饲粮发酵对仔猪生长性能的影响
Effect of Feed Fermentation on the Growth Performance of Piglets
DOI: 10.12677/hjfns.2025.145074, PDF, HTML, XML,    科研立项经费支持
作者: 孙厚伟*, 张 浩, 朱晓东#:枣庄黑盖猪养殖有限公司,山东 滕州;山东福藤食品有限公司,山东 滕州
关键词: 发酵饲粮生长性能Piglets Feed Fermentation Growth Performance
摘要: 试验旨在研究发酵饲粮对仔猪生长性能的影响。选取平均体重为6.67 ± 0.18 kg的28日龄健康鲁南白猪仔猪64头,随机分为2组,每组32头,每组4个重复。对照组饲喂玉米–豆粕型饲粮,试验组发酵处理的玉米–豆粕型饲粮。结果表明:植物乳杆菌发酵饲粮可显著提高仔猪的生长性能,日增重提高12.20% (P < 0.05),腹泻率显著降低54.15% (P < 0.05)。由此可见,仔猪饲粮益生菌发酵处理有助于提高其生长性能。
Abstract: This experiment aims to investigate the effect of fermented feed on the growth performance of piglets. 64 healthy Lunan white pig piglets (28-day-old) with an average weight of 6.67 ± 0.18 kg were selected and randomly divided into 2 groups, with 32 piglets in each group and 4 replicates in each group. The control group was fed with corn soybean meal feed, while the experimental group was fed with fermented corn soybean meal feed. The results showed that: The fermented feed can significantly improve the growth performance of piglets, with a 12.20% increase in daily weight gain (P < 0.05) and a significant decrease in diarrhea rate by 54.15% (P < 0.05). It can be seen that the fermentation treatment of probiotics in piglet feed helps to improve its growth performance.
文章引用:孙厚伟, 张浩, 朱晓东. 饲粮发酵对仔猪生长性能的影响[J]. 食品与营养科学, 2025, 14(5): 679-683. https://doi.org/10.12677/hjfns.2025.145074

1. 引言

仔猪早期断奶是集约化养殖的关键技术[1],由于综合应激,容易导致仔猪肠道微生态失衡和肠道发育性受损,从而导致仔猪采食量低、腹泻发病率高,严重影响仔猪生长性能[2]。在过去的几十年里,饲粮中添加抗生素以缓解应激和治疗仔猪腹泻[2] [3]。抗生素滥用导致产生耐药性和抗生素残留[4]。因此,全球范围内禁止在畜牧业中滥用抗生素[5]。益生菌是畜牧业中最常见的抗生素替代品之一,在维持肠道屏障的完整性、抑制致病菌的生长、减少仔猪腹泻和提高生长性能方面发挥着积极作用[6] [7]

发酵饲料是根据动物营养需求将水与饲料原料或全价料以恒定的比例混合后,经益生菌接种进行液体发酵后所制成的新型饲料[8] [9]。有研究数据统计,在荷兰和法国,大约30%的生长肥育猪饲喂液体饲料[9]。Canibe等[10]研究发现,饲喂发酵饲料对生长育肥猪的生长性能有改善作用。因此,本研究旨在评估植物乳杆菌等益生菌发酵饲粮对断奶仔猪生长性能和腹泻率的影响。

2. 材料与方法

2.1. 试验材料

试验所用发酵饲料产品为玉米–豆粕型基础饲料,经过植物乳杆菌等乳酸菌多级发酵而成,活菌数1.0 × 1010 CFU/g,料水比1:0.5,发酵时间12 h。

1.2 试验猪的选择与饲养

试验在枣庄黑盖猪养殖有限公司进行。选择出生日期相近,体重为6.67 ± 0.18 kg的28日龄健康鲁南白猪仔猪64头,随机分为2组,每组32头,每组4个重复,每个重复一个圈舍。对照组饲喂玉米–豆粕型饲粮,试验组发酵处理的玉米–豆粕型饲粮。试验期为42 d,试验期间自由采食、饮水,按照猪场常规管理规程和正常免疫程序进行。试验期间以试验重复为单位记录给料量、剩余料和损耗料。对照组与试验组饲粮组成及营养成分见表1

2.2. 生长性能指标

试验开始试验结束时于晨饲前逐头称重。根据记录的给料量、剩余料和损耗料,根据试验猪个体重计算平均日增重(ADG)和料重比(F/G)。

2.3. 腹泻率

试验期间,每天认真观察并记录每组每头仔猪的健康状况,观察粪便形状及腹泻程度,计算腹泻率。参照Wen等[11]对每份仔猪粪便进行粪便评分:1分为正常;2分为糊状;3分为半液体;4分为液体,其中≥3分记为腹泻。腹泻率计算公式如下:

