中国造纸, 2017, 36(1): 67-74.
|
[12]
|
Shu, D., Xi, P., Cheng, B., Wang, Y., Yang, L., Wang, X., et al. (2020) One-Step Electrospinning Cellulose Nanofibers with Superhydrophilicity and Superoleophobicity Underwater for High-Efficiency Oil-Water Separation. International Journal of Biological Macromolecules, 162, 1536-1545. https://doi.org/10.1016/j.ijbiomac.2020.07.175
|
[13]
|
de Oliveira, J.P., Bruni, G.P., el Halal, S.L.M., Bertoldi, F.C., Dias, A.R.G. and Zavareze, E.d.R. (2019) Cellulose Nanocrystals from Rice and Oat Husks and Their Application in Aerogels for Food Packaging. International Journal of Biological Macromolecules, 124, 175-184. https://doi.org/10.1016/j.ijbiomac.2018.11.205
|
[14]
|
Jacek, P., Kubiak, K., Ryngajłło, M., Rytczak, P., Paluch, P. and Bielecki, S. (2019) Modification of Bacterial Nanocellulose Properties through Mutation of Motility Related Genes in Komagataeibacter hansenii ATCC 53582. New Biotechnology, 52, 60-68. https://doi.org/10.1016/j.nbt.2019.05.004
|
[15]
|
王淑红. 静电纺丝制备几种聚合物/无机复合纳米纤维与性能研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工程大学, 2012.
|
[16]
|
刘慰, 司传领, 杜海顺, 等. 纳米纤维素基水凝胶的制备及其在生物医学领域的应用进展[J]. 林业工程学报, 2019, 4(5): 11-19.
|
[17]
|
吕天艺, 张书敏, 陈媛, 等. 不同形态纳米纤维素的制备方法研究进展[J]. 食品与发酵工业, 2022, 48(8): 281-288.
|
[18]
|
Seabra, A.B., Bernardes, J.S., Fávaro, W.J., Paula, A.J. and Durán, N. (2018) Cellulose Nanocrystals as Carriers in Medicine and Their Toxicities: A Review. Carbohydrate Polymers, 181, 514-527. https://doi.org/10.1016/j.carbpol.2017.12.014
|
[19]
|
王力. 纳米纤维素复合材料的制备及其生物医学应用[D]: [博士学位论文]. 上海: 华东师范大学, 2022.
|
[20]
|
Plackett, D., Letchford, K., Jackson, J. and Burt, H. (2014) A Review of Nanocellulose as a Novel Vehicle for Drug Delivery. Nordic Pulp & Paper Research Journal, 29, 105-118. https://doi.org/10.3183/npprj-2014-29-01-p105-118
|
[21]
|
王潇潇, 陈燕, 柳炜. 纳米纤维素在生物医学领域的研究进展与应用[J]. 中国造纸学报, 2023, 38(4): 126-133.
|
[22]
|
Chen, Q., Yang, Z., Liu, H., Man, J., Oladejo, A.O., Ibrahim, S., et al. (2024) Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics, 16, Article No. 674. https://doi.org/10.3390/pharmaceutics16050674
|
[23]
|
Khan, S.A.R., Tabish, M. and Yu, Z. (2023) Mapping and Visualizing of Research Output on Waste Management and Green Technology: A Bibliometric Review of Literature. Waste Management & Research: The Journal for a Sustainable Circular Economy, 41, 1203-1218. https://doi.org/10.1177/0734242x221149329
|
[24]
|
Khorsandi, D., Jenson, S., Zarepour, A., Khosravi, A., Rabiee, N., Iravani, S., et al. (2024) Catalytic and Biomedical Applications of Nanocelluloses: A Review of Recent Developments. International Journal of Biological Macromolecules, 268, Article ID: 131829. https://doi.org/10.1016/j.ijbiomac.2024.131829
|
[25]
|
Lossada, F., Hoenders, D., Guo, J., Jiao, D. and Walther, A. (2020) Self-Assembled Bioinspired Nanocomposites. Accounts of Chemical Research, 53, 2622-2635. https://doi.org/10.1021/acs.accounts.0c00448
|
[26]
|
刘健弘, 张欣橦, 李颖娴, 等. 药物缓释体系的研究进展[J]. 广东化工, 2024, 51(15): 90-92+45.