=[ / ( × ) ]×100

Table 1. Composition and nutrient levels of the basal feed (air-dry basis) (%)

1. 基础饲粮组成及营养水平(风干基础) (%)

原料组成

含量

营养水平

含量

玉米

49.00

代谢能(MJ/kg)1)

12.82

膨化玉米

11.00

粗蛋白质

18.01

豆粕

23.00

0.68

麸皮

5.00

有效磷

0.30

膨化豆粕

7.00

赖氨酸

0.96

预混料1)

5.0

合计

100

1) 代谢能为计算值,其余营养水平为实测值。

2.4. 数据统计分析

用SPSS 22.0软件进行数据统计分析,使用one-way ANOVA进行多重比较。P < 0.05为差异显著,P < 0.01为差异极显著,结果均以“平均值 ± 标准差”表示。

3. 结果分析

表2可见,对照组和饲粮发酵组试验猪初始体重相近,无差异(P > 0.05),试验结束时饲粮发酵组试验猪的体重显著高于对照组,提高了8.52% (P < 0.05)。饲粮发酵组仔猪日增重显著高于对照组,提高12.20% (P < 0.05)。与对照组相比,饲粮发酵组仔猪的料重比和腹泻率显著降低,分别降低7.8%、54.15% (P < 0.05)。饲粮发酵组仔猪日采食量比对照组增加3.44%,差异不显著(P > 0.05)。

Table 2. Effects of fermented feed on growth performance of weaned pigs

2. 饲粮发酵对仔猪生长性能的影响

项目

对照组

饲粮发酵组

P值

样本数

32

32

初始体重/kg

6.63 ± 0.18

6.71 ± 0.19

0.838

结束体重/kg

19.83 ± 0.48a

21.52 ± 0.59b

0.046

平均日采食量/kg

443.14 ± 10.01

458.40 ± 10.42

0.052

日增重/g

314.29 ± 9.14a

352.62 ± 10.41b

0.035

料重比

1.41 ± 0.03a

1.30 ± 0.02b

0.048

腹泻率/%

4.82 ± 0.71a

2.21 ± 0.52b

0.012

注:同行数据肩标小写字母不同者,表示差异显著(P < 0.05),同行数据肩标大写字母不同者,表示差异极显著(P < 0.01)。

4. 讨论

仔猪28日龄断奶时由于肠道发育、免疫功能等不健全,再加上母仔猪分离、饲粮组成、饲养环境变化等因素的影响,易引起仔猪腹泻、生长发育受阻[12]-[14]。27日龄断奶仔猪饲喂发酵饲粮后,胃肠激素分泌得到改善,仔猪日增重显著提高8.42% (P < 0.05),采食量显著提高9.09% (P < 0.05) [15]。植物乳杆菌和乳酸片球菌联合发酵饲料猪的日增重显著提高6.24% [16]。饲粮中添加芽孢杆菌和酵母水解产物改善肠道屏障功能,提高断奶仔猪的日增重[17]。植物乳杆菌和枯草芽孢杆菌的联合应用显著提高紧密连接蛋白和宿主防御肽的mRNA表达以及肠道sIgA含量,并减少了促炎细胞因子的分泌,从而显著提高仔猪生长性能,日增重显著提高9.38%,腹泻率降低[18]。本试验研究结果与前人研究结果一致,饲喂植物乳杆菌发酵饲粮后,仔猪的结束体重、日增重显著增加,腹泻率显著降低。这可能是因为发酵饲料中含有益生菌及其代谢产物,能够改善肠道健康,从而提高断奶仔猪的生长性能。