|
[27]
|
Yadav, D. and Dewangan, H.K. (2020) PEGYLATION: An Important Approach for Novel Drug Delivery System. Journal of Biomaterials Science, Polymer Edition, 32, 266-280. https://doi.org/10.1080/09205063.2020.1825304
|
[28]
|
Lavoine, N., Desloges, I., Dufresne, A. and Bras, J. (2012) Microfibrillated Cellulose—Its Barrier Properties and Applications in Cellulosic Materials: A Review. Carbohydrate Polymers, 90, 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026
|
[29]
|
王凯晴. MOF@纤维素纳米纤丝复合材料的制备及其应用研究[D]: [硕士学位论文]. 天津: 天津科技大学, 2023.
|
[30]
|
Yi, T., Zhao, H., Mo, Q., Pan, D., Liu, Y., Huang, L., et al. (2020) From Cellulose to Cellulose Nanofibrils—A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils. Materials, 13, Article No. 5062. https://doi.org/10.3390/ma13225062
|
[31]
|
Luo, J., Chang, H., Bakhtiary Davijani, A.A., Liu, H.C., Wang, P., Moon, R.J., et al. (2017) Influence of High Loading of Cellulose Nanocrystals in Polyacrylonitrile Composite Films. Cellulose, 24, 1745-1758. https://doi.org/10.1007/s10570-017-1219-8
|
[32]
|
张艳, 孙怡然, 于飞, 等. 细菌纤维素及其复合材料在环境领域应用的研究进展[J]. 复合材料学报, 2021, 38(8): 2418-2427.
|
[33]
|
Kumari, D. and Singh, R. (2018) Pretreatment of Lignocellulosic Wastes for Biofuel Production: A Critical Review. Renewable and Sustainable Energy Reviews, 90, 877-891. https://doi.org/10.1016/j.rser.2018.03.111
|
[34]
|
张赛, 侯刘涛, 林钰程, 等. 酸解法制备生物基纳米纤维素研究进展[J]. 林产化学与工业, 2024, 44(5): 159-172.
|
[35]
|
张关涛, 张东杰, 李娟, 等. 纳米纤维素的制备及其在食品包装材料中应用的研究进展[J]. 食品工业科技, 2022, 43(3): 430-437.
|
[36]
|
Tang, Z., Lin, X., Yu, M., Mondal, A.K. and Wu, H. (2024) Recent Advances in Tempo-Oxidized Cellulose Nanofibers: Oxidation Mechanism, Characterization, Properties and Applications. International Journal of Biological Macromolecules, 259, Article ID: 129081. https://doi.org/10.1016/j.ijbiomac.2023.129081
|
[37]
|
Bi, X., Guo, J., Wen, J. and Yu, C. (2023) Mechanistic Analysis of Nanocellulose Formation Tuned by Deep Eutectic Solvents. Cellulose, 30, 9349-9364. https://doi.org/10.1007/s10570-023-05443-x
|
[38]
|
Siqueira, G., Bras, J. and Dufresne, A. (2010) Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers, 2, 728-765. https://doi.org/10.3390/polym2040728
|
[39]
|
任海伟, 徐志航, 邢雪晔, 等. 纳米纤维素的制备、结构性质及应用研究进展[J]. 食品科学, 2023, 44(17): 215-224.
|
[40]
|
贾丽佳, 王汉琛, 黄彪, 等. 纳米纤维素的制备及功能应用[J]. 生物质化学工程, 2024, 58(4): 43-56.
|
[41]
|
Brown, A.J. (1886) XLIII.—On an Acetic Ferment Which Forms Cellulose. Journal of the Chemical Society, Transactions, 49, 432-439. https://doi.org/10.1039/ct8864900432
|
[42]
|
Satyamurthy, P., Jain, P., Balasubramanya, R.H. and Vigneshwaran, N. (2011) Preparation and Characterization of Cellulose Nanowhiskers from Cotton Fibres by Controlled Microbial Hydrolysis. Carbohydrate Polymers, 83, 122-129. https://doi.org/10.1016/j.carbpol.2010.07.029
|
[43]
|
Jirathampinyo, S., Chumchoochart, W. and Tinoi, J. (2023) Integrated Biobased Processes for Nanocellulose Preparation from Rice Straw Cellulose. Processes, 11, Article No. 1006. https://doi.org/10.3390/pr11041006
|
[44]
|
Yang, H., Bai, L., Duan, Y., Xie, H., Wang, X., Zhang, R., et al. (2023) Upcycling Corn Straw into Nanocelluloses via Enzyme-Assisted Homogenization: Application as Building Blocks for High-Performance Films. Journal of Cleaner Production, 390, Article ID: 136215. https://doi.org/10.1016/j.jclepro.2023.136215
|
[45]
|
王兴雪, 王海涛, 钟伟, 等. 静电纺丝纳米纤维的方法与应用现状[J]. 非织造布, 2007(2): 14-20.
|
[46]
|
Nelson, K. and Retsina, T. (2014) Innovative Nanocellulose Process Breaks the Cost Barrier. TAPPI Journal, 13, 19-23. https://doi.org/10.32964/tj13.5.19
|
[47]
|
Nelson, K., Retsina, T., Iakovlev, M., van Heiningen, A., Deng, Y., Shatkin, J.A., et al. (2016) American Process: Production of Low Cost Nanocellulose for Renewable, Advanced Materials Applications. In: Madsen, L.D. and Svedberg, E.B., Eds., Materials Research for Manufacturing: An Industrial Perspective of Turning Materials into New Products, Springer International Publishing, 267-302. https://doi.org/10.1007/978-3-319-23419-9_9
|
[48]
|
Kyle, S., Jessop, Z.M., Al-Sabah, A., Hawkins, K., Lewis, A., Maffeis, T., et al. (2018) Characterization of Pulp Derived Nanocellulose Hydrogels Using AVAP® Technology. Carbohydrate Polymers, 198, 270-280. https://doi.org/10.1016/j.carbpol.2018.06.091
|
[49]
|
Mohan, D., Khairullah, N.F., How, Y.P., Sajab, M.S. and Kaco, H. (2020) 3D Printed Laminated CaCO3-Nanocellulose Films as Controlled-Release 5-Fluorouracil. Polymers, 12, Article No. 986. https://doi.org/10.3390/polym12040986
|
[50]
|
Liu, S., Qamar, S.A., Qamar, M., Basharat, K. and Bilal, M. (2021) Engineered Nanocellulose-Based Hydrogels for Smart Drug Delivery Applications. International Journal of Biological Macromolecules, 181, 275-290. https://doi.org/10.1016/j.ijbiomac.2021.03.147
|
[51]
|
Kopač, T., Lisac, A., Mravljak, R., Ručigaj, A., Krajnc, M. and Podgornik, A. (2021) Bacteriophage Delivery Systems Based on Composite polyHIPE/Nanocellulose Hydrogel Particles. Polymers, 13, Article No. 2648. https://doi.org/10.3390/polym13162648
|
[52]
|
Chen, J., Huang, H., Lu, R., Wan, X., Yao, Y., Yang, T., et al. (2022) Hydrogen-Bond Super-Amphiphile Based Drug Delivery System: Design, Synthesis, and Biological Evaluation. RSC Advances, 12, 6076-6082. https://doi.org/10.1039/d1ra08624c
|
[53]
|
Zou, R., Li, B., Duan, W., Lin, G. and Cui, Y. (2022) Synthesis of 3‐Carene‐Derived Nanocellulose/1,3,4‐Thiadiazole‐amide Complexes with Antifungal Activity for Plant Protection. Pest Management Science, 78, 3277-3286. https://doi.org/10.1002/ps.6952
|
[54]
|
Li, S., Hu, X., Zhou, J., Zheng, S., Ma, Q., Fu, H., et al. (2024) Biomass-Derived Cellulose Nanocrystals Modified nZVI for Enhanced Tetrabromobisphenol a (TBBPA) Removal. International Journal of Biological Macromolecules, 268, Article ID: 131625. https://doi.org/10.1016/j.ijbiomac.2024.131625
|
[55]
|
肖博. 稻秆纤维素缓释材料的研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2014.