5. 结论

饲喂植物乳杆菌发酵饲粮可显著提高保育期仔猪日增重,降低腹泻率,提升仔猪健康水平。

基金项目

枣庄市自主创新及成果转化计划(2023GH10)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Campbell, J.M., Crenshaw, J.D. and Polo, J. (2013) The Biological Stress of Early Weaned Piglets. Journal of Animal Science and Biotechnology, 4, Article No. 19.
https://doi.org/10.1186/2049-1891-4-19
[2] Lallès, J., Bosi, P., Smidt, H. and Stokes, C.R. (2007) Nutritional Management of Gut Health in Pigs around Weaning. Proceedings of the Nutrition Society, 66, 260-268.
https://doi.org/10.1017/s0029665107005484
[3] Butaye, P., Devriese, L.A. and Haesebrouck, F. (2003) Antimicrobial Growth Promoters Used in Animal Feed: Effects of Less Well Known Antibiotics on Gram-Positive Bacteria. Clinical Microbiology Reviews, 16, 175-188.
https://doi.org/10.1128/cmr.16.2.175-188.2003
[4] Fang, H., Han, L., Zhang, H., Long, Z., Cai, L. and Yu, Y. (2018) Dissemination of Antibiotic Resistance Genes and Human Pathogenic Bacteria from a Pig Feedlot to the Surrounding Stream and Agricultural Soils. Journal of Hazardous Materials, 357, 53-62.
https://doi.org/10.1016/j.jhazmat.2018.05.066
[5] Casewell, M., Friis, C., Marco, E., Mcmullin, P. and Phillips, I. (2003) The European Ban on Growth-Promoting Antibiotics and Emerging Consequences for Human and Animal Health. Journal of Antimicrobial Chemotherapy, 52, 159-161.
https://doi.org/10.1093/jac/dkg313
[6] Chaucheyras-Durand, F. and Durand, H. (2010) Probiotics in Animal Nutrition and Health. Beneficial Microbes, 1, 3-9.
https://doi.org/10.3920/bm2008.1002
[7] Mingmongkolchai, S. and Panbangred, W. (2018) Bacillus Probiotics: An Alternative to Antibiotics for Livestock Production. Journal of Applied Microbiology, 124, 1334-1346.
https://doi.org/10.1111/jam.13690
[8] Sugiharto, S. and Ranjitkar, S. (2019) Recent Advances in Fermented Feeds Towards Improved Broiler Chicken Performance, Gastrointestinal Tract Microecology and Immune Responses: A Review. Animal Nutrition, 5, 1-10.
https://doi.org/10.1016/j.aninu.2018.11.001
[9] Cullen, J.T., Lawlor, P.G., Cormican, P. and Gardiner, G.E. (2021) Microbial Quality of Liquid Feed for Pigs and Its Impact on the Porcine Gut Microbiome. Animals, 11, Article 2983.
https://doi.org/10.3390/ani11102983
[10] Canibe, N. and Jensen, B.B. (2003) Fermented and Nonfermented Liquid Feed to Growing Pigs: Effect on Aspects of Gastrointestinal Ecology and Growth Performance. Journal of Animal Science, 81, 2019-2031.
https://doi.org/10.2527/2003.8182019x
[11] Wen, X., Wang, L., Zheng, C., Yang, X., Ma, X., Wu, Y., et al. (2018) Fecal Scores and Microbial Metabolites in Weaned Piglets Fed Different Protein Sources and Levels. Animal Nutrition, 4, 31-36.
https://doi.org/10.1016/j.aninu.2017.10.006
[12] Fardisi, M., Thelen, K., Groenendal, A., Rajput, M., Sebastian, K., Contreras, G.A., et al. (2023) Early Weaning and Biological Sex Shape Long-Term Immune and Metabolic Responses in Pigs. Scientific Reports, 13, Article No. 15907.
https://doi.org/10.1038/s41598-023-42553-9
[13] Tang, X., Xiong, K., Fang, R. and Li, M. (2022) Weaning Stress and Intestinal Health of Piglets: A Review. Frontiers in Immunology, 13, Article ID: 1042778.
https://doi.org/10.3389/fimmu.2022.1042778
[14] Zhang, M., Yang, Z., Wu, G., Xu, F., Zhang, J., Luo, X., et al. (2024) Effects of Probiotic-Fermented Feed on the Growth Profile, Immune Functions, and Intestinal Microbiota of Bamei Piglets. Animals, 14, Article 647.
https://doi.org/10.3390/ani14040647
[15] Xin, H., Wang, M., Xia, Z., Yu, B., He, J., Yu, J., et al. (2021) Fermented Diet Liquid Feeding Improves Growth Performance and Intestinal Function of Pigs. Animals, 11, Article 1452.
https://doi.org/10.3390/ani11051452
[16] Yang, Y., Yan, G., Meng, X., Wang, X., Zhao, Z., Zhou, S., et al. (2022) Effects of Lactobacillus Plantarum and Pediococcus Acidilactici Co-Fermented Feed on Growth Performance and Gut Microbiota of Nursery Pigs. Frontiers in Veterinary Science, 9, Article ID: 1076906.
https://doi.org/10.3389/fvets.2022.1076906
[17] Fu, R., Liang, C., Chen, D., Yan, H., Tian, G., Zheng, P., et al. (2021) Effects of Dietary Bacillus coagulans and Yeast Hydrolysate Supplementation on Growth Performance, Immune Response and Intestinal Barrier Function in Weaned Piglets. Journal of Animal Physiology and Animal Nutrition, 105, 898-907.
https://doi.org/10.1111/jpn.13529
[18] Liu, Y., Gu, W., Liu, X., Zou, Y., Wu, Y., Xu, Y., et al. (2022) Joint Application of Lactobacillus Plantarum and Bacillus Subtilis Improves Growth Performance, Immune Function and Intestinal Integrity in Weaned Piglets. Veterinary Sciences, 9, Article 668.
https://doi.org/10.3390/vetsci9120668