|
[56]
|
Ning, L., Jia, Y., Zhao, X., Tang, R., Wang, F. and You, C. (2022) Nanocellulose-Based Drug Carriers: Functional Design, Controllable Synthesis, and Therapeutic Applications. International Journal of Biological Macromolecules, 222, 1500-1510. https://doi.org/10.1016/j.ijbiomac.2022.09.266
|
[57]
|
梁渝廷. 温度、pH双重响应性智能纳米纤维的制备及其药物缓释性能研究[D]: [硕士学位论文]. 南宁: 广西大学, 2020.
|
[58]
|
李婷婷, 张志明, 韩正波. 基于静电纺丝技术的聚合物基MOFs纳米纤维膜的研究进展[J]. 无机材料学报, 2021, 36(6): 592-600.
|
[59]
|
Pandey, A. (2021) Pharmaceutical and Biomedical Applications of Cellulose Nanofibers: A Review. Environmental Chemistry Letters, 19, 2043-2055. https://doi.org/10.1007/s10311-021-01182-2
|
[60]
|
Huo, Y., Liu, Y., Xia, M., Du, H., Lin, Z., Li, B., et al. (2022) Nanocellulose-Based Composite Materials Used in Drug Delivery Systems. Polymers, 14, Article No. 2648. https://doi.org/10.3390/polym14132648
|
[61]
|
Teo, S.H., Chee, C.Y., Fahmi, M.Z., Wibawa Sakti, S.C. and Lee, H.V. (2022) Review of Functional Aspects of Nanocellulose-Based Pickering Emulsifier for Non-Toxic Application and Its Colloid Stabilization Mechanism. Molecules, 27, Article No. 7170. https://doi.org/10.3390/molecules27217170
|
[62]
|
Ghamari, M., Sun, D., Dai, Y., See, C.H., Yu, H., Edirisinghe, M., et al. (2024) Valorization of Diverse Waste-Derived Nanocellulose for Multifaceted Applications: A Review. International Journal of Biological Macromolecules, 280, Article ID: 136130. https://doi.org/10.1016/j.ijbiomac.2024.136130
|
[63]
|
田彦. 基于纳米纤维素、姜黄素和纳米金的多重疗效抗肿瘤药物研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2021.
|
[64]
|
Li, Y., Yao, S., Chen, Y., Wu, L., Xiang, D. and Zhang, W. (2024) Synthesis and Characterization of Zinc Ion-Integrated Quercetin Delivery System Using Areca Nut Seeds Nanocellulose. LWT, 192, Article ID: 115673. https://doi.org/10.1016/j.lwt.2023.115673
|
[65]
|
Samanta, A.P., Ali, M.S., Orasugh, J.T., Ghosh, S.K. and Chattopadhyay, D. (2022) Crosslinked Nanocollagen-Cellulose Nanofibrils Reinforced Electrospun Polyvinyl Alcohol/Methylcellulose/Polyethylene Glycol Bionanocomposites: Study of Material Properties and Sustained Release of Ketorolac Tromethamine. Carbohydrate Polymer Technologies and Applications, 3, Article ID: 100195. https://doi.org/10.1016/j.carpta.2022.100195
|
[66]
|
Ding, Y., Zhong, B., Yang, T., Zhang, F., Liu, C. and Chi, Z. (2024) Carboxyl-Modified Nanocellulose (cNC) Enhances the Stability of cNC/Pullulan Bio-Nanocomposite Hard Capsule against Moisture Variation. Carbohydrate Polymers, 328, Article ID: 121706. https://doi.org/10.1016/j.carbpol.2023.121706
|
[67]
|
Das, S., Ghosh, B. and Sarkar, K. (2022) Nanocellulose as Sustainable Biomaterials for Drug Delivery. Sensors International, 3, Article ID: 100135. https://doi.org/10.1016/j.sintl.2021.100135
|
[68]
|
Pandey, M., Mohamad, N. and Amin, M.C.I.M. (2014) Bacterial Cellulose/Acrylamide pH-Sensitive Smart Hydrogel: Development, Characterization, and Toxicity Studies in ICR Mice Model. Molecular Pharmaceutics, 11, 3596-3608. https://doi.org/10.1021/mp500337r
|
[69]
|
Del Valle, L., Díaz, A. and Puiggalí, J. (2017) Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives. Gels, 3, Article No. 27. https://doi.org/10.3390/gels3030027
|
[70]
|
Raghav, N., Sharma, M.R. and Kennedy, J.F. (2021) Nanocellulose: A Mini-Review on Types and Use in Drug Delivery Systems. Carbohydrate Polymer Technologies and Applications, 2, Article ID: 100031. https://doi.org/10.1016/j.carpta.2020.100031
|
[71]
|
Wan Ishak, W.H., Rosli, N.A., Ahmad, I., Ramli, S. and Mohd Amin, M.C.I. (2021) Drug Delivery and in Vitro Biocompatibility Studies of Gelatin-Nanocellulose Smart Hydrogels Cross-Linked with Gamma Radiation. Journal of Materials Research and Technology, 15, 7145-7157. https://doi.org/10.1016/j.jmrt.2021.11.095
|
[72]
|
陈甜甜. 以抗炎药为模型制备纤维素纳米纤丝载药体系[D]: [硕士学位论文]. 天津: 天津科技大学, 2021.
|
[73]
|
Khan, N.R., Sharmin, T. and Bin Rashid, A. (2024) Exploring the Versatility of Aerogels: Broad Applications in Biomedical Engineering, Astronautics, Energy Storage, Biosensing, and Current Progress. Heliyon, 10, e23102. https://doi.org/10.1016/j.heliyon.2023.e23102
|
[74]
|
Pantić, M., Nowak, M., Lavrič, G., Knez, Ž., Novak, Z. and Zizovic, I. (2024) Enhancing the Properties and Morphology of Starch Aerogels with Nanocellulose. Food Hydrocolloids, 156, Article ID: 110345. https://doi.org/10.1016/j.foodhyd.2024.110345
|
[75]
|
Lu, T., Li, Q., Chen, W. and Yu, H. (2014) Composite Aerogels Based on Dialdehyde Nanocellulose and Collagen for Potential Applications as Wound Dressing and Tissue Engineering Scaffold. Composites Science and Technology, 94, 132-138. https://doi.org/10.1016/j.compscitech.2014.01.020
|
[76]
|
Albert, C., Beladjine, M., Tsapis, N., Fattal, E., Agnely, F. and Huang, N. (2019) Pickering Emulsions: Preparation Processes, Key Parameters Governing Their Properties and Potential for Pharmaceutical Applications. Journal of Controlled Release, 309, 302-332. https://doi.org/10.1016/j.jconrel.2019.07.003
|
[77]
|
Ilkar Erdagi, S., Ngwabebhoh, F.A. and Yildiz, U. (2020) Pickering Stabilized Nanocellulose-Alginate: A Diosgenin-Mediated Delivery of Quinalizarin as a Potent Cyto-Inhibitor in Human Lung/Breast Cancer Cell Lines. Materials Science and Engineering: C, 109, Article ID: 110621. https://doi.org/10.1016/j.msec.2019.110621
|
[78]
|
张梦. 芒果核维素纳米纤维的结构表征、乳液制备及应用研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2023.
|